• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

履带式花生联合收获机路径跟踪控制方法与试验

何杰, 满忠贤, 胡炼, 罗锡文, 汪沛, 李明锦, 李伟聪

何杰, 满忠贤, 胡炼, 罗锡文, 汪沛, 李明锦, 李伟聪. 履带式花生联合收获机路径跟踪控制方法与试验[J]. 农业工程学报, 2023, 39(1): 9-17. DOI: 10.11975/j.issn.1002-6819.202208067
引用本文: 何杰, 满忠贤, 胡炼, 罗锡文, 汪沛, 李明锦, 李伟聪. 履带式花生联合收获机路径跟踪控制方法与试验[J]. 农业工程学报, 2023, 39(1): 9-17. DOI: 10.11975/j.issn.1002-6819.202208067
HE Jie, MAN Zhongxian, HU Lian, LUO Xiwen, WANG Pei, LI Mingjin, LI Weicong. Path tracking control method and experiments for the crawler-mounted peanut combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(1): 9-17. DOI: 10.11975/j.issn.1002-6819.202208067
Citation: HE Jie, MAN Zhongxian, HU Lian, LUO Xiwen, WANG Pei, LI Mingjin, LI Weicong. Path tracking control method and experiments for the crawler-mounted peanut combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(1): 9-17. DOI: 10.11975/j.issn.1002-6819.202208067

履带式花生联合收获机路径跟踪控制方法与试验

基金项目: 广东省人工智能实验室项目(2021B1212040009);岭南现代农业科学与技术广东省实验室科研项目(NT2021009);国家花生产业技术体系(CARS-13)

Path tracking control method and experiments for the crawler-mounted peanut combine harvester

