郑铁刚, 孙双科, 柳海涛, 李广宁, 涂承义, 柳松涛, 石凯. 过鱼设施进口区域水温对集诱鱼效果的影响[J]. 农业工程学报, 2023, 39(1): 195-202. DOI: 10.11975/j.issn.1002-6819.202210076
    引用本文: 郑铁刚, 孙双科, 柳海涛, 李广宁, 涂承义, 柳松涛, 石凯. 过鱼设施进口区域水温对集诱鱼效果的影响[J]. 农业工程学报, 2023, 39(1): 195-202. DOI: 10.11975/j.issn.1002-6819.202210076
    ZHENG Tiegang, SUN Shuangke, LIU Haitao, LI Guangning, TU Chengyi, LIU Songtao, SHI Kai. Effects of water temperature on luring fish in the inlet zone of fish passage facilities[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(1): 195-202. DOI: 10.11975/j.issn.1002-6819.202210076
    Citation: ZHENG Tiegang, SUN Shuangke, LIU Haitao, LI Guangning, TU Chengyi, LIU Songtao, SHI Kai. Effects of water temperature on luring fish in the inlet zone of fish passage facilities[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(1): 195-202. DOI: 10.11975/j.issn.1002-6819.202210076

    过鱼设施进口区域水温对集诱鱼效果的影响

    Effects of water temperature on luring fish in the inlet zone of fish passage facilities

    • 摘要: 库区水温分层与过鱼通道隔断是水利水电工程建设随之产生的生态环境影响之一。过鱼效果是评估过鱼设施建设成功与否的关键指标。对于存在水温分层的高坝工程而言,过鱼设施进口附近存在的温差效应是否会对进口区域的集诱鱼效果产生影响是当前应该解决的首要问题之一。该研究通过建立三维水温水动力数学模型与包含过鱼设施进口段和明渠河流段的物理模型,分别开展了水温水动力预测及实鱼过鱼试验研究工作,研究结果表明:温差效应对进口附近水动力条件影响甚微,影响区域主要取决于鱼道流量,而岸边水温量值则取决于温差的大小;增大明渠流量将增加上溯鱼类发现鱼道进口的难度;沿冷水区域上溯样本量占总样本的39%,沿温水区域上溯样本量占总样本的61%,由此可知,温水区域对洄游鱼类更具有吸引力;温差效应在一定程度上有利于洄游鱼类发现鱼道进口并在进口区域聚集,与冷水区域相比,温水有效区域鱼进入鱼道进口的尝试率提高了17个百分点。研究成果可为相关人员尝试采用改变水温调整洄游鱼类上溯路线,改善鱼道进口集诱鱼,进而提升鱼道过鱼效果提供思路。

       

      Abstract: The stratification of water temperature in the reservoir and the separation of fish passage is one of the ecological environmental effects resulting from the construction of water conservancy and hydropower projects. Fish passing is a key index to evaluate the success of fish passage facilities. One of the primary challenges can be determined whether the temperature difference near the inlet of the fish passage facility will affect the luring fish in the inlet zones in the high dam project with the stratified water temperature. Therefore, this study aims to establish a three-dimensional water temperature hydrodynamic mathematical model and a physical model, including the inlet section of the fish passage facility and river section. Some experiments were also carried out to predict the water temperature hydrodynamic and fish behavior. A series of biological experiments were conducted in November 2021, with a discharge of 0.007 5 m3/s and a water depth of 0.2 m for the fishway. Juvenile Schizothorax prenanti (length range: 9.0 cm± 1.5 cm) was used in this case, and the number of tested fish was 55. The tested fish were held in a rectangular tank (1 m×1 m×1 m) for at least 24 h between tests for recovery. Among them, the tested fish in the experiment was selected randomly. The results showed that there was little influence of temperature difference between the flow from the fishway inlet and that in the channel on the hydrodynamics in the inlet zone for the fishway in the high dam project. The area that affected by the temperature difference was depended mainly on the fishway discharge, while the water temperature near the shore depended on the temperature difference. Once the flow from the fishway inlet was constant, the increasement of discharge of the channel was reduced the influence area of the flow from the fishway inlet, and then increased the difficulty for the migratory fish to find the fishway inlet. The migrating rate along the cold-water area was 39%, and the attempt rate in the inlet zone was 31%, while the migrating rate along the warm-water area was 61% and the attempt rate in the inlet zone was 48%. In addition, five migrating fishes were observed from the cold- to the warm-water area, accounting for 12% of the total tested fish. The warm-water area was more attractive to the migratory fish. The temperature difference was conducive to the migratory fish to find the fishway inlet, and then gather in the inlet zone. The cluster effect posed a great influence on the attempt rate in the inlet zone. Once the samples with less than 3 tails were migrating, the attempt rate of samples in the cold and warm water areas reached 50% and 67%, respectively. Consequently, the migrating route of migratory fish can be expected to be adjusted by changing the water temperature, and then effectively attract the cluster fish, which can get the better effect of luring fish to fish-passing facilities. The finding can greatly contribute to the technological level of fish passage facilities.

       

    /

    返回文章
    返回