• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

2000-2020年锡林郭勒草原土地利用/土地覆被时空演变特征及驱动力分析

闫志远, 王怡璇, 李瑞平, 张圣微, 李玮, 张永亮

闫志远, 王怡璇, 李瑞平, 张圣微, 李玮, 张永亮. 2000-2020年锡林郭勒草原土地利用/土地覆被时空演变特征及驱动力分析[J]. 农业工程学报, 2022, 38(14): 275-284. DOI: 10.11975/j.issn.1002-6819.2022.14.031
引用本文: 闫志远, 王怡璇, 李瑞平, 张圣微, 李玮, 张永亮. 2000-2020年锡林郭勒草原土地利用/土地覆被时空演变特征及驱动力分析[J]. 农业工程学报, 2022, 38(14): 275-284. DOI: 10.11975/j.issn.1002-6819.2022.14.031
Yan Zhiyuan, Wang Yixuan, Li Ruiping, Zhang Shengwei, Li Wei, Zhang Yongliang. Spatiotemporal and evolutional characteristics and driving forces of land use/land cover in Xilingol Steppe during 2000-2020[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(14): 275-284. DOI: 10.11975/j.issn.1002-6819.2022.14.031
Citation: Yan Zhiyuan, Wang Yixuan, Li Ruiping, Zhang Shengwei, Li Wei, Zhang Yongliang. Spatiotemporal and evolutional characteristics and driving forces of land use/land cover in Xilingol Steppe during 2000-2020[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(14): 275-284. DOI: 10.11975/j.issn.1002-6819.2022.14.031

2000-2020年锡林郭勒草原土地利用/土地覆被时空演变特征及驱动力分析

基金项目: 内蒙古自治区科技计划项目(2021GG0072);内蒙古自治区科技成果转化专项资金项目(2020CG0054);内蒙古农业大学高层次人才引进科研启动项目(NDYB2017-23)

Spatiotemporal and evolutional characteristics and driving forces of land use/land cover in Xilingol Steppe during 2000-2020

