智能手机RGB图像检测植物叶片叶绿素含量的通用方法

    Univeisal method to detect the chlorophyll content in plant leaves with RGB images captured by smart phones

    • 摘要: 为提高RGB(Red, Green, Blue)图像方法在检测植物叶片叶绿素含量的预测精度、普适性和实用性,该研究提出了一种智能手机结合辅助拍照装置获取植物叶片RGB图像并即时检测叶绿素含量的低成本方法。设计了一种内置主动光源的低成本便携式拍照装置,用以降低环境光及拍照角度等因素对成像质量的影响;并采用了基于24色Macbeth标准色卡的二阶多项式回归法构建色差校正矩阵以减小不同手机所获取图像的色差;最后开发了基于微信小程序的远程诊断系统以实现植物叶片叶绿素含量的原地、实时及无损检测。以甘蔗叶片为例,采用了3款不同品牌的手机进行了试验,首先分析了叶片39种颜色特征与其叶绿素含量的相关性及色差校正方法对其的影响。结果表明,该方法获取的叶片颜色特征与叶绿素含量大多具有较强的相关性(相关系数>0.8),同时,色差校正可明显提升多手机混合数据集的颜色特征与叶绿素含量的相关系数,其中RGB色彩空间下三个颜色通道亮度值R、G、B的代数运算特征(B-G-R)/(B+G)的提升最明显,达到了0.842 4,比校正前提高了89%。进一步结合主成分分析构建了色差校正前与色差校正后的叶绿素含量多元线性回归(Multivariate Linear Regression,MLR)和支持向量机回归(Support Vector Regression,SVR)预测模型。多手机混合数据集通用预测模型中,色差校正后的SVR通用预测模型精度和稳定性最高,相比校正前的SVR通用预测模型,五折交叉验证的R2均值达到了0.721 4,提高了14.6%,RMSE均值为0.328 8 mg/g,降低了13.3%;同时,该模型五折交叉验证的R2标准差仅为0.004 2,具有更高的稳定性。该研究为不同手机准确预测植物叶片叶绿素含量提供了一种通用方法。

       

      Abstract: Abstract: This study aims to propose a universal method to detect the chlorophyll content of green plant leaves using different smart phones, thereby improving the prediction accuracy and practicability of RGB(Red, Green, Blue) images. A low-cost and portable auxiliary shoot device was also designed with a built-in active light source to reduce the influence of environment light and camera angle on the imaging quality. A color correction was used to reduce the color difference of the collected images. Three smart phones with different brands and prices were selected to carry out the experiments on sugarcane leaves. After that, some prediction models were established for the leaf chlorophyll content. A remote diagnose system under the WeChat applet was then developed to realize in situ, real-time and nondestructive detection of chlorophyll content in plant leaves. An auxiliary shoot device was designed in a shape of semi-sphere, with an inside coating of white diffuse reflective material, particularly for the even white light during image acquisition. A small shooting window was opened on the top, where eight white LEDs were distributed inside. The plant leaf was placed flat at the bottom base to capture a well-controlled leaf image in the enclosed chamber. A color checker with the 24 standard colors (X-Rite Colorchecker Classic Nano) was needed in the chamber in advance to calculate the color correction matrix using polynomial regression for each smart phone. An automatic image processing procedure was conducted to extract the RGB values of the color blocks and the leaves. Subsequently, a total of 39 color features were extracted from the leaves. A Pearson correlation analysis was implemented between the leaf color features and chlorophyll content. The results showed that most of the color features presented a strong correlation greater than 0.8 for the individual smart phone in the original and color-corrected images, indicating a relatively fewer improvement. But, the color correction of hybrid images with the chlorophyll content better improved than that of the original. The color feature (B-G-R)/(B+G) was a correlation of 0.84, indicating the highest improvement of 89% before correction. A Principal Component Analysis (PCA) was then adopted to reduce the dimension of the color features. The first five and fifteen principal components were used to build the Multivariate Linear Regression (MLR) and the Support Vector Regression (SVR) models for the individual and all smart phones. The color correction showed that there were only a few contributions to predict the chlorophyll content with the individual smart phone. More importantly, no color correction was needed if only one sensor was used to capture the RGB images. The iPhone 8P behaved the highest of R2 to reach about 0.76 and 0.79 for MLR and SVR models, respectively. But, an outstanding improvement was made for the hybrid image set with all smart phones. The SVR model performed better prediction accuracy and stability. The SVR model reached a mean R2 of 0.721 4 under the five-fold cross-validation, with an increase of 14.6%, while the mean RMSE was 0.328 8 mg/g, with a decrease of 13.3% before the color correction. Meanwhile, the lowest standard deviation of R2 was only 0.0042 in the general SVR model, compared with the rest, indicating the highest stability. The prediction was integrated with a remote server, where a WeChat applet was developed to provide a convenient way of leaf chlorophyll content prediction for the users with their own smart phones. This model can be further extended to various green plants.

       

    /

    返回文章
    返回