• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

玉米低损籽粒直收机自动控制系统设计与试验

栗晓宇, 杜岳峰, 刘磊, 毛恩荣

栗晓宇, 杜岳峰, 刘磊, 毛恩荣. 玉米低损籽粒直收机自动控制系统设计与试验[J]. 农业工程学报, 2023, 39(2): 34-42. DOI: 10.11975/j.issn.1002-6819.202210210
引用本文: 栗晓宇, 杜岳峰, 刘磊, 毛恩荣. 玉米低损籽粒直收机自动控制系统设计与试验[J]. 农业工程学报, 2023, 39(2): 34-42. DOI: 10.11975/j.issn.1002-6819.202210210
LI Xiaoyu, DU Yuefeng, LIU Lei, MAO Enrong. Design and experiment of the automatic control system for low damage corn grain direct harvesters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(2): 34-42. DOI: 10.11975/j.issn.1002-6819.202210210
Citation: LI Xiaoyu, DU Yuefeng, LIU Lei, MAO Enrong. Design and experiment of the automatic control system for low damage corn grain direct harvesters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(2): 34-42. DOI: 10.11975/j.issn.1002-6819.202210210

玉米低损籽粒直收机自动控制系统设计与试验

基金项目: 国家自然科学基金资助项目(52175258)

Design and experiment of the automatic control system for low damage corn grain direct harvesters