  • 摘要: 科学揭示土地利用/土地覆被的时空演变特征及其驱动机制,对推进草原生态文明建设和高质量发展具有重要意义。以位于中国北疆的锡林郭勒草原为研究区,基于2000-2020年遥感、气象等多源数据资料,运用土地利用变化指数、频次统计、桑基图可视化模型、网格单元等方法探讨了近20年锡林郭勒草原土地利用/土地覆被的时空变化特征,并利用地理探测器分析自然地理条件和社会经济发展对草原土地利用/土地覆被变化的影响机制。结果表明:1)2000-2020年间锡林郭勒草原的土地利用/土地覆被类型以草地和沙地为主(面积占比约98%),区域土地覆被变化主要发生在中西部的沙-草交错区。2)2005年后区域沙地面积持续减少,而沙地转入率在近10年间仍接近5%,说明草原生态环境总体向好,但生态脆弱性水平仍较高。3)社会经济的快速发展是驱动锡林郭勒草原土地利用/土地覆被变化的主要因素,气候因素的驱动作用次之,地形因素影响相对较小。研究结果可为锡林郭勒草原的生态保护和可持续发展提供科学依据。
    Abstract: Abstract: Land Use/Land Cover (LULC) has been one of the most important indicators to classify the human activities and natural elements on the landscape within a specific time. The complex types of various source materials can also involve representing the natural attributes and characteristics of the land surface. The spatiotemporal variation can be used to characterize the history of human social and economic development. There are also some influences on the global biochemical cycle, land-atmosphere hydrothermal cycle, and climate change. The Xilingol Steppe is located in the middle east of the Inner Mongolia Plateau, an important part of temperate grassland in Eurasia. However, the ecological environment of grassland is very fragile in recent years, due mainly to climate change, as well as unstable agricultural and animal husbandry production. Therefore, it is a high demand to scientifically reveal the temporal and spatial evolution characteristics and driving mechanism of LULC, in order to promote ecological civilization and high-quality development in the grassland. Taking the Xilingol Steppe as the study area, this study aims to identify the spatiotemporal characteristics of LULC in the recent two decades using the land use change index, frequency statistic, Sankey diagram visualization model, and grid cell. A GeoDetector was also employed to analyze the impact mechanism of natural geographical conditions and socio-economic development. Firstly, five periods of GLC_FCS30 data were selected to calculate the areas of each category in each period, in order to reveal the basic components of LULC in the study area. The frequency statistic was also conducted to determine the spatial distribution. Secondly, the area change and annual change rate of LULC in each period were calculated to examine the changing pattern of each category. The Sankey diagram was then constructed to describe the conversion between different LULC types. Thirdly, the grid cell of rate was obtained for the variation in the LULC in each period for the spatial patterns of LULC change. Finally, the digital elevation model, meteorological and socio-economic data from 2000 to 2020 were combined as the driving factors to clarify the mechanism of LULC change using the GeoDetector. The results showed that: 1) The LULC types were mainly grassland and sandy land (accounting for nearly 98% in total) from 2000 to 2020. The regional LULC change occurred in the sand/grass ecotone in the middle-west areas, due to the natural environmental conditions. 2) The area of sandy land increased significantly from 2000 to 2005. Specifically, the area of forest land, grassland, wetland, and water area decreased during this time. Nevertheless, there was a decreasing trend in the area of the sandy land year by year after 2005. Furthermore, the rate of conversion was still close to 5% in the recent ten years, indicating the generally good grassland ecological environment. But, it was still a high level of ecological vulnerability so far. 3) The GeoDetector results showed that the rapid growth of the social economy was the main driving factor of LULC change, followed by the climate factors, while the topographic condition was the relatively small influence factor. In general, the ecological environment was greatly improved over the last 15 years, although the relevant ecological restoration still needs to be further implemented. The findings can provide a scientific basis for ecological protection and sustainable development in the Xilingol Steppe. The approaches here are also applicable to the LULC change research in other similar regions.
