林悦香, 尚书旗, 连政国, 王明成, 张敬国. 苹果树栽植机幼苗夹持装置改进与试验[J]. 农业工程学报, 2021, 37(19): 1-6. DOI: 10.11975/j.issn.1002-6819.2021.19.001
    引用本文: 林悦香, 尚书旗, 连政国, 王明成, 张敬国. 苹果树栽植机幼苗夹持装置改进与试验[J]. 农业工程学报, 2021, 37(19): 1-6. DOI: 10.11975/j.issn.1002-6819.2021.19.001
    Lin Yuexiang, Shang Shuqi, Lian Zhengguo, Wang Mingcheng, Zhang Jingguo. Improvement and experiment of the seedling clamping device of apple tree planting machines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 1-6. DOI: 10.11975/j.issn.1002-6819.2021.19.001
    Citation: Lin Yuexiang, Shang Shuqi, Lian Zhengguo, Wang Mingcheng, Zhang Jingguo. Improvement and experiment of the seedling clamping device of apple tree planting machines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 1-6. DOI: 10.11975/j.issn.1002-6819.2021.19.001

    苹果树栽植机幼苗夹持装置改进与试验

    Improvement and experiment of the seedling clamping device of apple tree planting machines

    • 摘要: 为了解决现行矮砧密植栽培模式下苹果树幼苗栽植过程所存在的人工栽植效率低、树苗直立度不理想、夹持皮带滑移导致株距变异系数高等问题,该研究以农机农艺融合技术为指导,研制了两点夹持式苹果树幼苗栽植机。该机具在现有连续开沟定距栽植机的基础上,对树苗实施上、下两点夹持,克服了原来一点夹持使得高株苗木相对地面初始角度难以保证的问题,以提高栽植后的直立度;对夹持输送形式进行改进,采用2条同步带代替原来V型带夹持输送苹树苗木以降低滑移率和株距变异系数;对动力匹配进行优化,加装限深轮提高栽植深度稳定性。根据不同品种苹果苗木栽植要求,开沟深度及宽度可调,栽植株距也可按需调节。田间试验表明:栽植后的苹果苗木直立度合格率由原来的90.63%提高至97.14%,平均栽植深度合格率由91.43%提升为93.33%,平均栽植株距变异系数由原来的5.03%降为3.74%,栽植效率由11.89株/min提升到12.26株/min,是人工栽植的37倍。对比现有机具,该研究改进机具的各项性能指标得到改善提升,为后续苹果生产全程机械化打下坚实的基础。

       

      Abstract: At this stage, the domestic development of apple tree seedling planting machines is still in its infancy, and few planting machines had been developed for apple trees. Planting apple trees requires a large amount of labor, but the current shortage of labor is a prominent contradiction. The problem of non-mechanized planting of apple tree seedlings urgently needs to be solved. In order to solve the problems in the apple planting process under the current high density dwarfing orchard cultivation mode: low manual planting efficiency, unsatisfactory erection of fruit seedlings with the developed machines, and slightly higher coefficient of variation of plant spacing caused by the slippage of the clamping belt. Under the guidance of agricultural machinery and agronomic integration technology, a two-point clamping apple seedling planting machine was developed by a combination of extensive research, virtual design, prototype manufacturing, and field trials. This machine is based on the existing continuous ditching fixed-distance planting machine previously developed by the same team, and implements structural improvements and performance optimization. Firstly, the fruit seedling clamping device is improved, and the fruit seedlings are clamped at the upper and lower points. On top of the previous generation planting machine, a layer of clamping and conveying device is installed above the lower clamping and conveying device, and the upper and lower layers are perpendicular to each other. The distance is set to be 50cm, which is based on the comprehensive consideration of the height and status of the apple tree seedlings and the comparison of the planting effectiveness at different distances. The upper and lower clamping points work with each other during the transportation of apple tree seedlings to clamp the apple tree seedlings together. The apple tree seedlings will not rotate during operation and maintain a good initial status. It overcomes the problem that it is difficult to guarantee the initial angle of the tall seedlings relative to the ground because of the original one-point clamping, and significantly improves the perpendicularity after planting; Secondly, the transportation method is improved and the coefficient of variation of plant spacing is reduced. Considering that the trunk and bark of apple tree seedlings should not be damaged during the clamping and conveying process of the transplanter, the solution was still sought in the belt category. The initial idea was to add more tension wheels to change the belt slippage. However, the experimental results observed showed that this method makes almost no effect on reducing the belt slip rate. The timing belt can ensure that the apple tree seedlings are protected from damage during the clamping and conveying process, and it has a good transmission effect with little sliding. In order to improve clamping, the conveying mode adopts two synchronous belts to clamp and convey apple seedlings, which has a lower slip rate than the original V-belt clamping and conveying, and significantly reduces the coefficient of variation of the plant spacing; in addition, the power matching is optimized by the corresponding calculation formula. The depth-limiting wheel is installed to improve the stability of the planting depth, and the ditching machine, plant spacing control and other parts follow the first-generation machine plan. According to the planting requirements of different varieties of seedlings, the depth and width of the ditch can be adjusted, and the planting distance can also be adjusted as needed, and the adjustment is simple and convenient. Field tests showed that the qualified rate of apple seedlings planted by the machine is increased from 90.63% to 97.14%, the average planting depth qualified rate is increased from 91.43% to 93.33%, and the average plant spacing coefficient of variation is reduced from 5.03% to 3.74%, and the planting efficiency is increased from 11.89 plants/min to 12.26 plants/min, which was 37 times faster than that of manual planting. Compared with the existing machines, all performances have been improved, laying a solid foundation for the subsequent mechanization of apple's production.

       

    /

    返回文章
    返回