• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

加气对西北旱区膜下滴灌棉花生长与水分利用效率的影响

王振华, 韩美琪, 宋利兵, 宗睿, 温越, 武小荻

王振华, 韩美琪, 宋利兵, 宗睿, 温越, 武小荻. 加气对西北旱区膜下滴灌棉花生长与水分利用效率的影响[J]. 农业工程学报, 2022, 38(14): 108-116. DOI: 10.11975/j.issn.1002-6819.2022.14.013
引用本文: 王振华, 韩美琪, 宋利兵, 宗睿, 温越, 武小荻. 加气对西北旱区膜下滴灌棉花生长与水分利用效率的影响[J]. 农业工程学报, 2022, 38(14): 108-116. DOI: 10.11975/j.issn.1002-6819.2022.14.013
Wang Zhenhua, Han Meiqi, Song Libin, Zong Rui, Wen Yue, Wu Xiaodi. Effects of aeration on the growth and water use efficiency of cotton under mulched drip irrigation in the dry areas of Northwest China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(14): 108-116. DOI: 10.11975/j.issn.1002-6819.2022.14.013
Citation: Wang Zhenhua, Han Meiqi, Song Libin, Zong Rui, Wen Yue, Wu Xiaodi. Effects of aeration on the growth and water use efficiency of cotton under mulched drip irrigation in the dry areas of Northwest China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(14): 108-116. DOI: 10.11975/j.issn.1002-6819.2022.14.013

加气对西北旱区膜下滴灌棉花生长与水分利用效率的影响

基金项目: 国家重点研发专项(2021YFD19008003-3);国家自然科学基金项目(51869027);兵团重大科技项目(2021AA003-1)

Effects of aeration on the growth and water use efficiency of cotton under mulched drip irrigation in the dry areas of Northwest China