  • 摘要: 为提高无人驾驶履带式花生收获机沙地作业路径跟踪精度,以4HBL-2型自走式花生联合收获机为研究对象,开展了履带式收获机无人驾驶路径跟踪控制研究。建立了履带式收获机运动学模型与虚拟转向角函数关系;以航向偏差值作为观测量、阿克曼模型推算角速度作为测量值,设计卡尔曼融合算法,获得基于阿克曼模型的虚拟转向角度;根据虚拟转向角度对PID路径跟踪算法进行改进,提出了基于预瞄跟踪的双PID路径跟踪控制方法;通过脉冲宽度控制器实现了履带式花生收获机路径跟踪精准控制。仿真试验结果表明:基于预瞄跟踪双PID的路径跟踪控制方法能够进行路径跟踪控制,具有控制平滑和稳态误差小等特点。田间试验表明:花生收获机在沙地以0.6m/s的速度作业时,系统直线跟踪平均绝对误差为2.23 cm,最大偏差为4.14 cm,相对于PD路径跟踪控制器分别提高了56.12%和66.07%。上线试验中,初始偏差分别是0.5、1.0和1.5 m时,上线时间分别为11.00、12.92和13.78 s,上线距离为6.60、7.75和8.26 m;最大超调量分别为5.68%、5.84%和8.06%,相较于轮式收获机,上线距离分别减小了1.92%、4.43%、8.71%,超调量分别减少了8.45%、17.56%、5.17%;接行最大偏差为5.87 cm,平均绝对误差为2.72 cm,接行偏差在±5和±10 cm内的比例分别为97.11%和100%,路径跟踪控制精度能够满足沙地无人驾驶作业要求。
    Abstract: Peanut harvesting has posed a great promise for the sustainable development in modern agriculture. This study aims to improve the path-tracking accuracy of an unmanned crawler-mounted peanut harvester on sandy land. 4HBL-2 self-propelled peanut combine harvester was taken as the research object. A systematic investigation was also carried out on the unmanned path-tracking control of the crawler-mounted harvester. The optimal relationship was established between the kinematic model of the crawler-mounted harvester and the virtual steering angle function. The course deviation was used as the observation value, whereas, the angular velocity calculated by the Ackerman model was used as the measurement value. Kalman Fusion Algorithm was also designed to obtain the virtual steering angle using the Ackerman model. The PID path tracking was improved significantly, according to the virtual steering angle. A double PID path tracking control was proposed using preview tracking. A pulse width controller was then selected to realize the accurate path-tracking control of the crawler-mounted peanut harvester. The simulation test results showed that the path tracking control method based on preview tracking double PID can perform path tracking control, and had the characteristics of smooth control and small steady-state error. There was no change in the signal period and waveform distortion. A series of field experiments show that the average absolute error and the maximum deviation of the linear tracking were 2.23, and 4.14 cm, respectively, when the peanut harvester was operated at a speed of 0.6 m/s in the sand. The performance of the improved system was enhanced by 56.12%, and 66.07%, respectively, compared with the PID path tracking controller. The path tracking experiments showed that the response duration values of the control system were 11.00, 12.92, and 13.78 s, respectively, while the corresponding distances were 6.60, 7.75, and 8.26 m, respectively, when the initial deviation was 0.5, 1.0, and 1.5 m, respectively. Specifically, the maximum overshoot was 5.68, 5.84, and 6.09 cm, respectively. The tracking path distance was reduced by 1.92%, 4.43%, and 8.71%, respectively, whereas, the overshoot was reduced by 8.45%, 17.56%, and 5.17%, respectively, compared with the wheeled harvesters. The maximum deviation and average absolute error of the peanut harvester were 5.87 and 2.72 cm, respectively. The ratios of deviation within ±5 cm and ±10 cm were 97.11%, and 100%, respectively. The general technical conditions were also compared for the post-installation of the satellite navigation automatic driving system of agricultural machinery in the industry standard. The connection performance of the crawler peanut harvester can be expected to meet the high requirements of the connection performance. The path tracking control accuracy of the crawler-mounted peanut harvester can also fully meet the harsh requirements of unmanned operation in sandy land.
  • [1] 陈有庆,胡志超,王申莹,等. 割秧后花生收获机捡拾装置设计与试验[J]. 农业工程学报,2020,36(16):1-8.CHEN Youqing, HU Zhichao, WANG Senying, et al. Design and experiment of picking device of peanut harvester after seedling cutting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(16): 1-8. (in Chinese with English abstract)
    [2] 庞德亮,张书坤,李玉杰. 花生收获机的研究现状及发展趋势[J]. 南方农机,2019,50(4):32.PANG Deliang, ZHANG Shukun, LI Yujie. Research status and development trend of peanut harvester[J]. China Southern Agricultural Machinery, 2019, 50(4): 32. (in Chinese with English abstract)
    [3] 王伯凯,顾峰玮,于昭洋,等. 轴流式全喂入花生收获机捡拾机构设计与试验[J]. 农业机械学报,2020,51(10):132-141.WANG Bokai,GU Fengwei,YU Zhaoyang,et al. Design and experiment of picking-up mechanism of axial-flowfull-feed peanut harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 132-141. (in Chinese with English abstract)
    [4] 史正芳,王兰安. 花生收获机械的发展现状与前景[J]. 山东农机化,2019,331(2):25-26.SHI Zhengfang, WANG Lanan. Development status and prospect of peanut harvesting machinery[J]. Shangdong Agricultural Mechanization, 2019, 331(2): 25-26. (in Chinese with English abstract)
    [5] 王斌斌,张轩. 南方花生收获机的设计与试验[J]. 现代农业装备,2020,41(4):33-38.WANG Binbin, ZHANG Xuan. Design and experiment of peanut harvester in South China[J]. Modern Agricultural Equipment, 2020, 41(4): 33-38. (in Chinese with English abstract)
    [6] 解彬彬,刘继展,蔡连江,等. 小地块履带农机UWB导航系统设计及其基站布置[J]. 农业工程学报,2022,38(7):48-58.JIE Binbin,LIU Jizhan,CAI Lianjiang,et al. Design of the UWB navigation system for tracked agricultural machineryin small land and analysis of base station layout[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(7): 48-58. (in Chinese with English abstract)
    [7] 游兆延,吴惠昌,胡志超,等. 4HLB-2型花生收获机挖掘深度的模糊控制[J]. 西北农林科技大学学报(自然科学版),2015,43(11):221-227.YOU Zhaoyan, WU Huichang, HU Zhichao, et al. Fuzzy control of digging depth of HLB-2 peanut harvester[J]. Journal of Northwest A&F University (Natural Science Edition), 2015, 43(11): 221-227. (in Chinese with English abstract)
    [8] TANG Z, ZHANG T, LI C, et al. Developments of crawler steering gearbox for combine harvester straight forward and steering in situ[J]. International Journal of Agricultural and Biological Engineering, 2020, 13(1).
    [9] 康翌婷,张煜,曾日芽. 地面不平条件下考虑滑动转向特性的履带车辆路径跟踪控制[J]. 中南大学学报(自然科学版),2022,53(2):491-501.KANG Liting, ZHANG Yu, ZENG Riya. Path tracking control of tracked vehicle considering sliding steering characteristics under uneven ground conditions[J]. Journal of Central South University (Science and Technology), 2022, 53(2): 491-501. (in Chinese with English abstract)
    [10] 张闻宇,丁幼春,李兆东,等. 基于双切圆寻线模型的农机导航控制方法[J]. 农业机械学报,2016,47(10):1-10.ZHANG Wenyu, DING Youchun, LI Zhaodong, et al. Navigation control method of agricultural machinery based on double tangent circle line-finding model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10): 1-10. (in Chinese with English abstract)
