• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

非饱和砂质黏性紫色土崩解特性及MICP加固试验

黎桉君, 许冲, 李贤, 汪时机, 杨寻, 李丁伟

黎桉君, 许冲, 李贤, 汪时机, 杨寻, 李丁伟. 非饱和砂质黏性紫色土崩解特性及MICP加固试验[J]. 农业工程学报, 2021, 37(22): 127-135. DOI: 10.11975/j.issn.1002-6819.2021.22.014
引用本文: 黎桉君, 许冲, 李贤, 汪时机, 杨寻, 李丁伟. 非饱和砂质黏性紫色土崩解特性及MICP加固试验[J]. 农业工程学报, 2021, 37(22): 127-135. DOI: 10.11975/j.issn.1002-6819.2021.22.014
Li Anjun, Xu Chong, Li Xian, Wang Shiji, Yang Xun, Li Dingwei. Experimental investigation on disintegration characteristics and MICP reinforcement of unsaturated sandy clayey purple soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(22): 127-135. DOI: 10.11975/j.issn.1002-6819.2021.22.014
Citation: Li Anjun, Xu Chong, Li Xian, Wang Shiji, Yang Xun, Li Dingwei. Experimental investigation on disintegration characteristics and MICP reinforcement of unsaturated sandy clayey purple soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(22): 127-135. DOI: 10.11975/j.issn.1002-6819.2021.22.014

非饱和砂质黏性紫色土崩解特性及MICP加固试验

基金项目: 国家自然科学基金项目(11972311,11572262);中央高校基本科研业务费专项资金(XDJK2020C028,XDJK2018AB003)

Experimental investigation on disintegration characteristics and MICP reinforcement of unsaturated sandy clayey purple soil

