吴淑芳, 张彪, 石学瑾, 苑紫岩, 冯浩. FLUS-CSLE模型预测黄土高原典型流域不同土地利用变化情景土壤侵蚀[J]. 农业工程学报, 2022, 38(24): 83-92. DOI: 10.11975/j.issn.1002-6819.2022.24.009
    引用本文: 吴淑芳, 张彪, 石学瑾, 苑紫岩, 冯浩. FLUS-CSLE模型预测黄土高原典型流域不同土地利用变化情景土壤侵蚀[J]. 农业工程学报, 2022, 38(24): 83-92. DOI: 10.11975/j.issn.1002-6819.2022.24.009
    Wu Shufang, Zhang Biao, Shi Xuejin, Yuan Ziyan, Feng Hao. Prediction of soil erosion under different land uses in the typical watershed of the Loess Plateau based on FLUS-CSLE model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(24): 83-92. DOI: 10.11975/j.issn.1002-6819.2022.24.009
    Citation: Wu Shufang, Zhang Biao, Shi Xuejin, Yuan Ziyan, Feng Hao. Prediction of soil erosion under different land uses in the typical watershed of the Loess Plateau based on FLUS-CSLE model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(24): 83-92. DOI: 10.11975/j.issn.1002-6819.2022.24.009

    FLUS-CSLE模型预测黄土高原典型流域不同土地利用变化情景土壤侵蚀

    Prediction of soil erosion under different land uses in the typical watershed of the Loess Plateau based on FLUS-CSLE model

    • 摘要: 流域土壤侵蚀预测对于了解未来土壤侵蚀发展趋势,制定未来水土保持治理策略具有重要意义。为了提出一种适用于黄土高原地区的易于评估未来不同土地利用管理策略的土壤侵蚀预测方法,该研究基于地形、降雨、土壤、遥感影像数据,完成韭园沟流域2010-2020年的土地利用空间分布解译,并计算历史时期(2010-2020)的土壤侵蚀模数,基于未来土地利用模拟(Future Land Use Simulation,FLUS)模型完成流域2025年土地利用分布状况预测,以此为基础获得未来植被覆盖措施因子和耕作措施因子,结合CSLE模型预测2025年自然发展、经济增长、生态保护3种不同土地利用变化情景下土壤侵蚀状况。结果表明:1)韭园沟流域土地利用类型主要为草地(面积占比62.23%)和林地(28.41%),其次是耕地、建筑物和水体,在2010-2020年期间土地利用空间分布格局经历了较大变化,林、草地面积增加8.36%,耕地面积减少30.3%。2)流域2010、2015、2020年这3 a间土壤侵蚀模数平均值分别为19.49、15.83、20.7 t/(hm2·a),整体呈现先降低后增加的趋势,不同土地利用类型的土壤侵蚀模数由大到小为耕地(40.56 t/(hm2·a))、草地(18.79 t/(hm2·a))、建设用地(10.25 t/(hm2·a))、林地(8.02 t/(hm2·a))。3)在积极的生态保护情景下,2025年林、草地面积较自然发展情景基本持平但林地面积比例有所增加,较经济增长情景林、草地面积增加5.06%,耕地面积较自然发展情景增加1.20%,较经济增长情景减少14.73%。4)2025年流域自然发展、经济增长、生态保护情景下土壤侵蚀模数分别为24.3、22.9、18.3 t/(hm2·a)。采取积极的生态保护情景发展模式,建设用地面积适度扩张可以兼顾生态保护和经济发展的需要。该研究为流域未来的土地利用规划以及水土保持治理提供参考。

       

      Abstract: Abstract: Soil erosion has posed a serious threat to the ecological balance and food security in the most fragile environment of the Loess Plateau. Frequent human activities are drastically changing the spatial pattern of land use in the economic and social development. Therefore, it is of great significance to predict the soil erosion under different strategies of land use for the regional coordinated development in the future. Taking the Jiuyuangou watershed as the research object, this study aims to propose an improved FLUS-CSLE model for the prediction of the spatial distribution pattern of land use in different scenarios. The vegetation coverage factor (B) and the tillage measure factor (T) were also calculated in the future scenario. The CSLE model was used to evaluate the soil erosion status in the historical period (2010-2020). The vegetation coverage factor and tillage measure factor were combined to predict the soil erosion under various scenarios of land use in 2025. Finally, a systematic analysis was made to determine the response of land use types to soil erosion status. The results show that: 1) The land use types were grassland (62.23%) and forest land (28.41%), followed by cropland, buildings, and water in the study area. There were the great variations in the spatial distribution pattern of land use. Specifically, the areas of forest and grassland increased by 8.36% from 2010 to 2020, whereas, the area of cropland was decreased by 30.3%. 2) The average modulus of soil erosion in the three years of 2010, 2015, and 2020 were 19.49, 15.83, and 20.7 t/(hm2·a), respectively, indicating a trend of first decreasing and then increasing. The soil erosion modulus of land use types was ranked in the descending order of the cropland (40.56 t/(hm2·a)) > grassland (18.79 t/(hm2·a)) > building (10.25 t/(hm2·a)) > forest land (8.02 t/(hm2·a)). 3) Under the positive ecological protection scenario, the area of forest and grassland in 2025 was basically the same as that in the natural development scenario, but the proportion of forest land increased. The area of forest and grassland was increased by 5.06% compared with the economic growth scenario. The area of cropland was increased by 1.20% compared with the natural development scenario and decreased by 14.73% compared with the economic growth scenario. 4) The soil erosion moduli were 24.3, 22.9, and 18.3 t/(hm2·a), respectively, under the natural development, economic growth, and ecological protection scenarios of the watershed in 2025. Therefore, an active ecological protection mode can be expected to appropriately expand the building area in the needs of economic development. Anyway, a rapid and efficient prediction of soil erosion can be given for the management strategies in the various scenarios of land use in the future. The findings can also provide the scientific reference for the decision-making on land use, as well as soil and water conservation in the watershed.

       

    /

    返回文章
    返回