  • [1] 陈军,陈晋,宫鹏,等. 全球地表覆盖高分辨率遥感制图[J]. 地理信息世界,2011,9(2):12-14.Chen Jun, Chen Jin, Gong Peng, et al. Higher resolution global land cover mapping[J]. Geomatics World, 2011, 9(2): 12-14. (in Chinese with English abstract)
    [2] 王海梅,李政海,乌兰,等. 锡林郭勒草原区气温的时空变化特征[J]. 生态学报,2011,31(24):7511-7515.Wang Haimei, Li Zhenghai, Wu Lan, et al. The spatial-temporal change variations of temperature in Xilinguole steppe zone[J]. Acta Ecologica Sinica, 2011, 31(24): 7511-7515. (in Chinese with English abstract)
    [3] 张圣微,张睿,刘廷玺,等. 锡林郭勒草原植被覆盖度时空动态与影响因素分析[J]. 农业机械学报,2017,48(3):253-260.Zhang Shengwei, Zhang Rui, Liu Tingxi, et al. Dynamics of fractional vegetation cover and its influence factors in Xilingol steppe[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 253-260. (in Chinese with English abstract)
    [4] Chen J, Chen J, Liao A P, et al. Global land cover mapping at 30 m resolution: A POK-based operational approach[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 103: 7-27.
    [5] Zhang X, Liu L Y, Chen X D, et al. GLC_FCS30: Global land-cover product with fine classification system at 30?m using time-series Landsat imagery[J]. Earth System Science Data, 2021, 13: 2753-2776.
    [6] Gong P, Liu H, Zhang M N, et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017[J]. Science Bulletin, 2019, 64: 370-373.
    [7] Buchhorn M, Lesiv M, Tsendbazar N E, et al. Copernicus global land cover layers-collection 2[J]. Remote Sensing, 2020, 12(6): 1044.
    [8] Bontemps S, Boettcher M, Brockmann C, et al. Multi-year global land cover mapping at 300 m and characterization for climate modelling: Achievements of the land cover component of the ESA Climate Change Initiative[C]//Berlin, Germany: 36th International Symposium on Remote Sensing of Environment, 2015: 323-328.
    [9] 陈逸聪,邵华,李杨. 多源土地覆被产品在长三角地区的一致性分析与精度评价[J]. 农业工程学报,2021,37(6):142-150.Chen Yicong, Shao Hua, Li Yang. Consistency analysis and accuracy assessment of multi-source land cover products in the Yangtze River Delta[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 142-150. (in Chinese with English abstract)
    [10] 郝敬锋,刘红玉,李玉凤,等. 基于转移矩阵模型的江苏海滨湿地资源时空演变特征及驱动机制分析[J]. 自然资源学报,2010,25(11):1918-1929.Hao Jingfeng, Liu Hongyu, Li Yufeng, et al. Spatio-temporal variation and driving forces of the coastal wetland resources based on the transition matrix in Jiangsu Province[J]. Journal of Natural Resources, 2010, 25(11): 1918-1929. (in Chinese with English abstract)
    [11] 赵阳,余新晓,贾剑波,等. 红门川流域土地利用景观动态演变及驱动力分析[J]. 农业工程学报,2013,29(9):239-248.Zhao Yang, Yu Xinxiao, Jia Jianbo, et al. Analysis on dynamic evolution and driving force of land-use landscape in Hongmenchuan basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(9): 239-248. (in Chinese with English abstract)
    [12] 杨霞,卫智军,运向军. 北方典型草原区近30年土地覆被变化研究:以锡林浩特市为例[J]. 中国农业大学学报,2015,20(4):196-204.Yang Xia, Wei Zhijun, Yun Xiangjun. The changes of land use and vegetation during recent 30 years in steppe grassland of Xilinhot, Inner Mogolia[J]. Journal of China Agricultural University, 2015, 20(4): 196-204. (in Chinese with English abstract)
    [13] 徐小明,杜自强,张红,等. 晋北地区1986-2010年土地利用/覆被变化的驱动力[J]. 中国环境科学,2016,36(7):2154-2161.Xu Xiaoming, Du Ziqiang, Zhang Hong, et al. Quantitative analysis on driving forces of land use/cover change in north Shanxi province during 1986 - 2010[J]. China Environment Science, 2016, 36(7): 2154-2161. (in Chinese with English abstract)
    [14] 盖兆雪,孙萍,张景奇. 松花江流域土地利用变化及形成机理:以哈尔滨段为例[J]. 水土保持研究,2019,26(4):314-320.Gai Zhaoxue, Sun Ping, Zhang Jingqi. Land use change and formation mechanism in Songhuajiang Basin-Harbin section as an example[J]. Research of Soil and Water Conservation, 2019, 26(4): 314-320. (in Chinese with English abstract)
    [15] 康乾坤,于皓,王宗明,等. 1990-2015年乌苏里江流域土地覆被变化[J]. 水土保持通报,2020,40(4):312-320.Kang Qiankun, Yu Hao, Wang Zongming, et al. Land cover change in Wusuli River basin from 1990 to 2015[J]. Bulletin of Soil and Water Conservation, 2020, 40(4): 312-320. (in Chinese with English abstract)
    [16] 邬亚娟,刘廷玺,童新,等. 基于长时间序列Landsat数据的科尔沁沙地土地利用演变分析[J]. 生态学报,2020,40(23):8672-8682.Wu Yajuan, Liu Tingxi, Tong Xin, et al. Dynamic evolution analysis of land use (land cover) in Horqin Sandy Land based on long time series landsat data[J]. Acta Ecologica Sinica, 2020, 40(23): 8672-8682. (in Chinese with English abstract)
