[1] |
王泽尤,严铠,任志雨,等. 农业技术进步和农村劳动力转移对农民增收的影响[J]. 农业展望,2020,16(9):20-26.Wang Zeyou, Yan Kai, Ren Zhiyu, et al. Impacts of agricultural technology progress and rural labor force transfer on farmers' income[J]. Agricultural Outlook, 2020, 16(9): 20-26. (in Chinese with English abstract)
|
[2] |
刘成良,林洪振,李彦明,等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报,2020,51(1):1-18.Liu Chengliang, Lin Hongzhen, Li Yanming, et al. Analysis on status and development trend of intelligent control technology for agricultural equipment[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 1-18. (in Chinese with English abstract)
|
[3] |
Chattha H S, Zaman Q U, Chang Y K, et al. Variable rate spreader for real-time spot-application of granular fertilizer in wild blueberry[J]. Computers and Electronics in Agriculture, 2014, 100: 70-78.
|
[4] |
Onishi Y, Yoshida T, Kurita H, et al. An automated fruit harvesting robot by using deep learning[C]// Tokyo: The Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec), 2018: 6-13.
|
[5] |
陈建国,李彦明,覃程锦,等. 小麦播种量电容法检测系统设计与试验[J]. 农业工程学报,2018,34(18):51-58.Chen Jianguo, Li Yanming, Qin Chengjin, et al. Design and test of capacitive detection system for wheat seeding quantity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(18): 51-58. (in Chinese with English abstract)
|
[6] |
孟庆宽,张漫,杨晓霞,等. 基于轻量卷积结合特征信息融合的玉米幼苗与杂草识别[J]. 农业机械学报,2020,51(12):238-245,303.Meng Qingkuan, Zhang Man, Yang Xiaoxia, et al. Recognition of maize seedling and weed based on light weight convolution and feature fusion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 238-245, 303. (in Chinese with English abstract)
|
[7] |
张漫,季宇寒,李世超,等. 农业机械导航技术研究进展[J]. 农业机械学报,2020,51(4):1-18.Zhang Man, Ji Yuhan, Li Shichao, et al. Research progress of agricultural machinery navigation technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020,51(4): 1-18. (in Chinese with English abstract)
|
[8] |
王荣本,李琳辉,郭烈,等。基于立体视觉的越野环境感知技术[J]. 吉林大学学报:工学版,2008,38(3):520-524.Wang Rongben, Li Linhui, Guo Lie, et al. Stereo vision based cross-country environmental perception technique[J]. Journal of Jilin University: Engineering and Technology Edition, 2008, 38(3): 520-524. (in Chinese with English abstract)
|
[9] |
汪博. 基于机器视觉的农业导航系统[D]. 杭州:浙江理工大学,2016.Wang Bo. The Agricultural Navigation System Based on Machine Vision[D]. Hangzhou: Zhejiang Sci-Tech University, 2016. (in Chinese with English abstract)
|
[10] |
Coombes M, Eaton W, Chen W H. Colour based semantic image segmentation and classification for unmanned ground operations[C]// International Conference on Unmanned Aircraft Systems (ICUAS). Arlington, VA USA, 2016: 858-867.
|
[11] |
Scharwachter T, Franke U. Low-level fusion of color, texture and depth for robust road scene understanding[C]// 2015 IEEE In Intelligent Vehicles Symposium (IV), 2015, 599-604.
|
[12] |
陶思然. 顾及梯度和彩色信息的高分辨率影像道路分割[J]. 科学技术与工程,2019,19(31):263-269.Tao Siran. Road segmentation of high-spatial resolution remote sensing images by considering gradient and color information[J]. Science Technology and Engineering, 2019, 19(31): 263-269. (in Chinese with English abstract)
|
[13] |
Duong L T, Nguyen P T, Sipio C D, et al. Automated fruit recognition using EfficientNet and MixNet[J]. Computers and Electronics in Agriculture, 2020, 171: 105326.
|
[14] |
Jiang H, Zhang C, Qiao Y, et al. CNN feature based graph convolutional network for weed and crop recognition in smart farming[J]. Computers and Electronics in Agriculture, 2020, 174: 105450.
|
[15] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
|
[16] |
轩永仓. 基于全卷积神经网络的大田复杂场景图像的语义分割研究[D]. 杨凌:西北农林科技大学,2017.Xuan Yongcang. Research on the Semantic Segmentation of Complex Scene Image of Field Based on Fully Convolutional Networks[D]. Yangling: Northwest A&F University, 2017. (in Chinese with English abstract)
|
[17] |
李云伍,徐俊杰,刘得雄,等. 基于改进空洞卷积神经网络的丘陵山区田间道路场景识别[J]. 农业工程学报,2019,35(7):150-159.Li Yunwu, Xu Junjie, Liu Dexiong, et al. Field road scene recognition in hilly regions based on improved dilated convolutional networks[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(7): 150-159. (in Chinese with English abstract)
|
[18] |
张凯航,冀杰,蒋骆,等. 基于SegNet的非结构道路可行驶区域语义分割[J]. 重庆大学学报,2020,43(3):79-87.Zhang Kaihang, Ji Jie, Jiang Luo, et al. The semantic segmentation of driving regions on unstructured road based on signet architecture[J]. Journal of Chongqing University, 2020, 43(3): 79-87. (in Chinese with English abstract)
|
[19] |
刘家银. 非结构化环境下自主式地面车辆环境感知关键技术研究[D]. 南京:南京理工大学,2018.Liu Jiayin. Research on Key Technologies of Autonomous Land Vehicle Perception in Unstructured Environment[D]. Nanjing: Nanjing University of Science and Technology, 2018. (in Chinese with English abstract)
|
[20] |
Howard A G, Zhu M, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[Z]. [2020-07-03], https: //arxiv. org/abs/1704. 04861.
|
[21] |
Sandler M, Howard A, Zhu M, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
|
[22] |
Chen L, Papandreou G, Kokkinos I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
|
[23] |
Wang P, Chen P, Yuan Y, et al. Understanding convolution for semantic segmentation[C]// 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Tahoe, 2018: 1451-1460.
|
[24] |
Yu C, Wang J, Peng C, et al. Learning a discriminative feature network for semantic segmentation[C]// 2018 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Salt Lake, UT, USA, 2018, 1857-1866
|
[25] |
Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, 2017: 6230-6239.
|
[26] |
Liu W, Rabinovich A, Berg A C. Parsenet: Looking wider to see better[C]// In International Conference on Learning Representations, 2016.
|
[27] |
Jadon S. A survey of loss functions for semantic segmentation[C]//2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2020: 1-7.
|