    [11] 丁幼春,何志博,夏中州,等. 小型履带式油菜播种机导航免疫PID控制器设计[J]. 农业工程学报,2019,35(7):12-20.DING Youchun, HE Zhibo, XIA Zhongzhou, et al. Design of navigation immune PID controller for small crawler rapeseed seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(7): 12-20. (in Chinese with English abstract)
    [12] 张朝宇,董万静,熊子庆,等. 履带式油菜播种机模糊自适应纯追踪控制器设计与试验[J]. 农业机械学报,2021,52(12):105-114.ZHANG Chaoyu, DONG Wanjing, XIONG Ziqing, et al. Design and experiment of fuzzy adaptive pure tracking controller for crawler seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 105-114. (in Chinese with English abstract)
    [13] 关卓怀,沐森林,吴崇友,等. 履带式联合收获机水田作业转向运动学分析与试验[J]. 农业工程学报,2020,36(13):29-38.GUAN Zhuohuai, MU Senlin, WU Chongyou, et al. Kinematics analysis and experiment of crawler combine harvester steering in paddy field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 29-38. (in Chinese with English abstract)
    [14] 贾全,张小超,苑严伟,等. NF-752型履带式拖拉机自动驾驶系统[J]. 农业工程,2018,8(4):24-29.JIA Quan, ZHANG Xiaochao, YUAN Yanwei, et al. Automatic driving system of NF-752 crawler tractor[J]. Agricultural Engineering, 2018, 8(4): 24-29. (in Chinese with English abstract)
    [15] 翟新婷,陈明东. 花生联合收获机秧蔓夹持输送系统载荷谱编制[J]. 农业机械学报,2020,51(S1):261-266.ZHAI Xinting, CHEN Mingdong. Load spectrum compiling of peanut combine harvester's seedling clamping and conveying system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 261-266. (in Chinese with English abstract)
    [16] 王申莹,胡志超,吴峰,等. 全喂入花生捡拾收获机喂入量建模与试验[J]. 农业工程学报,2019,35(23):29-36.WANG Shenying,HU Zhichao,WU Feng,et al. Modeling and experiment of feeding rate for full-feed peanut pickupharvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 29-36. (in Chinese with English abstract)
    [17] 于昭洋,胡志超,曹明珠,等. 切流式花生全喂入联合收获机清选机构设计[J]. 农业工程学报,2019,35(9):29-37.YU Zhaoyang, HU Zhichao, CAO Mingzhu, et al. Design of cleaning device of tangential flow and whole-feed peanut combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(9): 29-37.(in Chinese with English abstract)
    [18] 曾锦锋,陈晨,杨蒙爱. 基于阿克曼转向原理的四轮转向机构设计[J]. 轻工机械,2013,31(3):13-16.CENG Jinfeng, CHEN Chen, YANG Meng'ai. Design of four-wheel steering mechanism based on Ackerman steering principle[J]. Light Industry Machinery, 2013, 31(3): 13-16. (in Chinese with English abstract)
    [19] 薛昊渊,连晋毅,王嘉仑,等. 阿克曼转向模型的改进及其电子差速控制仿真[J]. 汽车实用技术,2020(10):118-121.XUE Haoyuan, LIAN Jinyi, WANG Jialun, et al. Improvement of ackerman steering model and simulation of electronic differential control[J]. Automobile Applied Technology, 2020(10): 118-121. (in Chinese with English abstract)
    [20] 时培成,陈旭,杨爱喜,等. 4WID-4WIS智能车阿克曼转向轨迹规划及位置估算[J]. 工程设计学报,2022,29(2):1-10.SHI Peicheng, CHEN Xu, YANG Aixi, et al. Steering trajectory planning and position estimation of 4WID-4WIS intelligent vehicle ackerman[J]. Chinese Journal of Engineering Design, 2022, 29(2): 1-10. (in Chinese with English abstract)
    [21] 罗承铭,熊陈文,黄小毛,等. 四边形田块下油菜联合收获机全覆盖作业路径规划算法[J]. 农业工程学报,2021,37(9):140-148.LUO Chengming,XIONG Chenwen,HUANG Xiaomao,et al. Coverage operation path planning algorithms for the rape combine harvester in quadrilateral fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(9): 140-148. (in Chinese with English abstract)
    [22] 丁幼春,张莉莉,杨军强,等. 油菜精量直播机播种监测系统传感装置改进及通信设计[J]. 农业工程学报,2018,34(14):19-26.DING Youchun, ZHANG Lili, YANG Junqiang, et al. Design and experiment of variable replanting system of precision seed metering device for rape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 19-26. (in Chinese with English abstract)
    [23] 张闻宇,张智刚,罗锡文,等. 收获机与运粮车纵向相对位置位速耦合协同控制方法与试验[J]. 农业工程学报,2021,37(9):1-11.ZHANG Wenyu, ZHANG Zhigang, LUO Xiwen, et al. Position-velocity coupling control method and experiments for longitudinal relative position of harvester and grain truck[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(9): 1-11. (in Chinese with English abstract)
    [24] 丁幼春,杨军强,张莉莉,等. 油菜精量排种器变量补种系统设计与试验[J]. 农业工程学报,2018,34(16):27-36.DING Youchun, YANG Junqiang, ZHANG Lili, et al. Design and experiment of variable replanting system of precision seed metering device for rape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(16): 27-36. (in Chinese with English abstract)
    [25] ZHANG H, ZHANG R, LI L, et al. Research on virtual Ackerman steering model based navigation system for tracked vehicles[J]. Computers and Electronics in Agriculture, 2022, 192: 106615.
    [26] 盖军雄,雷晓春,江泽涛. 基于ROS的阿克曼机器人室内导航实现[J]. 中国体视学与图像分析,2021,26(3):215-225.GAI Junxiong, LEI Xiaochun, JIANG Zetao. Realization of indoor navigation of Ackerman robot based on ROS[J]. Chinese Journal of Stereology and Image Analysis, 2021, 26(3): 215-225. (in Chinese with English abstract)
    [27] 陈永展,袁涛,曲建岭,等. 不同海况等级下传递对准杆臂效应的影响研究[J]. 计测技术,2022,42(1):63-71.CHEN Yongzhan, YUAN Tao, QU Jianling, et al. Study on the influence of transfer alignment lever arm effect under different sea conditions[J]. Metrology & Measurement Technology, 2022, 42(1): 63-71. (in Chinese with English abstract)
    [28] 陶冶,张东良,李建利. 基于杆臂补偿的多MIMU六方位倍速率标定方法[J]. 导航定位与授时,2021,8(1):168-175.TAO Ye, ZHANG Dongliang, LI Jianli. Multi-MIMU six-azimuth multiple rate calibration method based on lever-arm compensation[J]. Navigation Positioning and Timing, 2021, 8(1): 168-175. (in Chinese with English abstract)
    [29] LIU J, WANG L, LI K, et al. A compensation method of lever arm effect for tri-axis hybrid inertial navigation system based on fiber optic gyro[J]. Measurement Science and Technology, 2017, 28(5): 055103.
    [30] 谭强俊,程永生,唐彬,等. 航姿参考系统的改进杆臂效应补偿方法[J]. 哈尔滨工业大学学报,2020,52(5):129-136.TAN Qiangjun, CHENG Yongsheng, TANG Bin, et al. Improved lever arm effect compensation method for attitude reference system[J]. Journal of Harbin Institute of Technology, 2020, 52(5): 129-136. (in Chinese with English abstract)
    [31] 胡炼,关锦杰,何杰,等. 花生收获机自动驾驶作业系统设计与试验[J]. 农业机械学报,2022,53(9):21-27.HU Lian, GUAN Jinjie, HE Jie, et al. Design and test of automatic driving operation system for peanut harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022: 53(9): 21-27. (in Chinese with English abstract)
    [32] 王辉,王桂民,罗锡文,等. 基于预瞄追踪模型的农机导航路径跟踪控制方法[J]. 农业工程学报,2019,35(4):11-19.WANG Hui, WANG Guimin, LUO Xiwen, et al. Tracking control method of agricultural machinery navigation path based on preview tracking model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 11-19. (in Chinese with English abstract)
  • 期刊类型引用(6)