  • 摘要: 针对膜下滴灌棉田土壤根际低氧胁迫抑制棉花水分利用问题,探讨不同生长阶段加气灌溉对棉花生长发育及水分利用的影响。研究设置了苗期、蕾期、花铃期、蕾期+花铃期、苗期+蕾期+花铃期5个加气阶段,以生育期不加气为对照进行田间试验。结果表明:花铃期加气土壤呼吸和土壤温度峰值较其他处理延后,使加气效果得到延长,更好地改善了土壤环境,在获得最大产量的同时,水分利用效率也最高。土壤氧气含量对棉花产量的影响程度最大,且花铃期土壤氧气含量对产量和水分利用效率的正面影响均大于其他生育期。因此,在棉花花铃期进行加气灌溉是缓解覆膜造成的棉花根际低氧胁迫,提升棉花产量与水分利用效率的最佳时期。研究结果对揭示加气灌溉对棉花生长的影响机制及进一步提高水土资源利用率提供了理论依据。
    Abstract: Abstract: Low-oxygen stress can pose a considerable threat to cotton production in the Xinjiang dry regions of Northwest China. Aerated irrigation has been widely considered to optimize the soil water-aeration environment, thus mitigating the adverse effects of low oxygen stress on the crop. However, aerated irrigation can also increase the irrigation time for less irrigation efficiency. Therefore, it is very necessary to consider the sensitivity of the cotton to hypoxic stress at different growth stages. A reasonable mode of aerated irrigation can also be established to quantify the response of the cotton growth and yield to the hypoxic stress during cultivation. Moreover, there is no consensus on the sensitivity of the cotton to low oxygen stress at various growth stages at present. This study aims to determine the effects of aerated irrigation at different growth stages on the soil environment, cotton growth, yield, and water production. A correlation was also made between the soil oxygen concentration, soil respiration rate, and soil temperature, with the cotton growth and yield. A field experiment was then conducted at the Key Laboratory of Modern Water-saving Irrigation of Xinjiang Production and Construction Corps at Shihezi University in Xinjiang, China, in 2021. The experimental settings were aerated irrigation (the dissolved oxygen concentration of 15 mg/L), and conventional non-aerated treatment (CK, the dissolved oxygen concentration of 5 mg/L) at the seedling (AS), budding (AB), flowering and boll (AF), budding, flowering and boll (ABF), and seedling, budding, flowering and boll (AW) stage. There were a total of 18 plots with three times repeated. The cotton variety was selected as "Xin Lu early 42", which was sown on April 15 and harvested on September 30. The subsurface drip irrigation was adopted for aerating using Mazzei air injector. A measurement was conducted on the soil oxygen content, soil respiration rate, soil temperature, plant height, stem diameter, leaf area index, yield, yield components, and water use efficiency. The results showed : 1 ) Soil oxygen content increased significantly under aerated irrigation. The peak values of soil respiration and soil temperature in seedling and budding aeration treatments appeared at the end of budding stage (day 92), while the peak value of aeration in flowering and boll stage was delayed compared with other treatments, which prolonged the aeration effect and improved the soil environment. 2) At seedling stage, aerated irrigation had no significant effect on plant height, stem diameter and leaf area index of cotton. At the squaring stage, aerated irrigation only had a significant positive effect on plant height; at the full budding stage, aerated irrigation had significant effects on plant height, stem diameter and leaf area index of cotton. At the initial flowering stage, aerated irrigation had significant effects on stem diameter and leaf area index. 