    [17] 梁旭,刘华民,纪美辰,等. 北方半干旱区土地利用/覆被变化对湖泊水质的影响:以岱海流域为例(2000-2018 年)[J]. 湖泊科学,2021,33(3):727-736.Liang Xu, Liu Huamin, Ji Meichen, et al. Effects of land use/cover change on lake water quality in the semi-arid region of northern China: A case study in Lake Daihai Basin (2000-2018)[J]. Journal of Lake Sciences, 2021, 33(3): 727-736. (in Chinese with English abstract)
    [18] Fyfe R M, Woodbridge J, Roberts C N. Trajectories of change in Mediterranean Holocene vegetation through classification of pollen data[J]. Vegetation History and Archaeobotany, 2018, 27(2): 351-364.
    [19] 肖东洋,牛海鹏,闫弘轩,等. 1990-2018 年黄河流域(河南段)土地利用格局时空演变[J]. 农业工程学报,2020,36(15):271-281.Xiao Dongyang, Niu Haipeng, Yan Hongxuan, et al. Spatiotemperal evolution of land use pattern in the Yellow River Basin (Henan section) from 1990 to 2018[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 271-281. (in Chinese with English abstract)
    [20] 曲衍波,王世磊,朱伟亚,等. 黄河三角洲国土空间演变的时空分异特征与驱动力分析[J]. 农业工程学报,2021,37(6):252-263.Qu Yanbo, Wang Shilei, Zhu Weiya, et al. Spatial-temporal differentiation characteristics and driving force of territorial space evolution in the Yellow River Delta[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 252-263. (in Chinese with English abstract)
    [21] Perez G J, Comiso J C, Aragones L V, et al. Reforestation and deforestation in Northern Luzon, Philippines: Critical issues as observed from space[J]. Forests, 2020, 11: 1071.
    [22] Yu S C, Wang F, Qu M, et al. The effect of land use/cover change on soil erosion change by spatial regression in Changwu County on the Loess Plateau in China[J]. Forests, 2021, 12: 1209.
    [23] 张华,宋金岳,李明,等. 基于GEE的祁连山国家公园生态环境质量评价及成因分析[J]. 生态学杂志,2021,40(6):1883-1894.Zhang Hua, Song Jinyue, Li Ming, et al. Eco?environmental quality assessment and cause analysis of Qilian Mountain National Park based on GEE[J]. Chinese Journal of Ecology, 2021, 40(6): 1883-1894. (in Chinese with English abstract)
    [24] Li Z L, Bagan H, Yamagata Y. Analysis of spatiotemporal land cover changes in Inner Mongolia using self-organizing map neural network and grid cells method[J]. Science of the Total Environment, 2018, 636(15): 1180-1191.
    [25] 买买提江·买提尼亚孜,阿里木江·卡斯木. 基于网格单元的乌鲁木齐市土地覆被/利用时空变化[J]. 农业工程学报,2018,34(1):210-216.Maimaitijiang Maitiniyazi, Alimujiang Kasimu. Spatial-temporal change of Urumqi urban land use and land cover based on grid cell approach[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 210-216. (in Chinese with English abstract)
    [26] Bagan H, Yamagata Y. Analysis of urban growth and estimating population density using satellite images of nighttime lights and land-use and population data[J]. GIScience & Remote Sensing, 2015, 52(6): 765-780.
    [27] 王劲峰,徐成东. 地理探测器:原理与展望[J]. 地理学报,2017,72(1):116-134.Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134. (in Chinese with English abstract)
    [28] Puyravaud J. Standardizing the calculation of the annual rate of deforestation[J]. Forest Ecology and Management, 2003, 177(1): 593-596.
    [29] Schmidt M. The sankey diagram in energy and material flow management - Part II: Methodology and current applications[J]. Journal of Industrial Ecology, 2008, 12(2): 173-185.
    [30] 刘佳佳,黄甘霖. 锡林郭勒盟和锡林浩特市草原生态系统服务与人类福祉的关系研究综述[J]. 草业科学,2019,36(2):573-593.Liu Jiajia, Huang Ganlin. A review of grassland ecosystem service and human well-being in Xilingol League and Xilinhot City[J]. Pratacultural Science, 2019, 36(2): 573-593. (in Chinese with English abstract)
    [31] 屈莹波,赵媛媛,丁国栋,等. 气候变化和人类活动对锡林郭勒草原植被覆盖度的影响[J]. 干旱区研究,2021,38(3):802-811.Qu Yingbo, Zhao Yuanyuan, Ding Guodong, et al. Effects ofclimate and human activities on vegetation cover changes in Xilingol steppe[J]. Arid Zone Research, 2021, 38(3): 802-811. (in Chinese with English abstract)
    [32] Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13, 3907-3925.
    [33] Sulla-Menashe D, Gray J M, Abercrombie S P, et al. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product[J]. Remote Sensing of Environment, 2019, 222, 183-194.
  • 期刊类型引用(16)