  • 摘要: 砂质黏性紫色土遇水极易崩解是导致西南山区土壤侵蚀流失等水土灾害的重要原因,为揭示其崩解规律和机制,改善土体的崩解性,采用自制崩解测量仪对不同初始干密度、含水率及颗粒级配条件下的紫色土进行浸水崩解试验,并从非饱和有效应力角度分析了其崩解演化机制,在此基础上,通过扫描电镜(Scanning Electron Microscope,SEM)探讨利用微生物诱导碳酸钙沉积(Microbial Induced Calcite Precipitation,MICP)加固技术对紫色土崩解性的改善效果。结果表明:1)紫色土浸水崩解全过程包含排气吸水期、平衡期、崩解发展期、崩解残余期4个阶段;2)崩解率与平均崩解速率随初始干密度及含水率的增大而减小,且细颗粒含量越高,平均崩解速率越大;3)紫色土浸水后非饱和有效应力的衰减过程受初始饱和度的影响较大,平均崩解速率随初始饱和度的增大呈指数函数衰减;4)MICP加固土的崩解率和平均崩解速率相较于素土分别下降了73~97个百分点和84%~99%,固化沉积的碳酸钙晶体使土体结构中的微裂隙与大孔隙大幅减少,形成较为致密的孔隙结构,大幅增强了粒间胶结强度,使土体抗崩解性能明显提升。MICP技术可以作为西南山区紫色土水土灾害防治的有效措施。
    Abstract: Abstract: The sandy clayey purple soil is widely distributed in the middle and upper reaches of the Yangtze River, serving as one of the main soil resources in the mountainous areas of southwest China. Intense physical weathering, loose structure, and low erosion resistance are the main characteristics of sandy clayey purple soil. Therefore, environmental disturbance, such as the water fluctuation near reservoirs, heavy rainfall, and groundwater, often induces soil erosion, landslide, settlement, and water-soil disasters of purple soil. A serious threat has been posed on the village buildings and roads, even the agricultural production. The properties of water immersion disintegration with the sandy clayey purple soil can also be an important reason for water-soil disasters in the southwest mountainous areas. It is necessary to clarify the disintegration characteristics and reinforcement for the water-soil disasters prevention and control. In this study, a disintegration test was performed on the purple soil samples with different initial dry densities, water content, and grain gradation using a self-developed instrument. Meanwhile, the disintegration and evolution of sandy clayey purple soil were also analyzed from the perspective of unsaturated effective stress. Bacillus megaterium was selected to reinforce the soil samples with the Microbial Induced Calcite Precipitation (MICP), which is more suitable for reinforcing sandy clayey purple soil in comparison with Sporosarcina pasteurii. A Scanning Electron Microscope (SEM) was then utilized to characterize the morphologies of the soil sample, thereby determining the MICP improvement on the disintegration characteristics of sandy clayey purple soil. The results show that: 1) Four stages were divided in the whole process of immersion and disintegration of sandy clayey purple soil, including the air-water conversion, equilibrium, disintegration development, and disintegration residual stage. 2) The initial dry density, water content, and grain gradation obviously affected the disintegration characteristics of sandy clayey purple soil. Specifically, the disintegration rate and the average disintegration velocity decreased, with the increase of initial dry density and water content. In addition, the average disintegration velocity of soil increased by the content of fine particles. 3) The evolution of water and air was ranging from the pore water closed, double connected, and pore air closed morphology, with the increasing of the initial saturation. Water was rapidly absorbed into the pores under the matric suction, where the pore pressure was changed significantly. Subsequently, the effective stress of unsaturated soil rapidly reduced to the negative, leading to an interparticle compressive stress (the negative tensile stress). Once the tensile stress reached the value of effective cohesion, the unsaturated strength of purple soil was lost completely. Finally, the soil sample was then destroyed under disintegration. The more severe disintegration was also obtained with the decrease in the initial saturation of a soil sample. The decay process of the unsaturated effective stress depended greatly on the initial saturation after the purple soil was immersed in water. Specifically, the average disintegration velocity attenuated exponentially with the increase of the initial saturation. 4) The disintegration rate and the average disintegration velocity of the MICP treated soil samples decreased by 73 to 97 percentage points and 84%-99%, respectively, compared with the untreated soil. Calcium carbonate crystals formed by solidification and deposition greatly reduced the micro-cracks and large pores in the soil structure. As such, a denser pore structure was achieved to enhance the strength of intergranular cementation for the higher resistance to the disintegration of the soil. Consequently, the MICP technology can serve as an effective measure to prevent the water-soil disasters of the sandy clayey purple soil in southwest mountainous areas.
  • [1] 史东梅,蒋平,何文健,等. 紫色土坡耕地生物埂土壤抗剪强度对干湿作用的响应[J]. 农业工程学报,2016,32(24):139-146.Shi Dongmei, Jiang Ping, He Wenjian, et al. Responses of soil shear strength to dryness and wetness of biological ridges in purple soil slope farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 139-146. (in Chinese with English abstract)
    [2] 鲍玉海,丛佩娟,冯伟,等. 西南紫色土区水土流失综合治理技术体系[J]. 水土保持通报,2018,38(3):143-150.Bao Yuhai, Cong Peijuan, Feng Wei, et al. Comprehensive management system of soil and water loss in purple soil area of Southwestern China[J]. Bulletin of Soil and Water Conservation, 2018, 38(3): 143-150. (in Chinese with English abstract)
    [3] 夏振尧,张伦,牛鹏辉,等. 干密度初始含水率坡度对紫色土崩解特性的影响[J]. 中国水土保持科学,2017,15(1):121-127.Xia Zhenyao, Zhang Lun, Niu Penghui, et al. Influence of initial moisture content gradient of dry density on disintegration characteristics of purple soil[J]. China Soil and Water Conservation Science, 2017, 15(1): 121-127. (in Chinese with English abstract)
