基于氮收支平衡的河套灌区春小麦农田灌溉和施氮策略

    Irrigation and N application strategies for spring wheat fields in the Hetao irrigation district based on N balance

    • 摘要: 针对中国黄河中上游河套灌区不合理灌溉和施肥造成的土壤氮素流失严重及氮收支不平衡等问题,该研究于2019-2021年开展田间试验,探讨不同灌溉和施肥策略对土壤氮损失、作物氮吸收及氮收支的影响。试验设置了3个灌溉水平(高水I1:450 mm,中水I2:315 mm,低水I3:180 mm)和2个施氮水平(高氮N1:340 kg/hm2,低氮N3:170 kg/hm2),此外,2020和2021年在中等灌溉水平I2下补充了中等施氮水平(250 kg/hm2,N2),对不同处理的土壤氮损失、作物氮吸收及氮收支等指标进行了对比分析。结果表明,肥料氮是农田氮输入的主要来源,其次是灌溉水、大气沉降和非豆科作物固定。作物吸氮占土壤氮输出的比例最大,其次是NO3--N淋失、NH3挥发和N2O排放。对于氮输入而言,其值随着灌水量和施氮量的减少而降低。对于土壤氮输出而言,减少灌水量和施氮量可显著降低土壤总氮损失量,但过低的灌水量和施氮量将导致小麦吸氮量的降低。传统的N1施氮处理可导致土壤氮素盈余,而施氮量降低50%的N3处理则导致土壤氮素大量亏缺。对照处理(I1N1)的土壤氮损失量最高,该处理氮损失占土壤氮输出的比例高达25%~35%,其中NO3--N淋失和NH3挥发占总氮损失的95%以上。与对照处理相比,I2N2处理可减少21%~29%的氮损失,且作物吸氮几乎未受到影响。同时,该处理土壤氮素处于轻度亏缺状态,其亏缺量为28~50 kg/hm2,占总施氮量的11%~20%。若在收获后将4~8 t/hm2的小麦秸秆还田,则可保持麦田土壤的氮收支平衡。因此,通过改善灌溉和施肥策略并配合适当的秸秆还田可以有效缓解河套灌区春小麦农田的氮损失且实现土壤氮平衡,该研究可为干旱半干旱地区春小麦农田可持续生产和氮污染物减排提供科学依据。

       

      Abstract: Inappropriate irrigation and nitrogen (N) application have caused the severe N losses and budget imbalance in the spring wheat field in the Hetao Irrigation District (41°09′N, 107°39′E), Northwest China. This study aims to determine the rational irrigation and N application strategy for the spring wheat in the study area. A series of field experiments were carried out in the 2019-2021 seasons. A systematic investigation was made to clarify the effects of irrigation and N application on the soil N budget, NO3--N leaching, NH3 volatilization, N2O emissions, crop N uptake, as well as soil N surplus and deficit. Three irrigation levels (i.e., 450, 315, and 180 mm (I1, I2 and I3)) and two N fertilization levels (i.e., 340 and 170 kg/hm2 (N1 and N3)) were considered in the experiments. Furthermore, the control group was added in the medium N application level (i.e., 250 kg/hm2 (N2)) under the condition of a medium irrigation level (i.e., 315 mm (I2)) in 2020 and 2021. The results showed that the fertilizer N was accounted for the largest proportion of soil N input, followed by the irrigation water, atmospheric deposition, and non-bio fixation. The wheat N uptake was accounted for the largest proportion of soil N output, followed by NO3--N leaching, NH3 volatilization, and N2O emissions. The total N input in the soil showed a decreasing trend with the decrease of irrigation depth and N application. It infers that the reduced irrigation depth and N application significantly decreased the soil total N losses. But there was the lower threshold in the irrigation depth and N application treatment for the less N uptake of wheat. Among them, the control treatment (i.e., I1N1) resulted in the highest total N input, and the highest soil N losses (NO3--N leaching, NH3 volatilization, and N2O emissions). Compared with the control treatment, the I2N2 and I3N3 treatments decreased the total N input by 25% and 48%, respectively, and the soil total N losses by 21%-29% and 16%-34%, respectively. The wheat N uptake in the I3N3 treatment was significantly lower than that in the control treatment. But there was no significant diffidence in the wheat N uptake between the I2N2 and control treatments. The N application presented a significant effect on the soil N surplus and deficit. The N1 treatment was resulted in the higher soil N surplus, while the N3 treatment with about 50% decrease of N application rate was resulted in the higher soil N deficit. However, a slight deficit was obtained in the N2 treatment under the I2 irrigation conditions, where the soil N deficit was only 28-50 kg/hm2. This N deficit value was also accounted for 11%-20% of the total N application amount. Once the 4-8 t/hm2 per season wheat straw was returned to the field after harvest, the N balance could be maintained in the wheat field. Thus, the soil N losses can be effectively mitigated from the spring wheat farmlands in the Hetao Irrigation District, Northwest China. The soil N balance can also be expected to improve the irrigation and N application management, particularly with the appropriate straw returning.

       

    /

    返回文章
    返回