3) The aerated yield at seedling stage was higher, the water use efficiency was lower, and the aerated yield at budding stage was the lowest compared with other aerated treatments. Aeration at flowering and boll stage not only obtained the maximum yield, but also had the highest water use efficiency. There was no significant difference in yield between aeration at seedling, bud, flowering and boll-setting stage and that at flowering and boll stage, but the water use efficiency was lower than that of aeration at flowering and boll stage. The results showed that aerated irrigation at flowering and boll stage could alleviate the cotton low-oxygen stress caused by film mulching and improve yield and water use efficiency. Consequently, the aerating in the early stage of cotton growth was beneficial to the strong seedlings, while the middle stage was easy to cause the cotton branches and leaves to grow, and the most suitable period for aerating to improve yield was the late stage. As such, aerated irrigation was recommended at the flowering and boll stage in terms of energy loss, nutrient distribution, and cotton yield. The finding can provide a theoretical basis to reveal the effect of aerated irrigation on cotton growth, thus improving the utilization of soil and water resources.
  • [1] 新疆维吾尔自治区统计局. 新疆统计年鉴[M]. 北京:中国统计出版社,2021.
    [2] Wang Z H, Fan B H, Guo L. Soil salinization after long-term mulched drip irrigation poses a potential risk to agricultural sustainability[J]. European Journal of Soil Science, 2019, 70(1): 20-24.
    [3] Shahzad K, Bary A I, Collins D P, et al. Carbon dioxide and oxygen exchange at the soil-atmosphere boundary as affected by various mulch materials[J]. Soil & Tillage Research, 2019, 194: 104335.
    [4] Nan W G, Yue S C, Huang H Z, et al. Effects of plastic film mulching on soil greenhouse gases (CO2, CH4 and N2O) concentration within soil profiles in maize fields on the Loess Plateau, China[J]. Journal of Integrative Agriculture, 2016, 15(2): 451-464.
    [5] Ben-Noah I, Friedman S. Oxygation of clayey soils by adding hydrogen peroxide to the irrigation solution: Lysimetric experiments[J]. Rhizosphere, 2016, 2: 51-61.
    [6] Kl?ring H P, Zude M. Sensing of tomato plant response to hypoxia in the root environment[J]. Scientia Horticulturae, 2009, 122(1): 17-25.
    [7] Bange M P, Milroy S P, Thongbai P. Growth and yield of cotton in response to waterlogging[J]. Field Crops Research, 2004, 88(2-3): 129-142.
    [8] Kuai J, Liu Z W, Wang Y H, et al. Waterlogging during flowering and boll forming stages affects sucrose metabolism in the leaves subtending the cotton boll and its relationship with boll weight[J]. Plant Science, 2014, 223: 79-98.
    [9] Najeeb U, Bange M P, Atwell B J, et al. Low incident light combined with partial waterlogging impairs photosynthesis and imposes a yield penalty in cotton[J]. Journal of Agronomy and Crop Science-Zeitschrift Fur Acker Und Pflanzenbau, 2016, 202(4): 331-341.
    [10] Jackson M B, Saker L R, Crisp C M, et al. Ionic and pH signalling from roots to shoots of flooded tomato plants in relation to stomatal closure[J]. Plant Soil, 2003, 253(1): 103-113.
    [11] Milroy S P, Bange M P. Reduction in radiation use efficiency of cotton (Gossypium hirsutum L. ) under repeated transient waterlogging in the field[J]. Field Crop Research, 2013, 140: 51-58.
    [12] Milroy S P, Bange M P, Thongbai P. Cotton leaf nutrient concentrations in response to waterlogging under field conditions[J]. Field Crops Research, 2009, 113(3): 246-255.
    [13] 饶晓娟. 增氧对新疆膜下滴灌棉田土壤肥力及棉花生长的影响[D]. 乌鲁木齐:新疆农业大学,2017. Rao Xiaojuan. Effect of Aeration on the Soil Fertility of Cotton Field and the Growth of Cotton Under Mulched Drip Irrigation in Xinjiang[D].Urumqi: Xinjiang Agricultural University, 2017. (in Chinese with English abstract)