    [4] 秦伟,左长清,晏清洪,等. 红壤裸露坡地次降雨土壤侵蚀规律[J]. 农业工程学报,2015,31(2):124-132.Qin Wei, Zuo Changqing, Yan Qinghong, et al. Regularity of soil erosion during single rainfall on red soil bare slope land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(2): 124-132. (in Chinese with English abstract)
    [5] 周翠英,景兴达,刘镇. 华南红层风化土崩解特性及其改性研究[J]. 工程地质学报,2019,27(6):1253-1261.Zhou Cuiying, Jing Xingda, Liu Zhen. Research on disintegration characteristics and modification of weathered soil from red beds in South China[J]. Journal of Engineering Geology, 2019, 27(6): 1253-1261. (in Chinese with English abstract)
    [6] 徐露,张丹,向宇国,等. 不同耕作措施下金沙江下游紫色土区坡耕地产流产沙特征[J]. 山地学报,2020,38(6):851-860.Xu Lu, Zhang Dan, Xiang Yuguo, et al. Runoff and sediment yield characteristics of slope farmland in purple soil region of lower Jinsha River under different cultivation measures[J]. Journal of Mountain Research, 2020, 38(6): 851-860. (in Chinese with English abstract)
    [7] 沈泰宇,李贤,汪时机,等. 微生物固化砂质黏性紫色土的三轴抗剪强度与浸水抗压强度[J]. 农业工程学报,2019,35(21):135-143.Shen Taiyu, Li Xian, Wang Shiji, et al. Triaxial shear strength and water immersion compressive strength of microbial-cured sandy cohesive purple soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(21): 135-143. (in Chinese with English abstract)
    [8] 李敬王,陈林,史东梅,等. 紫色土崩解特性对容重和含水率的响应特征[J]. 水土保持学报,2019,33(2):68-72.Li Jingwang, Chen Lin, Shi Dongmei, et al. Disintegration characteristics of purple soil in response to bulk density and water content[J]. Journal of Soil and Water Conservation, 2019, 33(2): 68-72. (in Chinese with English abstract)
    [9] Xia D, Zhao B, Liu D, et al. Effect of soil moisture on soil disintegration characteristics of different weathering profiles of collapsing gully in the hilly granitic region, South China[J]. Plos One, 2018, 13(12): e209427.
    [10] Terzaghi K, Peck R B. Soil mechanics in engineering practice (second edition) [M]. New Jersey: John Wiley& Sons, 1967.
    [11] Collis-George N, Bond W J. Ponded infiltration into simple soil systems: Pore air pressures ahead of and behind the wetting front[J]. Soil Science, 1981, 131(5): 263-270.
    [12] 张抒,唐辉明. 非饱和花岗岩残积土崩解机制试验研究[J]. 岩土力学,2013,34(6):1668-1674.Zhang Shu, Tang Huiming. Experimental study on disintegration mechanism of unsaturated granite residual soil[J]. Rock and Soil Mechanics, 2013, 34(6): 1668-1674. (in Chinese with English abstract)
    [13] Jiang N J, Soga K. The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures[J]. Géotechnique, 2017, 67(1): 42-55.
    [14] Shih D, Lai T, Hsu Z. Applying biomineralization technology to study the effects of rainfall induced soil erosion[J]. Water, 2019, 11(12): 2555.
    [15] Shahin M A, Jamieson K, Cheng L. Microbial-induced carbonate precipitation for coastal erosion mitigation of sandy slopes[J]. Géotechnique Letters, 2020, 10(2): 211-215.
    [16] 邵光辉,冯建挺,赵志峰,等. 微生物砂浆防护粉土坡面的强度与抗侵蚀性影响因素分析[J]. 农业工程学报,2017,33(11):133-139.Shao Guanghui, Feng Jianting, Zhao Zhifeng, et al. Analysis of influencing factors of strength and erosion resistance of microbial mortar to protect silt slopes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 133-139. (in Chinese with English abstract)
    [17] Salifu E, Maclachlan E, Iyer K R, et al. Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation[J]. Engineering Geology, 2016, 201: 96-105.
    [18] Dejong J T, Soga K, Kavazanjian E, et al. Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Géotechnique, 2013, 63(4): 287-301.
    [19] 沈泰宇,汪时机,薛乐,等. 微生物沉积碳酸钙固化砂质黏性紫色土试验研究[J]. 岩土力学,2019,40(8):3115-3124.Shen Taiyu, Wang Shiji, Xue Le, et al. Experimental study on solidification of sandy cohesive purple soil by microbial deposition of calcium carbonate[J]. Rock and Soil Mechanics, 2019, 40(8): 3115-3124. (in Chinese with English abstract)
    [20] 李贤. 微生物灌浆固化紫色土的水力-力学特性及其强化机理研究[D]. 重庆:西南大学,2020.Li Xian. Study on Hydraulic-Mechanical Properties and Strengthening Mechanism of Purple Soil Solidified by Microbial Grouting[D]. Chongqing: Southwest University, 2020. (in Chinese with English abstract)
    [21] Wei J, Shi B, Li J, et al. Shear strength of purple soil bunds under different soil water contents and dry densities: A case study in the Three Gorges Reservoir Area, China[J]. Catena, 2018, 166: 124-133.
    [22] 黎澄生,安然,舒荣军,等. 花岗岩残积土初期崩解规律与数学形态学方法近似模拟[J]. 岩石力学与工程学报,2020,39(4):845-854.Li Chengsheng, An Ran, Shu Rongjun, et al. The initial disintegration law of granite residual soil and the approximate simulation of mathematical morphology method[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(4): 845-854. (in Chinese with English abstract)
    [23] 陈晓燕. 不同尺度下紫色土水土流失效应分析[D]. 重庆:西南大学,2009.Chen Xiaoyan. Analysis of Purple Soil Erosion Effects at different Scales[D]. Chongqing: Southwest University, 2009. (in Chinese with English abstract)
    [24] 黄文熙. 土的工程性质[M]. 北京:水利电力出版社,1983.
    [25] Bishop A W. The principle of effective stress[J]. Teknisk Ukeblad, 1959, 39.
    [26] 何蕾. 矿物成分与水化学成分对粘性土抗剪强度的控制规律及其应用[D]. 北京:中国地质大学,2014.He Lei. Impact of Mineralogical Composition and Water Chemistry on the Shear Strength of Clay and Its Application[D]. Beijing: China University of Geosciences, 2014. (in Chinese with English abstract)
    [27] 栾茂田,李顺群,杨庆. 非饱和土的基质吸力和张力吸力[J]. 岩土工程学报,2006,28(7):863-868.Luan Maotian, Li Shunqun, Yang Qing. Matrix suction and tension suction of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 863-868. (in Chinese with English abstract)
    [28] Lugato E, Simonetti G, Morari F, et al. Distribution of organic and humic carbon in wet-sieved aggregates of different soils under long-term fertilization experiment[J]. Geoderma, 2010, 157(3/4): 80-85.
    [29] Chou C, Seagren E A, Aydilek A H, et al. Biocalcification of Sand through Ureolysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(12): 1179-1189.
  • 期刊类型引用(16)

