果蔬类多孔介质干燥传质过程的分子动力学模拟

    Molecular dynamics simulation of the mass transfer process for the drying of fruit and vegetable porous media

    • 摘要: 果蔬类多孔介质内部水中溶解有大量的营养物质(溶质),在干燥过程中溶质的迁移与湿分的传递同时进行,其内部微孔内的干燥传质机理尚不明确。为了揭示果蔬类多孔介质干燥过程中内部溶液的迁移机理,确定果蔬微孔结构特性对干燥传质过程的影响规律。该研究采用分子动力学方法模拟研究了果蔬类多孔介质微孔道中的干燥传质过程,构建了光滑壁面溶液扩散过程模型与粗糙壁面溶液扩散过程模型。模拟过程采用SPC/E水分子模型,选取OPLS-AA全原子力场和正则系综,溶液势函数选用静电库伦相互作用与Lennard-Jones相互作用,中心水分子的初始速度由高斯分布给出,采用Velocity-Verlet算法,用SHAKE算法固定水分子,x、y方向施加周期性边界条件,z方向上施加固定壁面边界条件。从分子水平模拟分析了果蔬类多孔介质内部溶液的扩散过程,并以马铃薯的热风干燥试验结果进行模型的验证。得出试验值与KCl溶液粗糙壁面模型的模拟值最为接近,其最大相对误差为17.39%;与纯水模型的模拟值相差最大,说明溶质的存在对水分扩散系数的影响不可忽略,且粗糙壁面模型更接近于真实孔道结构。从径向分布函数分布可以看出K+、Cl-对水分子的氢键结构有破坏作用。K+、Cl-均存在两层水化层,H2O分子以O原子靠近K+,以H原子靠近Cl-。溶质浓度、孔道直径、壁面粗糙度因子和相面积分数均对孔隙中的水分扩散系数有重要影响。随着孔道内KCl溶液质量分数的增大,其水分扩散系数逐渐减小。孔道直径变大、粗糙壁面粗糙度因子减小和粗糙壁面相面积分数增大,均会导致干燥过程中水分扩散系数增大。研究结果为果蔬干燥品质及工艺优化分析提供了理论依据。

       

      Abstract: A large number of nutrients (solutes) can be dissolved in the water inside the porous medium of fruits and vegetables. The migration of solutes can occur simultaneously with the transfer of wet content during drying. It is still lacking in the mass-transfer mechanism of drying in the internal micropores of fruit and vegetable porous media so far. It is a high demand to determine the influence of microporous structure characteristics of fruits and vegetables on the mass transfer process during drying. In this study, a systematic simulation was carried out for the mass transfer in the microporous media of fruits and vegetables during drying using molecular dynamics. The diffusion process model of smooth wall solution and the diffusion process model of rough wall solution were constructed after simulation. The SPC/E water molecular model was also selected under the OPLS-AA all-atomic force field and the regular ensemble. The solution potential function was established with the electrostatic Coulomb and Lennard-Jones interaction. Among them, the initial velocity of the central water molecule was given by the Gaussian distribution. The Velocity-Verlet algorithm was then used to update the position and velocity of atoms. The water molecules were fixed with the SHAKE algorithm. Periodic boundary conditions were applied in the x and y directions of the simulated aperture, whereas, the fixed wall boundary conditions were applied in the z direction. The diffusion process of the internal solution was simulated in the porous media of fruits and vegetables from the molecular level. The improved model was verified using the hot-air drying experiment of potatoes. The experimental value was the closest to the simulated using the KCl solution rough wall model, where the maximum relative error was 17.39%. There was the largest difference between the experimental and the simulated value of the pure water model. Therefore, the rough wall model was much closer to the real pore wall structure, without considering the influence of the presence of solute on the water diffusion coefficient. The radial distribution function demonstrated that K+ and Cl- posed damaging effects on the hydrogen bond structure of water molecules, while both K+ and Cl- shared two hydration layers. The H2O molecule was close to K+ with an O atom, and Cl- with an H atom. The important influences were obtained on the water diffusion coefficient in the pores, including the solute concentration, pore diameter, wall roughness factor, and phase area fraction. The diffusion process of KCl solutions with different mass fractions showed that the larger the solution mass fraction was, the smaller the water diffusion coefficient was. The optimal combination was achieved in the diffusion coefficient of the water during drying. Specifically, there was an increase in the pore diameter, drying temperature, and the area fraction of the rough wall, whereas, a decrease was observed in the roughness factor of the rough wall. The finding can also provide a theoretical basis to analyze the drying quality and process optimization of fruits and vegetables.

       

    /

    返回文章
    返回