    [14] Christianson J A, Llewellyn D J, Dennis E S, et al. Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L. )[J]. Plant Cell Physiol, 2010, 51(1): 21-37.
    [15] Qian L, Wang X G, Luo W B, et al. An improved CROPR model for estimating cotton yield under soil aeration stress[J]. Crop & Pasture Science, 2017, 68(4): 366-377.
    [16] Shaw R E, Meyer W S, Mcneill A, et al. Waterlogging in Australian agricultural landscapes: A review of plant responses and crop models[J]. Crop & Pasture Science, 2013, 64(6): 549-562.
    [17] Wang X S, Deng Z, Zhang W Z, et al. Effect of waterlogging duration at different growth stages on the growth, yield and quality of cotton[J]. Plos One, 2017, 12(1): e0169029.
    [18] Zhang Y J, Chen Y Z, Lu H Q, et al. Growth, lint yield and changes in physiological attributes of cotton under temporal waterlogging[J]. Field Crops Research, 2016, 194: 83-93.
    [19] 朱艳,蔡焕杰,宋利兵,等. 加气灌溉下气候因子和土壤参数对土壤呼吸的影响[J]. 农业机械学报,2016,47(12):223-232. Zhu Yan, Cai Huanjie, Song Libing, et al. Effects of climatic factors and soil parameters on soil respiration under oxygation conditions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 223-232. (in Chinese with English abstract)
    [20] Bhattarai S P, Pendergast L, Midmore D J. Root aeration improves yield and water use efficiency of tomato in heavy clay and saline soils[J]. Scientia Horticulturae, 2006, 108(3): 278-288.
    [21] 于珍珍,汪春,李嘉熙,等. 增氧灌溉系统的优化设计[J]. 农机化研究,2019,41(10):106-110. Yu Zhenzhen, Wang Chun, Li Jiaxi, et al. Optimal design of aerobic irrigation system[J]. Journal of Agricultural Mechanization Research, 2019, 41(10): 106-110. (in Chinese with English abstract)
    [22] 王振华,朱延凯,张金珠,等. 水氮调控对轻度盐化土滴灌棉花生理特性与产量的影响[J]. 农业机械学报,2018,49(6):296-308. Wang Zhenhua, Zhu Yankai, Zhang Jinzhu, et al. Effects of water and nitrogen fertilization on physiological characteristics and yield of cotton under drip irrigation in mildly salinized soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 296-308. (in Chinese with English abstract)
    [23] Jia B, Zhou G, Wang Y, et al. Effects of temperature and soil water-content on soil respiration of grazed and ungrazed Leymus chinensis steppes, Inner Mongolia[J]. Journal of Arid Environments, 2006, 67(1): 60 -76.
    [24] Wang M, Liu X, Zhang J, et al. Diurnal and seasonal dynamics of soil respiration at temperate leymus chinensis meadow steppes in western Songnen Plain, China[J]. Chinese Geographical Science, 2014, 24(3): 287-296.
    [25] 赵嘉涛,马玉诏,范艳丽,等. 生物可降解地膜对棉花产量及水分利用效率的影响[J]. 排灌机械工程学报,2021,39(1):96-101. Zhao Jiatao, Ma Yuzhao, Fan Yanli, et al. Effects of biodegradable plastic much on cotton yield and water use efficiency[J]. Journal of Drainage and Irrigation Mechanical Engineering, 2021, 39(1): 96-101. (in Chinese with English abstract)
    [26] Huang J, Hu T, Yasir M, et al. Root growth dynamics and yield responses of rice (Oryza sativa L. ) under drought-flood abrupt alternating conditions[J]. Environmental and Experimental Botany, 2019, 157(6): 11-25.
    [27] Chong S K, Boniak R, Indorante S, et al. Carbondioxide content in golf green rhizosphere[J]. Crop Science, 2004, 44: 1337-1340.
    [28] Pezeshki S R, Pardue J H, Delaune R D, The influence of soil oxygen deficiency on alcohol dehydrogenase activity, root porosity, ethylene production and photosynthesis in Spartio Different Light Environments in Oryza[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese with English abstract)f aeration and soil water redistribution on the air permeability under subsurface drip irrigation[J]. Soil Science Society of America Journal, 2012, 76: 815-820.