    1. 赵红斌,卞宝文,马丹丹,徐婷,孙艳伟. 土地利用时空演变对植被覆盖影响研究——以山东省青岛市和日照市为例. 内蒙古林业调查设计. 2025(01): 78-85+25 . 百度学术
    2. 郭思岩,侯艳丽,石斌. 过去40年兰州市榆中县土地利用景观格局变化及驱动力分析. 国土与自然资源研究. 2024(02): 20-26 . 百度学术
    3. 娄佳乐,党晓宏,蒙仲举,张昊,宋慧芳. 1986—2020年黄河流域十大孔兑土地利用变化及驱动力分析. 水土保持学报. 2024(01): 319-327+336 . 百度学术
    4. 魏光辉,张环,徐海量,李江. 新疆塔里木河下游绿色走廊土地覆被变化研究. 水利规划与设计. 2024(04): 90-93+99 . 百度学术
    5. 叶博文,孙标,史小红,赵胜男,邹佳慧,赵云靓,姚卫泽. 2000—2021年锡林郭勒草原生态环境质量变化及其驱动因素. 水土保持通报. 2024(01): 271-283 . 百度学术
    6. 高美琪,许玉凤. 基于GIS的都匀市高铁站土地利用动态分析. 北京测绘. 2024(02): 145-150 . 百度学术
    7. 冯向阳,吴朝琪,邹昕,樊德昊,梁晋源,闫庆武,王培俊. 疆电外送通道土地覆被时空变化及驱动力分析. 矿业科学学报. 2024(04): 641-652 . 百度学术
    8. 康平山,吴彬,高凡,杜明亮,王翠,曹伟. 昌吉州平原区土地利用时空变化及驱动因素分析. 人民长江. 2024(08): 59-68 . 百度学术
    9. 张迎杰,樊雪丰,王海梅,孙琳丽. 赤峰市植被覆盖度时空变化及其与气候因子的关系. 内蒙古师范大学学报(自然科学版). 2024(05): 471-477 . 百度学术
    10. 贾静,宿星,张军,路常亮,张满银,李霞,董耀刚,任皓晨. 1985—2020年甘肃省通渭县滑坡区土地利用变化及驱动力. 应用生态学报. 2024(10): 2833-2841 . 百度学术
    11. 杨英,潘安,曹珑誉. 2000—2020年广安市土地利用变化及驱动力分析. 四川农业科技. 2024(11): 122-129 . 百度学术
    12. 张治国,康鸿杰. 2000—2020年武威市土地利用/覆被时空变化及驱动力分析. 科学技术与工程. 2023(20): 8579-8587 . 百度学术
    13. 崔正,冯文勇,樊童生. 2000~2020年珠江-西江经济带土地利用时空演变特征分析. 绿色科技. 2023(13): 255-258 . 百度学术
    14. 袁荣燕,张宁,邵丽文,闫勇智,徐雪,张庆. 1990-2020年间内蒙古自然保护区景观生态风险评估及驱动因素分析. 内蒙古大学学报(自然科学版). 2023(05): 519-528 . 百度学术
    15. 谈旭,王承武. 伊犁河谷生态系统服务价值时空演变及其驱动因素. 应用生态学报. 2023(10): 2747-2756 . 百度学术
    16. 周小平,李理,梁颖,杨兰. 主体功能区视角下长三角地区国土空间格局时空演变及其碳排放效应分析. 农业工程学报. 2023(17): 236-244 . 本站查看

    其他类型引用(11)

计量
  • 文章访问数:  388
  • HTML全文浏览量:  0
  • PDF下载量:  1023
  • 被引次数: 27
出版历程
  • 收稿日期:  2021-09-02
  • 修回日期:  2021-11-11
  • 发布日期:  2021-11-14

目录

    /

    返回文章
    返回