基于区域亮度自适应校正的茶叶嫩芽检测模型

    Detection model for tea buds based on region brightness adaptive correction

    • 摘要: 自然光照下不同时间采集的茶叶图像存在亮度不均的现象。由于高亮度图像对比度差且嫩芽特征显著性弱,造成高亮度图像中存在较多嫩芽的漏检。针对现有茶叶嫩芽图像自动检测方法对光照变化的敏感性,该研究提出一种基于区域亮度自适应校正的茶叶嫩芽检测模型。首先,对不同时间采集的龙井43茶叶图像进行灰度化;然后,计算灰度图的平均灰度(Average Gray,AG)值,对AG值在170,230的高亮度图像进行不同尺寸的分块处理和局部区域伽马亮度自适应校正;最后,在相同的训练集和测试集训练多个深度学习检测模型。测试结果表明,基于YOLOv5+CSPDarknet53的检测模型比SSD+VGG16、Faster RCNN+VGG16、YOLOv3+Darknet53和YOLOv4+CSPDarknet53模型具有更优的嫩芽检测性能,精确率和召回率分别为88.2%和82.1%。对YOLOv5检测结果进行检测抑制,有效避免了同一目标被多次框选的冗余现象。30,90)和90,170)亮度区间内嫩芽图像具有较强的显著性特征和较高的检测精度与召回率。相较于AG值在170,230的高亮度原始图像的检测结果,对高亮度图像进行2×3分块和局部区域亮度自适应校正后,YOLOv5嫩芽检测召回率提高了19.2个百分点。对不同光照条件下采集的茶叶图像进行测试,基于区域亮度自适应校正的茶叶嫩芽YOLOv5检测模型获得了92.4%的检测精度和90.4%的召回率。该模型对光照强度变化具有较强的鲁棒性,研究结果可为自然光照条件下茶叶嫩芽机械采摘作业提供参考。

       

      Abstract: Abstract: An Accurate and rapid detection of tea buds can be a critical precondition in an intelligent tea-picking system. Nevertheless, it is still lacking in the robustness, universality, and accuracy during the segmentation of tea buds images under natural light. Fortunately, deep learning can greatly contribute to the artificial extraction of features for higher accuracy of tea bud detection in recent years. However, the current detection of tea bud can also be affected by the light to a great extent. Thus, it is very necessary to establish a new model of tea bud detection with high robustness and low sensitivity for intelligent tea picking in a natural environment. A novel automatic detection model of tea buds was proposed using a regional brightness adaptive correction and deep learning, in order to improve the robustness under different light intensities. First, the Longjing 43 tea was taken as a research object to collect the images under various light intensities. A labelling software was then used to label for the "V" and "I" posture of one bud and one leaf. After that, a data enhancement was performed by adding the Gaussian noise and horizontal mirroring. Second, the RGB images were converted to the grayscale images, of which the gray values were averaged. Subsequently, the distribution of the Average Gray (AG) values and convolution feature diagram were utilized to classify the grayscale images under different illumination intensities. Specifically, three levels were obtained, including the low, medium, and high brightness, corresponding to the intervals 30, 90), 90, 170), and 170, 230, respectively. A gamma brightness adaptive correction was then performed on the images with high brightness using different sizes of partitioning. At last, the multiple models of tea buds detection using deep learning were trained on the same training and test set. The results showed that the YOLOv5+CSPDarknet53 presented an optimal performance of tea bud detection, with the detection precision of 88.2% and recall rate of 82.1%, compared with SSD+VGG16, Faster RCNN+VGG16, YOLOv3+Darknet53, and YOLOv4+CSPDarknet53 models. The precision of detection was improved by 4.8 percentage points after a detection suppression on the YOLOv5 model. Thus, there was much less phenomenon that the same target was boxed for several times. Moreover, the image features of tea buds were of high significance in the brightness intervals 30, 90) and 90, 170), indicating that there was a much fewer influence of the brightness adaptive correction on the detection of the images with the medium or low brightness. There was also a relatively lower contrast between the tea buds and old leaves in the high brightness images. Furthermore, the significance of tea buds was weakened with the deepening of network layers, indicating that the effective features of tea buds cannot be extracted so far. As such, the recall rate of bud detection was only 71.1% for the high brightness images, indicating a relatively high missing detection rate. More importantly, the recall rate of bud detection was promoted by 19.2 percentage points than before, particularly after 2×3 block and regional gamma adaptive brightness correction for the high brightness images. The testing of tea images under various light intensities demonstrated that the YOLOv5 detection model using a regional brightness adaptive correction achieved the detection precision of 92.4% and the recall rate of 90.4%, indicating high robustness and low sensitivity to light changes. Therefore, the finding can provide a promising theoretical basis for the intelligent tea-picking system under natural light conditions.

       

    /

    返回文章
    返回