    [29] Bhattarai S P, Su N, Midmore D J. Oxygation unlocks yield potentials of crops in oxygen-limited soil environments[J]. Advances in Agronomy, 2005, 86: 313-77.
    [30] 姜丽芬. 土壤呼吸与环境[M]. 北京:高等教育出版社,2007:11.
    [31] 朱艳,蔡焕杰,宋利兵,等. 加气灌溉改善温室番茄根区土壤通气性[J]. 农业工程学报,2017,33(21):163-172. Zhu Yan, Cai Huanjie, Song Libing, et al. Oxygation improving soil aeration around tomatoe root zone in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 163-172. (in Chinese with English abstract)
    [32] 卢泽华,蔡焕杰,王健,等. 不同生育时期根际加气对温室番茄生长及产量的影响[J]. 中国农业科学,2012,45(7):1330-1337. Lu Zehua, Cai Huanjie, Wang Jian, et al. Effect of rhizosphere ventilation at different growth and yield of greenhouse tomato[J]. Scientia Agricultura Sinica, 2012, 45(7): 1330-1337. (in Chinese with English abstract)
    [33] Vyrlas P, Sakellariou-Makrantonaki M. Soil aeration through subsurface drip irrigation[C]. Rhodes Isl, GREECE: 9th International Conference on Environmental Science and Technology, 2005: 1-3.
    [34] 孙燕,王怡琛,王全九. 增氧微咸水对小白菜光响应特征 及产量的影响[J]. 农业工程学报,2020,36(9):116-123. Sun Yan, Wang Yichen, Wang Quanjiu. Effects of oxygenated brackish water on light response characteristics and yield of pakchoi(Brassic chinensis L.)[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 116-123. (in Chinese with English abstract)
    [35] 张倩,曾健,张振华,等. 循环曝气地下滴灌下温室番茄生长特性与产量研究[J]. 农业机械学报,2022,53(2):365-377. Zhang Qian, Zeng Jian, Zhang Zhenhua, et al. Impacts of cycle aerated subsurface dirp irrigation on growth characteristics and yield of greenhouse tomato[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 365-377. (in Chinese with English abstract)
    [36] 庞婕,韩其晟,周爽,等. 水气互作对温室番茄生长、产量和水分利用效率的影响[J]. 灌溉排水学报,2022,41(1):87-94. Pang Jie, Han Qisheng, Zhou Shuang, et al. The integrative effects of irrigation and aeration on growth and water use efficiency of greenhouse tomato[J]. Journal of Irrigation and Drainage, 2022, 41(1): 87-94. (in Chinese with English abstract)
    [37] 吴梅,张金珠,王振华,等. 加气滴灌和可降解膜覆盖对玉米生长发育及水分利用的影响[J/OL]. 中国生态农业学报,[2022-04-13]. https: //kns. cnki. net/kcms/detail/13. 1432. S. 20220412. 1751. 002. html. Wu Mei, Zhang Jinzhu, Wang Zenhua, et al. Effects of aerated drip irrigation and degradable film mulching on growth and water use of maize[J/OL]. Chinese Journal of Ecological Agriculture, [2022-04-13]. https: //kns. cnki. net/kcms/detail/13. 1432. S. 20220412. 1751. 002. html. (in Chinese with English abstract)
    [38] Niu W Q, Guo C, Shao H B, et al. Effects of different rhizosphere ventilation treatment on water and nutrients absorption of maize[J]. African Journal of Biotechnology, 2011, 10(6): 949-959.
    [39] Loverys B R, Robinson S P, Downton W J S, Seasonal and diurnal changes in abscisic acid and water relations of apricot leaves[J]. New Phytologist, 1987, 107: 15-27.
    [40] Bai T H, Li C Y, Chao L, et al. Contrasting hypoxia tolerance and adaptation in Malus species is linked to differences in stomatal behavior and photosynthesis[J]. Physiologia Plantarum, 2013, 147: 514-523.
    [41] Comstock J P. Hydraulic and chemical signalling in the control of stomatal conductance and transpiration[J]. Journal of Experimental Botany, 2002, 53: 195-200.
    [42] 张健利,王振华,宗睿,等. 水气互作对滴灌加工番茄生长及品质的影响[J]. 江苏农业学报,2022,38(2):453-461. Zhang Jianli, Wang Zhenhua, Zong Rui, et al. Effects of water and air interaction on growth and quality of drip-irrigated processing tomato[J]. Journal of Jiangsu Agriculture, 2022, 38(2): 453-461. (in Chinese with English abstract)
    [43] 张强强. 水稻气孔导度和光合作用在不同光环境下的响应差异与机理[D]. 武汉:华中农业大学,2020. Zhang Qiangqiang. Studies on the Mechanisms of the Responses of Stomatal Conductance and Photosynthesis t
  • 期刊类型引用(28)

