[1] |
李君,徐岩,许绩彤,等. 悬挂式电动柔性疏花机控制系统设计与试验[J].农业工程学报,2016,32(18):61-66.LI Jun, XU Yan, XU Jitong, et al. Design and experiment of control system for suspended electric flexible thinner[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 61-66. (in Chinese with English abstract)
|
[2] |
IWANAMI H, MORIYA-TANAKA Y, HONDA C, et al. A model for representing the relationships among crop load, timing of thinning, flower bud formation, and fruit weight in apples[J]. Scientia Horticulturae, 2018, 242: 181-187.
|
[3] |
宋占丽,刁永强,拜热·居马洪,等. 不同疏花疏果剂对蜜脆苹果的疏除效果及成本分析[J]. 现代农业科技,2021(13):67-68.
|
[4] |
FARJON G, KRIKEB O, HILLEL A B, et al. Detection and counting of flowers on apple trees for better chemical thinning decisions[J]. Precision Agriculture, 2020, 21(3): 503-521.
|
[5] |
ZHANG C, XIE Y, LIU D, et al. Fast threshold image segmentation based on 2D fuzzy fisher and random local optimized QPSO[J]. IEEE Transactions on Image Processing, 2016, 26(3): 1355-1362.
|
[6] |
杨陶,田怀文,刘晓敏,等. 基于边缘检测与Otsu的图像分割算法研究[J]. 计算机工程,2016,42(11):255-260,266.YANG Tao, TIAN Huaiwen, LIU Xiaomin, et al. Research on image segmentation algorithm based on edge detection and Otsu[J]. Computer Engineering, 2016, 42(11): 255-260, 266. (in Chinese with English abstract)
|
[7] |
彭明阳,王建华,闻祥鑫,等. 结合HSV空间的水面图像特征水岸线检测[J]. 中国图象图形学报,2018,23(4):526-533.PENG Mingyang, WANG Jianhua, WEN Xiangxin, et al. Shoreline detection method by combining HSV spatial water image feature[J]. Journal of Image and Graphics, 2018, 23(4): 526-533. (in Chinese with English abstract)
|
[8] |
刘双喜,孙林林,王震,等. 复杂背景下苹果树花量模糊聚类准确估测模型[J]. 中国农机化学报,2017,38(8):74-81.LIU Shuangxi, SUN Linlin, WANG Zhen, et al. Fuzzy clustering accurate estimation model of apple tree flowers with complex background[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(8): 74-81. (in Chinese with English abstract)
|
[9] |
赵德安,吴任迪,刘晓洋,等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报,2019,35(3):164-173.ZHAO Dean, WU Rendi, LIU Xiaoyang, et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 164-173. (in Chinese with English abstract)
|
[10] |
杨军奇,冯全,王书志,等. 基于改进YOLOv4的田间密集小目标检测方法[J]. 东北农业大学学报,2022,53(5):69-79.YANG Junqi, FENG Quan, WANG Shuzhi, et al. Method for detection of farmland dense small target based on improved YOLOv4[J]. Journal of Northeast Agricultural University, 2022, 53(5): 69-79. (in Chinese with English abstract)
|
[11] |
TIAN M, CHEN H, WANG Q. Detection and recognition of flower image based on SSD network in video stream[J]. Journal of Physics: Conference Series, 2019, 1237(3): 032045.
|
[12] |
闫建伟,赵源,张乐伟,等. 改进Faster-RCNN自然环境下识别刺梨果实[J]. 农业工程学报,2019,35(18):143-150.YAN Jianwei, ZHAO Yuan, ZHANG Lewei, et al. Recognition of Rosa roxbunghii in natural environment based on improved Faster RCNN[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(18): 143-150. (in Chinese with English abstract)
|
[13] |
HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN [C]//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy: IEEE, 2017: 2980-2988.
|
[14] |
岳有军,田博凯,王红君,等. 基于改进Mask RCNN的复杂环境下苹果检测研究[J]. 中国农机化学报,2019,40(10):128-134.YUE Youjun, TIAN Bokai, WANG Hongjun, et al. Research on apple detection in complex environment based on improved Mask RCNN[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(10): 128-134. (in Chinese with English abstract)
|
[15] |
邓颖,吴华瑞,朱华吉. 基于实例分割的柑橘花朵识别及花量统计[J]. 农业工程学报,2020,36(7):200-207.DENG Ying, WU Huarui, ZHU Huaji. Recognition and counting of citrus flowers based on instance segmentation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7): 200-207. (in Chinese with English abstract)
|
[16] |
DIAS P A, TABB A, MEDEIROS H. Multispecies fruit flower detection using a refined semantic segmentation network[J]. IEEE robotics and automation letters, 2018, 3(4): 3003-3010.
|
[17] |
DIAS P A, TABB A, MEDEIROS H. Apple flower detection using deep convolutional networks[J]. Computers in Industry, 2018, 99: 17-28.
|
[18] |
TIAN Y, YANG G, WANG Z, et al. Instance segmentation of apple flowers using the improved mask R–CNN model[J]. Biosystems Engineering, 2020, 193: 264-278.
|
[19] |
SUN K, WANG X, LIU S, et al. Apple, peach, and pear flower detection using semantic segmentation network and shape constraint level set[J]. Computers and Electronics in Agriculture, 2021, 185: 106150.
|
[20] |
尚钰莹,张倩如,宋怀波.基于YOLOv5s的深度学习在自然场景苹果花朵检测中的应用[J].农业工程学报,2022,38(9):222-229.SHANG Yuying, ZHANG Qianru, SONG Huaibo. Application of deep learning based on YOLOv5s to apple flower detection in natural scenes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(9): 222-229. (in Chinese with English abstract)
|
[21] |
孔英会,朱成诚,车辚辚. 复杂背景下基于MobileNets的花卉识别与模型剪枝[J]. 科学技术与工程,2018,18(19):84-88.KONG Yinghui, ZHU Chengcheng, CHE Linlin. Flower recognition in complex background and model pruning based on MobileNets[J]. Science Technology and Engineering, 2018, 18(19): 84-88. (in Chinese with English abstract)
|
[22] |
WU D, LV S, JIANG M, et al. Using channel pruning-based YOLO v4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments[J]. Computers and Electronics in Agriculture, 2020, 178: 105742.
|
[23] |
KRIKEB O, ALCHANATIS V, CRANE O, et al. Evaluation of apple flowering intensity using color image processing for tree specific chemical thinning[J]. Advances in Animal Biosciences, 2017, 8(2): 466-470.
|
[24] |
MADEC S, JIN X, LU H, et al. Ear density estimation from high resolution RGB imagery using deep learning technique[J]. Agricultural and Forest Meteorology, 2019, 264: 225-234.
|
[25] |
WANG X A, TANG J, WHITTY M. Side-view apple flower mapping using edge-based fully convolutional networks for variable rate chemical thinning[J]. Computers and Electronics in Agriculture, 2020, 178: 105673.
|
[26] |
YE T, ZHAO N, YANG X, et al. Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model[J]. Science of the Total Environment, 2019, 658: 936-946.
|
[27] |
RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
|