张微微, 张静, 孟德, 吕日琴, 顾海洋, 孙艳辉. 三维荧光技术结合化学计量学检测青贮微生物生长量[J]. 农业工程学报, 2022, 38(18): 302-307. DOI: 10.11975/j.issn.1002-6819.2022.18.033
    引用本文: 张微微, 张静, 孟德, 吕日琴, 顾海洋, 孙艳辉. 三维荧光技术结合化学计量学检测青贮微生物生长量[J]. 农业工程学报, 2022, 38(18): 302-307. DOI: 10.11975/j.issn.1002-6819.2022.18.033
    Zhang Weiwei, Zhang Jing, Meng De, Lv Riqin, Gu Haiqyang, Sun Yanhui. Detection of silage microbial growth by using three-dimensional fluorescence coupled with chemometrics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(18): 302-307. DOI: 10.11975/j.issn.1002-6819.2022.18.033
    Citation: Zhang Weiwei, Zhang Jing, Meng De, Lv Riqin, Gu Haiqyang, Sun Yanhui. Detection of silage microbial growth by using three-dimensional fluorescence coupled with chemometrics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(18): 302-307. DOI: 10.11975/j.issn.1002-6819.2022.18.033

    三维荧光技术结合化学计量学检测青贮微生物生长量

    Detection of silage microbial growth by using three-dimensional fluorescence coupled with chemometrics

    • 摘要: 青贮中微生物的数量是影响青贮料质量的关键因素。为了高效监控青贮微生物的生长情况,该研究以青贮乳酸菌、乙酸菌和丁梭菌等作为指示菌株,考察菌株生长过程0、2、4、8、12、24和48 h共 7个不同时间点共105个样本的三维荧光光谱、微生物菌落数和吸光值,通过平行因子法和BP神经网络等化学计量学建立微生物生长量预测模型。三维荧光光谱图显示指示菌株有2个荧光峰,波峰分别在225和275 nm附近,主要是微生物内源荧光酪氨酸和色氨酸类物质。随着微生物培养时间的增加,荧光强度逐渐增强,荧光波峰位置红移,峰宽增加。利用平行因子法对三维荧光光谱进行降维,获取组分数为6,特征波长差Δλ为50 nm时,微生物生长荧光信息差异显著。以该二维光谱数据作为BP神经网络模型输入值,分别以微生物菌落数和吸光值作为模型输出值,对不同检测方法的微生物生长量进行建模训练。试验结果表明两种不同方法对应的训练集、验证集、测试集模型决定系数R2均接近1.0,均方误差均很小,说明该模型能较好预测微生物生长量。研究结果显示三维荧光光谱技术结合化学计量学对青贮中微生物生长量监测是可行的,项目为快速判定青贮发酵阶段提供了一种新的技术途径。

       

      Abstract: Abstract: Silage is a type of storage fodder from green foliage crops to reduce the cost of feed and environmental pollution. The silage can be preserved by fermentation to the point of acidification. Among them, microbial growth can dominate in the silage quality. Especially, the proliferation of harmful microorganisms has also posed a great threat to crop resources, and ruminantia production, such as clostridium, acetic acid bacteria, and yeast. However, the commonly-used plate counting and turbidimetry for microbial growth in the laboratory cannot accurately characterize the growth state of silage microorganisms in time, due to tedious steps, time-consuming, and slow response rate. This study aims to effectively monitor the growth of silage microorganisms (lactic acid bacteria, acetic acid bacteria, and clostridium butyricum) separating from the silage as the indicator strains. A systematic investigation was made for the three-dimensional fluorescence spectra, the number of microbial colonies, and the absorption of 105 samples at the seven growth time points (0, 2, 4, 8, 12, 24 and 48 h). The chemometrics analysis and spectroscopic techniques were combined for the rapid screening of microbial growth. Parallel factor analysis was applied to resolve the three-dimensional fluorescence data. Back Propagation (BP) neural network was also used in the material quantitative analysis in the field of machine learning, due to its powerful nonlinear ability. The three-dimensional Synchronous Fluorescence Spectra (SFS) showed that there were two strong fluorescence peaks at about 225 and 275 nm, respectively. The main fluorescence peaks were the microbial endogenous tyrosine and tryptophan. The fluorescence intensity increased gradually with the increasing culture time, where the position of the fluorescence peak shifted the red. Meanwhile, the width of the fluorescence peak increased significantly. The parallel factor analysis showed that there was a significant difference in fluorescence information, where the characteristic wavelength Δλ was 50 nm with six components. In addition to the two characteristic peaks, there were two weak fluorescence peaks at 310-360 and 370-390 nm. The two wave peaks at 340 and 380 nm were the microbial metabolism products or acids. There was a positive correlation between the intensity of natural fluorescence peak at 380 nm during culture time. Outstandingly, there was more information on fluorescence components in the two-dimensional fluorescence spectra from the parallel factor analysis. In terms of two-dimensional spectral data, the number of microbial colonies, and the absorbance were taken as the input or the output values of the BP neural network model, respectively. The modeling was constructed for the microbial growth of different detection. The experimental results showed that the correlation coefficients of the two models were close to 1.0, and the Mean Square Error (MSE) was all very small. A very reliable model was achieved in the neural network with a high fitting ability. Therefore, the three-dimensional fluorescence spectroscopy combined with the chemometrics was feasible to monitor the microbial growth in the silage. The finding can also provide a new technical approach for the rapid determination of the fermentation silage stage.

       

    /

    返回文章
    返回