    1. 赵红斌,卞宝文,马丹丹,徐婷,孙艳伟. 土地利用时空演变对植被覆盖影响研究——以山东省青岛市和日照市为例. 内蒙古林业调查设计. 2025(01): 78-85+25 . 百度学术
    2. 郭思岩,侯艳丽,石斌. 过去40年兰州市榆中县土地利用景观格局变化及驱动力分析. 国土与自然资源研究. 2024(02): 20-26 . 百度学术
    3. 娄佳乐,党晓宏,蒙仲举,张昊,宋慧芳. 1986—2020年黄河流域十大孔兑土地利用变化及驱动力分析. 水土保持学报. 2024(01): 319-327+336 . 百度学术
    4. 魏光辉,张环,徐海量,李江. 新疆塔里木河下游绿色走廊土地覆被变化研究. 水利规划与设计. 2024(04): 90-93+99 . 百度学术
    5. 叶博文,孙标,史小红,赵胜男,邹佳慧,赵云靓,姚卫泽. 2000—2021年锡林郭勒草原生态环境质量变化及其驱动因素. 水土保持通报. 2024(01): 271-283 . 百度学术
    6. 高美琪,许玉凤. 基于GIS的都匀市高铁站土地利用动态分析. 北京测绘. 2024(02): 145-150 . 百度学术
    7. 冯向阳,吴朝琪,邹昕,樊德昊,梁晋源,闫庆武,王培俊. 疆电外送通道土地覆被时空变化及驱动力分析. 矿业科学学报. 2024(04): 641-652 . 百度学术
    8. 康平山,吴彬,高凡,杜明亮,王翠,曹伟. 昌吉州平原区土地利用时空变化及驱动因素分析. 人民长江. 2024(08): 59-68 . 百度学术
    9. 张迎杰,樊雪丰,王海梅,孙琳丽. 赤峰市植被覆盖度时空变化及其与气候因子的关系. 内蒙古师范大学学报(自然科学版). 2024(05): 471-477 . 百度学术
    10. 贾静,宿星,张军,路常亮,张满银,李霞,董耀刚,任皓晨. 1985—2020年甘肃省通渭县滑坡区土地利用变化及驱动力. 应用生态学报. 2024(10): 2833-2841 . 百度学术
    11. 杨英,潘安,曹珑誉. 2000—2020年广安市土地利用变化及驱动力分析. 四川农业科技. 2024(11): 122-129 . 百度学术
    12. 张治国,康鸿杰. 2000—2020年武威市土地利用/覆被时空变化及驱动力分析. 科学技术与工程. 2023(20): 8579-8587 . 百度学术
    13. 崔正,冯文勇,樊童生. 2000~2020年珠江-西江经济带土地利用时空演变特征分析. 绿色科技. 2023(13): 255-258 . 百度学术
    14. 袁荣燕,张宁,邵丽文,闫勇智,徐雪,张庆. 1990-2020年间内蒙古自然保护区景观生态风险评估及驱动因素分析. 内蒙古大学学报(自然科学版). 2023(05): 519-528 . 百度学术
    15. 谈旭,王承武. 伊犁河谷生态系统服务价值时空演变及其驱动因素. 应用生态学报. 2023(10): 2747-2756 . 百度学术
    16. 周小平,李理,梁颖,杨兰. 主体功能区视角下长三角地区国土空间格局时空演变及其碳排放效应分析. 农业工程学报. 2023(17): 236-244 . 本站查看

    其他类型引用(11)

计量
  • 文章访问数:  323
  • HTML全文浏览量:  7
  • PDF下载量:  246
  • 被引次数: 27
出版历程
  • 收稿日期:  2022-04-24
  • 修回日期:  2022-07-09
  • 发布日期:  2022-07-30

目录

    /

    返回文章
    返回