杨启志, 杨鑫宇, 赫明胜, 张若瑜, 文天拟, 施爱平. 葡萄分层旋抛式清土起藤机高效旋抛刀设计与试验[J]. 农业工程学报, 2022, 38(24): 44-51. DOI: 10.11975/j.issn.1002-6819.2022.24.005
    引用本文: 杨启志, 杨鑫宇, 赫明胜, 张若瑜, 文天拟, 施爱平. 葡萄分层旋抛式清土起藤机高效旋抛刀设计与试验[J]. 农业工程学报, 2022, 38(24): 44-51. DOI: 10.11975/j.issn.1002-6819.2022.24.005
    Yang Qizhi, Yang Xinyu, He Mingsheng, Zhang Ruoyu, Wen Tianni, Shi Aiping. Design and experiment of the rotary throwing knife of wine grape cleaning machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(24): 44-51. DOI: 10.11975/j.issn.1002-6819.2022.24.005
    Citation: Yang Qizhi, Yang Xinyu, He Mingsheng, Zhang Ruoyu, Wen Tianni, Shi Aiping. Design and experiment of the rotary throwing knife of wine grape cleaning machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(24): 44-51. DOI: 10.11975/j.issn.1002-6819.2022.24.005

    葡萄分层旋抛式清土起藤机高效旋抛刀设计与试验

    Design and experiment of the rotary throwing knife of wine grape cleaning machine

    • 摘要: 针对中国西北地区酿酒葡萄清土作业缺乏与土壤颗粒群相互作用的研究,凭经验设计使得单层旋抛清土方法效率低以及清土部件功耗高的问题,设计了一种分层旋抛式清土起藤机并对旋抛刀与土壤相互作用进行研究。首先,根据中国西北地区酿酒葡萄种植及清土的农艺要求,完成分层旋抛刀的设计,然后对旋抛式清土起藤机的运动进行理论分析,确定影响旋抛刀功耗和抛送距离的主要因素,并通过EDEM-Recurdyn耦合仿真,以旋抛刀不同焊接角度、转速及整机的前进速度为试验因素,以清土率、旋抛刀扭矩为评价指标,分析土壤离散颗粒群与旋抛刀之间的相互作用,得到最优参数组合,进一步基于台架试验对仿真试验进行验证。结果表明,当旋抛刀焊接角度为30°,转速为270 r/min,前进速度为0.4 m/s时,清土率为49.1%,旋抛刀平均扭矩为13.09 N·m,土壤抛送距离集中在1.52~1.75 m之间,与仿真优化结果(清土率为55.9%)相对误差为13.8%,研究结果可为后续研制分层旋抛式清土起藤机提供理论依据及技术参考。

       

      Abstract: Abstract: Soil clearing operation can be one of the most challenging steps in the wine industry in recent years. The low efficiency can often be found in the single-layer rotary throwing during the soil cleaning operation of wine grapes in northwest China. It is still lacking in the interaction with the soil particles in cold soil, due to empirical design. In this study, a layered rotary throwing soil remover was designed to clarify the interaction between the soil and the rotary throwing knife. The rotary throwing cutter was then realized to balance the different functions of the upper and lower rotary throwing cutters. A dynamic analysis was carried out to determine the overall size of rotary throwing knives using RecurDyn software. Among them, the RecurDyn was a new generation of simulation software for multi-body system dynamics. The movement of the rotary throwing soil cleaning machine was theoretically analyzed to determine the main factors affecting the power consumption and throwing distance of rotary throwing knives. Specifically, the trapezoidal soil ridges in the cross section of 1 000 mm× 600 mm×300 mm ×300 mm (Length × Bottom bottom × Upper bottom × height) were established in the EDEM, according to the agronomic requirements of wine grape planting and soil cleaning. The coupled EDEM and RecurDyn simulation was conducted to analyze the interaction between the discrete particle group of cold-proof soil and the rotary throwing knife. Among them, the test factors were taken as the rotating speed of the rotary throwing knives with the different welding angles, and the forward speed of the whole machine. The evaluation indexes were set as the influence of the soil removal amount and the torque of the rotary throwing knife. An optimal combination of parameters was then obtained after optimization. Then, a three-factor four-level orthogonal experiment was designed to verify the reliability of the model using the analysis of variance. Further verification was also made using a bench test. A series of parameters were also selected in the bench test, including the cleaning rate of the machine, and the torque during operation under the conditions of different welding angles, the rotating and forward speeds, as well as the optimal combination under the conditions of various parameters. The results show that an optimal combination was achieved, where the the soil removal rate was 49.1%, the torque of the rotary throwing knife was 13.09 N·m, and the soil throwing distance was concentrated between 1.52-1.75 m, particularly when the welding angle of the rotary throwing knife was 30°, the rotating speed of the knife was 270 r/min, and the forward speed was 0.4 m/s. Excellent consistency was also obtained with the simulation and experimental. The findings can also provide the theoretical basis and technical reference for the subsequent development of grapevine soil cleaning and vine lifting machine.

       

    /

    返回文章
    返回