Abstract:
Abstract: Nitrogen is one of the most essential elements for crop growth. Nitrogen fertilizer has been widely applied to increase crop yields. At the same time, a large number of negative impacts have posed a great threat to the ecological environment in recent years. Among them, nitrogen leaching can be attributed to the excessive application of chemical fertilizers in farmland. Fortunately, the combined application of organic and chemical fertilizers can be expected to effectively reduce soil nitrogen leaching in normal fertilization during agricultural production at present. Therefore, this study aims to explore the combination application mode of organic and chemical fertilizers with a low risk of nitrogen leaching in farmland. The search terms were selected as chemical fertilizer, organic fertilizer, and nitrogen leaching using the two databases of China National Knowledge Infrastructure (CNKI) and Web of Science. The peer-reviewed and published papers were then obtained up to January 2022. Finally, a total of 35 papers (22 papers from Web of Science, 13 papers from CNKI) and 331 effective data pairs were collected after screening for the combination application of organic and chemical fertilizers in farmland. The target variables were taken as the total nitrogen (TN), nitrate nitrogen (NO3--N), and dissolved organic nitrogen (DON), while the chemical fertilizer was the control. After that, Metawin 2.1 software was used to determine the overall effects of the total amount of fertilization, fertilization structure (organic fertilizer substitution ratio), fertilization time (basic topdressing), and the types of organic fertilizers on the nitrogen leaching, where the chemical fertilizer was as the control. The results showed that there was a significant influence of the above fertilization behavior on nitrogen leaching. Once the total amount of nitrogen was less than 200 kg/hm2, the leaching of TN and NO3--N in farmland decreased by 36.77% and 65.05%, respectively. When the substitution ratio of organic fertilizers was higher than 70%, the TN leaching was reduced by 39.64%, whereas the risk of dissolved DON leaching increased by 15.78%. Especially, there was a 26.31% increase in DON leaching in the application of animal-based organic fertilizers combined with chemical fertilizers. Correspondingly, the application of nitrogen fertilizer significantly reduced the leaching of TN and NO3--N by 43.58% and 70.51%(P<0.05), respectively. A certain impact was also found in the soil pH and land use patterns on nitrogen leaching. For example, the combined application of organic and chemical fertilizers on the alkaline dryland soil effectively inhibited the leaching of TN and NO3--N, whereas, there was an increase in the leaching of DON by 26.63%-42.95%. Nitrogen leaching in dryland was dominated by the NO3--N leaching. By contrast, the emission factor (EF) was higher than that in the paddy field. The increasing replacement ratio of organic fertilizers can be expected to greatly reduce the soil nitrogen leaching in dryland, but to enhance the DON leaching. In addition, the Matlab software was used to analyze the importance of factors using the random forest model. Specifically, the replacement ratio of organic fertilizer demonstrated a dominant effect on TN leaching. There was also the more important effect of the nitrogen application level on the NO3--N and DON leaching. Therefore, the low level of nitrogen application and the high substitution ratio of animal-based organic fertilizers can be used to effectively reduce the soil nitrogen leaching loss in the alkaline dryland, compared with the chemical fertilizers only. The finding can provide the practical basis for the combined application of organic and chemical fertilizers in farmland.