    1. 高婧,李茂春,毛荣,张青,井立军. 1991―2022年新疆塔城地区植棉区气候变化对棉花生育期的影响. 中国棉花. 2024(02): 16-23 . 百度学术
    2. 李云霞,王国栋,刘瑜,吕宁,梁飞,范军亮,尹飞虎. 新疆典型绿洲灌区土壤理化性状与盐分离子分布特征. 农业机械学报. 2024(07): 357-364+414 . 百度学术
    3. 刘雲祥,张礼,咸文荣. 青海地区花生适宜播期研究. 青海农林科技. 2024(03): 39-43 . 百度学术
    4. 熊坤,马美娟,金趁意,余卫东. 播期对花生‘豫花65’生长及产量影响. 中国农学通报. 2024(32): 16-22 . 百度学术
    5. 陈春波,李均力,赵炎,夏江,田伟涛,李超锋. 新疆草地时空动态及其对气候变化的响应——以昌吉回族自治州为例. 干旱区研究. 2023(09): 1484-1497 . 百度学术
    6. 李欢,翟孟如,江伟,韦钢,刘苏,吕晓霞,钟昀平. 新疆冷凉区域花生高产栽培技术. 新疆农业科技. 2023(06): 24-27 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  516
  • HTML全文浏览量:  26
  • PDF下载量:  320
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-08-07
  • 修回日期:  2022-12-24
  • 发布日期:  2023-01-14

目录

    /

    返回文章
    返回