基于优化SIFT算法的农田航拍全景图像快速拼接

    Fast stitching for the farmland aerial panoramic images based on optimized SIFT algorithm

    • 摘要: 为了快速准确获取大面积农田图像信息,提高保护性耕作秸秆还田监测效率和准确性,该研究提出一种基于优化SIFT(scale-invariant feature transform)算法的农田航拍全景图像快速拼接方法。首先对高分辨率图像进行降采样处理,针对图像的重叠区域进行有效检测;然后采用基于梯度归一化的特征描述符对特征点进行匹配,同时通过渐进样本一致算法去除误匹配,精准计算拼接转换模型;最后采用基于最佳拼接线的多分辨率融合算法进行图像融合,得到全景拼接图像。试验结果表明:该文方法在图像配准阶段与传统SIFT算法和SURF(speeded up robust feature)算法相比,特征点数量分别减少了97%和90%,运行时间减少了94%和69%,平均匹配效率为65.17%,约为SIFT算法的4倍,SURF算法的9倍;与APAP(ss-projective-as-possible)、SPHP(shape-preserving half-projective)和AANAP(adaptive as-natural-as-possible)算法相比,该方法拼接图像的信息熵、平均梯度和图像对比度均有明显提高。与传统方法相比,该文分层拼接方法提高了全景拼接图像的清晰度和融合效果,解决了传统方法中出现的错位和重影问题,其中全景图像的信息熵、平均梯度小幅提高,对比度明显提高,拼接时间大约缩短了90%以上。研究结果可为保护性耕作秸秆还田监测提供科学参考。

       

      Abstract: Straw mulching has been a common measure for black land conservation in the northeastern plains of China. It is a great significance of an effective solution to reduce soil erosion for environmental protection and sustainable development in modern agriculture. However, it is difficult to calculate the coverage rate at one time, due to the wide area of crop cultivation. Therefore, it is a high demand for the rapid acquisition of image information on a large area of farmland, in order to improve the efficiency and accuracy of straw mulching. Fortunately, aerial drone images and videos can be widely used in various fields, such as agricultural monitoring, weather forecasting, and geographic mapping. Among them, the application of remote sensing technology focuses mainly on the crops and soil in agriculture. The spectral patterns of the ground can be utilized to monitor the crops and soil in the field. Specifically, the spectral characteristics of the ground are used to monitor the growth of crops, crop quality, crop pests, and diseases. The high-resolution images can be collected by unmanned aerial vehicle (UAV) aerial photography. The panoramic stitching can be selected for rapid and accurate access to the large-area farmland image information. Therefore, it is of great practical significance to agricultural intelligence, particularly for the high efficiency and accuracy of straw cover monitoring of conservation tillage. In this study, a fast-stitching method was proposed for the aerial panoramic images of the fields using the optimized scale-invariant feature transform (SIFT) algorithm. Firstly, the high-resolution image was down-sampled to effectively detect the overlapping regions of the image. The gradient normalization-based feature descriptors were then used to match the feature points. The false matches were removed by the progressive sample consistency algorithm, in order to accurately calculate the stitching conversion model. Finally, the multi-resolution fusion algorithm was used for the high-quality stitched image using the best stitching line. The experimental results show that the improved algorithm reduced the number of feature points by 97% and 90%, the running time by 94% and 69%, and the average matching efficiency by 65.17% in the image alignment stage, respectively, compared with the traditional SIFT and Speeded Up Robust Feature (SURF) algorithm, which was about 4 times that of SIFT algorithm, and 9 times that of SURF algorithm, respectively. Compared with the as-projective-as-possible (APAP), the shape-preserving half-projective (SPHP), and the adaptive as-natural-as-possible (AANAP) algorithms, the new algorithm significantly improved the information entropy, the average gradient, and image contrast of the stitched image. More importantly, the stitched image was of higher quality with more than a 90% reduction in the running time, particularly with better overall performance. The systematic evaluation demonstrated that the layered stitching method significantly improved the clarity and fusion effect of the panoramic stitched images, compared with the traditional. Moreover, there was no misalignment and ghosting that appeared in the traditional. Specifically, the information entropy and average gradient of the panoramic images were slightly improved to increase the contrast by about 20%, indicating a higher stitching efficiency than before. The overall stitching time was also shortened by about 90% or more. The research structure can also provide a scientific reference to monitor the conservation of tillage with straw returning.

       

    /

    返回文章
    返回