柴红强, 杨国来, 刘小雄, 刘秉昊, 史有程. 新月形内齿轮泵内部泄漏与黏性摩擦损失模型构建[J]. 农业工程学报, 2022, 38(21): 24-32. DOI: 10.11975/j.issn.1002-6819.2022.21.004
    引用本文: 柴红强, 杨国来, 刘小雄, 刘秉昊, 史有程. 新月形内齿轮泵内部泄漏与黏性摩擦损失模型构建[J]. 农业工程学报, 2022, 38(21): 24-32. DOI: 10.11975/j.issn.1002-6819.2022.21.004
    Chai Hongqiang, Yang Guolai, Liu Xiaoxiong, Liu Binghao, Shi Youcheng. Model construction of the internal leakage and viscous friction loss of crescent internal gear pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(21): 24-32. DOI: 10.11975/j.issn.1002-6819.2022.21.004
    Citation: Chai Hongqiang, Yang Guolai, Liu Xiaoxiong, Liu Binghao, Shi Youcheng. Model construction of the internal leakage and viscous friction loss of crescent internal gear pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(21): 24-32. DOI: 10.11975/j.issn.1002-6819.2022.21.004

    新月形内齿轮泵内部泄漏与黏性摩擦损失模型构建

    Model construction of the internal leakage and viscous friction loss of crescent internal gear pump

    • 摘要: 为了准确表征新月形内齿轮泵的内部流动特性,该研究根据静压支撑油膜理论及牛顿摩擦定理构建了该型齿轮泵内部泄漏数学模型及黏性摩擦损失数学模型,依据齿轮泵结构特点以及实际流动特征建立了基于两相流及动网格技术的CFD仿真模型,模拟分析了齿轮泵内部含气油液的流动特性,并与理论计算结果进行对比,最后进行试验验证。结果表明:在1/3周期内的瞬时体积流量与瞬时输入功率曲线均呈现连续周期性变化,2条曲线都有4个脉动;由于理论分析无法全面考虑油液实际流动过程而导致总泄漏量的理论值与仿真值相差60.11%,总黏性摩擦功率损失的理论值与仿真值相差66.67%;静态区域中流线相互平行,质点流动呈现层流状态,而在运动区域中却呈现完全湍流形态;压差流沿着新月形隔板内外两侧壁面以超过12 m/s的速度逆时针运动,而剪切流沿着外齿轮及内齿圈外壁同样以超过12 m/s的速度顺时针运动,在完全密封的齿间出现不同尺度的旋涡,旋涡中心的液体脱落现象使得其中的流体速度为0。在啮合齿面油膜的密封作用下,间隙最小处出现断流,啮合区的最大泄漏量为0.16 L/min;试验与仿真的容积效率相差1.33个百分点,偏差率为1.36%;试验与仿真总效率相差1.39个百分点,偏差率为1.73%。该研究获得了新月形内齿轮泵流动特性精确数学模型,验证了数值计算模型的适用性及仿真结果的准确性,可为完善齿轮泵设计理论与内流场特征分析提供参考。

       

      Abstract: The flow characteristics can be expected to precisely characterize in the crescent internal gear pump. In this study, the mathematical models were developed for the internal leakage and viscous friction loss of the crescent internal gear pump, according to the hydrostatic support oil film theory and Newton's friction theorem. A CFD simulation model with the two-phase flow and dynamic grid was constructed to analyze the flow characteristics of the gas containing oil using the structural parameters and real flow characteristics of the gear pump. A comparison was made on the simulation and theoretical calculations. A series of experiments were carried out to verify the model. The results demonstrate that the continuous periodic variations were observed in the instantaneous volume flow rate and instantaneous input power curves in the 1/3 cycle. Four pulsations of both curves were also found to commensurate with the number of gear pair meshing during this time. 60.11% between the theoretical and simulation values was found for the total leakage flow, and 66.67% was for the total viscous friction power loss. Once the streamline was parallel in the static zone in the laminar particle flow, there was the entirely turbulent in the moving region. The shear flow also moved clockwise at a speed of more than 12 m/s along the outer walls of the outer gear and the inner gear ring, while the differential pressure flow moved counterclockwise at a speed of more than 12 m/s along the inner and outer walls of the crescent diaphragm. Several scale vortices were observed between the fully sealed teeth. The fluid velocity inside the vortex was zero, due to the liquid dropping off near the core. The flow was stopped off at the minimum clearance under the sealing effect of the oil layer on the meshing gear surface, where the maximum leakage in the meshing area was 0.16 L/min. The deviation rate was 1.36% for the volumetric efficiency difference between the test and simulation. By contrast, the deviation rate was 1.73% for the overall efficiency difference, indicating the acceptable error range. As such, a precise mathematical model was proposed for the flow characteristics of crescent internal gear pump. The applicability of the numerical calculation model was validated to assess the accuracy of the simulation. These findings can be used as a guideline to enhance the design theory and examine the internal flow field.

       

    /

    返回文章
    返回