    1. 林娜,陈宏,谢骞,赵健. 基于决策融合的南方复杂地区覆膜农田信息快速提取研究. 安徽农业科学. 2025(03): 229-235+242 . 百度学术
    2. 曾世伟,侯学会,王宗良,骆秀斌,巫志雄,王宏军. 基于无人机遥感的作物表型参数获取和应用研究进展. 山东农业科学. 2024(04): 172-180 . 百度学术
    3. 孙月平,刘勇,郭佩璇,李自强,孟祥汶,赵德安. 基于改进YOLOv8n-seg的蟹塘水草区域分割与定位方法. 农业工程学报. 2024(17): 224-233 . 本站查看
    4. 王宝龙,刘建. “无人机多光谱”技术在园艺生产装备与技术课程案例教学中的应用. 热带农业工程. 2024(06): 157-160 . 百度学术
    5. 张新长,黄健锋,宁婷. 高分辨率遥感影像耕地提取研究进展与展望. 武汉大学学报(信息科学版). 2023(10): 1582-1590 . 百度学术
    6. 孙智虎,张锦水,洪友堂,杨珺雯,朱爽. GF-7卫星多角度特征作物识别. 遥感学报. 2023(09): 2127-2138 . 百度学术
    7. 胡敏,周波. 基于图像分割的无人机遥感影像目标提取技术. 黑龙江工业学院学报(综合版). 2022(01): 93-97 . 百度学术
    8. 郑文慧,王润红,曹银轩,靳宁,冯浩,何建强. 基于Google Earth Engine的黄土高原覆膜农田遥感识别. 农业机械学报. 2022(01): 224-234 . 百度学术
    9. 段晨阳,冯建中,全斌,白林燕,王盼盼. 利用深度学习进行GF-6影像枣园检测识别. 测绘通报. 2022(03): 54-59 . 百度学术
    10. 刘莹,朱秀芳,徐昆. 用于灌溉耕地制图的特征变量优选. 农业工程学报. 2022(03): 119-127 . 本站查看
    11. 张超,陈畅,徐海清,薛琳. 基于XGBoost算法的多云多雾地区多源遥感作物识别. 农业机械学报. 2022(04): 149-156 . 百度学术
    12. 翟志强 ,陈学庚 ,邱发松 ,孟庆建 ,王海渊 ,张若宇 . 基于像素块和机器学习的播前棉田地表残膜覆盖率检测. 农业工程学报. 2022(06): 140-147 . 本站查看
    13. 卢征. 基于特征点匹配的无人机遥感图像快速拼接系统. 电子设计工程. 2022(12): 83-87 . 百度学术
    14. 王亚妮,周银朋. 基于无人机测绘的复杂地形图像特征提取方法. 电子设计工程. 2022(19): 149-152+158 . 百度学术
    15. 李安琦,马丽,于合龙,张涵博. 改进的U-Net算法在遥感图像典型农作物分类研究. 红外与激光工程. 2022(09): 428-434 . 百度学术
    16. 邱晓磊. 基于局部加权拟合算法的无人机遥感影像多尺度检测技术. 计算机测量与控制. 2021(02): 25-29 . 百度学术
    17. 朱松松,陈至坤. 基于K均值聚类的棉田地膜无人机图像分割. 现代计算机. 2021(02): 73-77 . 百度学术
    18. 杨蜀秦,宋志双,尹瀚平,张智韬,宁纪锋. 基于深度语义分割的无人机多光谱遥感作物分类方法. 农业机械学报. 2021(03): 185-192 . 百度学术
    19. 张学军,黄爽,靳伟,鄢金山,史增录,周鑫城,张朝书. 基于改进Faster R-CNN的农田残膜识别方法. 湖南大学学报(自然科学版). 2021(08): 161-168 . 百度学术
    20. 邓泓,杨滢婷,刘兆朋,刘木华,陈雄飞,刘鑫. 基于深度学习的无人机水田图像语义分割方法. 中国农机化学报. 2021(10): 165-172 . 百度学术
    21. 赵静,闫春雨,杨东建,温昱婷,黎文华,鲁力群,兰玉彬. 基于无人机多光谱遥感的台风灾后玉米倒伏信息提取. 农业工程学报. 2021(24): 56-64 . 本站查看
    22. 唐雅娜,史春笑. 基于大数据的遥感图像智能识别方法研究. 计算机产品与流通. 2020(04): 139 . 百度学术
    23. 李志铭,赵静,兰玉彬,崔欣,杨焕波. 基于无人机可见光图像的作物分类研究. 西北农林科技大学学报(自然科学版). 2020(06): 137-144+154 . 百度学术
    24. 吴雪梅,梁长江,张大斌,喻丽华,张富贵. 基于无人机遥感影像的收获期后残膜识别方法. 农业机械学报. 2020(08): 189-195 . 百度学术
    25. 王小芹,张志梅,邵烨,王常颖,张小峰. 词袋模型在高分遥感影像地物分类中的应用研究. 现代电子技术. 2020(17): 56-59 . 百度学术
    26. 张天柱,张凤荣,黄敬文,李超,张佰林. 工业化区域撂荒耕地空间格局演变及影响因素分析. 农业工程学报. 2019(15): 246-255 . 本站查看
    27. 景云鹏,刘刚,金志坤. GNSS双天线结合AHRS测量农田地形. 农业工程学报. 2019(21): 166-174 . 本站查看
    28. 杨勇强,王振锡,师玉霞,连玲,高亚利. 基于无人机遥感的天山云杉林密度估测研究. 新疆农业大学学报. 2019(03): 194-201 . 百度学术

    其他类型引用(21)

计量
  • 文章访问数:  397
  • HTML全文浏览量:  0
  • PDF下载量:  273
  • 被引次数: 49
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2022-06-09
  • 发布日期:  2022-07-30

目录

    /

    返回文章
    返回