  • 摘要: 针对玉米籽粒直收机收获过程中无法自主调整工作参数,导致极端作业条件下收获后籽粒破碎率偏高的问题,该研究以降低籽粒破碎率为目标,设计了一种玉米籽粒直收低损收获自动控制系统。以4LZ-8型玉米籽粒直收机为研究对象,建立了脱粒滚筒转速、凹板间隙和行车速度控制模型,并基于收获参数对籽粒破碎率的回归模型,设计了低损收获自动控制策略。此外,针对传统PID控制系统存在的响应时滞、超调量大、精度差的问题,设计了基于改进粒子群算法的自动控制系统,利用非线性惯性权重递减算法融合布谷鸟算法的随机游走策略,不断更新粒子群的速度和位置,并对改进粒子群算法进行了性能测试,结果表明该算法有效改善了标准粒子群算法容易陷入局部最优值的问题。对低损收获自动控制系统进行的仿真对比试验和田间验证试验结果表明,改进粒子群算法对脱粒滚筒转速、凹板间隙和行车速度具有较好的控制精度、响应速度和稳定性,超调量和超调时间较小,当脱粒滚筒转速为380 r/min、凹板间隙为42 mm、行车速度为2.5 km/h时,自动控制系统在3 s以内调整籽粒直收机作业参数,将籽粒破碎率最终稳定在3.80%左右,满足标准要求。研究成果可为其他作物生产机械的自动化发展提供参考。
    Abstract: Abstract: A direct harvester is seriously limited for the high broken kernel rate with the high moisture during harvesting. The harvest quality can significantly dominate the yield and quality. Among them, corn threshing is one of the most essential links in the corn harvesting process. The corn ears can usually be harvested, when the moisture content of the kernel is in the range of 20%-40%. Then, the corn kernel is threshed after the moisture content reduced to about 15% after drying. However, the traditional treatment cannot meet the high requirements of modern corn production, due to the long working period, high labor intensity, and high operating costs. Furthermore, it is necessary to manually adjust the operating parameters of the harvesters when observing the harvest situation, particularly under the very complicated and harsh harvesting environment in the actual production. An automatic control system is still lacking on the harvesting operating parameters for the higher productivity of agricultural machinery and equipment. In addition, the blockage in the threshing device can result in the high broken kernel rate under the uneven growth density of corn plants and the different planting agronomy, as the feeding amount of corn ears increases sharply during harvesting. Therefore, it is a high demand to timely regulate the harvesting parameters for the better operational performance of agricultural machinery and equipment. The automatic control of corn grain harvester is of great significance for the smart agriculture and digital agriculture. Fortunately, the direct harvest mode of corn kernel can be used to improve the operation efficiency with the less harvest time. This study aims to design a set of automatic control solutions to the low damage corn kernel threshing. An automatic control system was proposed to reduce the high broken kernel rate and sluggish system response of corn kernel direct harvester for the high control precision using an improved particle swarm optimization-cuckoo algorithm. Firstly, the mathematical models were established for the threshing cylinder speed-regulating motor, concave clearance regulating electric push rod motor and driving speed regulating motor, as well as the harvesting model of corn ear. Then, the automatic control logic of low damage threshing was also established, according to the influence of corn kernel harvesting parameters on the broken kernel rate. The nonlinear decreasing algorithm was used to change the particle number and inertia weight. The random walk strategy of the Cuckoo algorithm was introduced into the particle swarm optimization. The speed and position of the particle swarm were constantly updated to effectively prevent the particle swarm optimization from falling into the optimal local solution. Simulink simulation was implemented to compare the control effects of Fuzzy PID, PSO-PID, and PSO-CS Fuzzy PID algorithms on the threshing cylinder rotational speed, concave clearance, car speed, and broken kernel rate. The results showed that the improved PSO algorithm performed the best in the control accuracy, response speed, and stability. The field test of the corn kernel direct harvester was carried out to verify the improved model. The broken kernel rate was counted with the automatic control system opening and closing. The automatic control system was effectively improved the operational performance of the harvester, while the kernel broken rate was stable at about 3.80%, indicating the higher stability and accuracy of automatic control system. The findings can also provide a strong reference for the automation development of crop production machinery.
  • [1] 中华人民共和国国民经济和社会发展第十四个五年规划和二零三五年远景目标纲要[EB/OL]. (2021-03-13) [2022-01-11]. http: //www. gov. cn/xinwen/2021-03/13/content_5592681. htm
    [2] XIE R Z, MING B, GAO S, et al. Current state and suggestions for mechanical harvesting of corn in China[J]. Journal of Integrative Agriculture, 2022, 21(3): 892-897.
    [3] CRAESSARETS G, BAREDEMAEKER J D, MISSOTTEN B, et al. Fuzzy control of the cleaning process on a combine harvester[J]. Biosystems Engineering, 2010, 106(2): 103-111.
    [4] OMID M, LASHGARI M, MOBLI H, et al. Design of fuzzy logic control system incorporating human expert knowledge for combine harvester[J]. Expert Systems with Applications. 2010, 37(10): 7080-7085.
    [5] 张认成,桑正中. 轴流脱粒滚筒模糊控制仿真[J]. 农业机械学报,2001,32(2):45-48.ZHANG Rencheng, SANG Zhengzhong. Simulation research on the fuzzy logic control of an axial threshing cylinder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2001, 32(2): 45-48. (in Chinese with English abstract)
    [6] 李国栋,李勇智,张际先,等. 联合收割机脱粒滚筒的PID恒速控制[J]. 农业机械学报,2000,31(1):48-50.LI Guodong, LI Zhiyong, ZHANG Jixian, et al. PID control of constant palstance of a combine cylinder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2000, 31(1): 48-50. (in Chinese with English abstract)
    [7] 宁小波. 基于关联规则联合收获机全论域作业速度自适应控制系统[D]. 镇江:江苏大学,2016.NING Xiaobo. Whole-range Self-adaptive Control System of Combine Harvester Operating Speed Based on Association Rules[D]. Zhenjiang: Jiangsu University, 2016.
    [8] 朱晓龙,迟瑞娟,杜岳峰,等. 高含水率玉米低损脱粒智能控制系统设计与试验[J]. 农业机械学报,2021,52(S1):9-18.ZHU Xiaolong, CHI Ruijuan, DU Yuefeng, et al. Design and experiment of intelligent control system for low loss threshing of high moisture content corn[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(S1): 9-18. (in Chinese with English abstract)
    [9] 张亚伟. 联合收割机脱粒分离质量影响机理及控制策略研究[D]. 北京:中国农业大学,2019.ZHANG Yawei. Mechanisms and Control Strategies Research on Threshing and Separating Quality of Combine Harvester[D]. Beijing: China Agricultural University, 2019. (in Chinese with English abstract)
    [10] 刘林鹤. 单纵轴流玉米脱粒试验台及其控制系统设计与研究[D]. 长春:吉林大学,2018.LIU Linhe. Maize Test Bench and Its Control System for Single Longitudinal Axial Flow Threshing Cylinder[D]. Changchun: Jilin University, 2018. (in Chinese with English abstract)
    [11] 杨智,陈志堂,范正平,等. 基于改进粒子群优化算法的PID控制器整定[J]. 控制理论与应用,2010,27(10):1345-1352.YANG Zhi, CHEN Zhitang, FAN Zhengping, et al. Tuning of PID controller based on improved particle-swarm- optimization[J], 2010, 27(10): 1345-1352. (in Chinese with English abstract)
    [12] CHIOU J S, TSAI S H, LIU M T. A PSO-based adaptive fuzzy PID-controllers[J]. Simulation Modelling Practice and Theory, 2012, 26: 49-59.
    [13] TAIEB A, SALHI H, CHAARI A. Adaptive TS fuzzy MPC based on Particle Swarm Optimization-Cuckoo Search algorithm[J]. ISA Transactions, 2022, 131: 598-609.
    [14] KUMAR N, SHAIKH A A, MAHATO S K, et al. Applications of new hybrid algorithm based on advanced cuckoo search and adaptive Gaussian quantum behaved particle swarm optimization in solving ordinary differential equations[J]. Expert System with Applications, 2021, 172, 114646.
    [15] LI X Y, DU Y F, et al. Design, simulation, and test of a new threshing cylinder for high moisture content corn[J]. Applied Science-BASEL, 2020, 10(14), 4925.
    [16] 杜岳峰,栗晓宇,胡亮,等. 一种具备智能控制系统的玉米脱粒清选试验台:中国专利,112825681A[P]. 2021-05-25.
    [17] LI X Y, DU Y F, WU J, et al Design and experiment of a broken corn kernel detection device based on the Yolov4-tiny algorithm[J]. Agriculture, 2021, 11(12), 1238.
    [18] 姚会敏. 一种联合收割机的无级调速系统改进[J]. 农机化研究,2021,43(7):47-50,57. YAO Huimin. Improvement of stepless speed control system to a combine harvester[J]. Journal of Agricultural Mechanization Research, 2021, 43(7), 47-50, 57. (in Chinese with English abstract)
    [19] 卢文涛,张东兴,邓志刚. 联合收获机脱粒滚筒的PID恒负荷控制[J]. 农业机械学报,2008,39(5):49-51,55. LU Wentao, ZHANG Dongxing, DENG Zhigang. Constant load PID-control of threshing cylinder in combine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(5): 49-51, 55. (in Chinese with English abstract)
    [20] FAN C L, ZHANG D X, YANG L, et al. Power consumption and performance of a maize thresher with automatic gap control based on feed rate monitoring[J]. Biosystems Engineering, 2022, 216, 147-164.
    [21] 张江伟. 直流电动推杆同步控制系统研究[D]. 北京:中国矿业大学,2021. ZHANG Jiangwei. Study on the Synchronous Control System of DC Electric Actuator[D]. Beijing: China University of Mining & Technology, 2021. (in Chinese with English abstract)
    [22] 邱铭军,郭星良,宁博,等. 基于MATLAB的液压马达行走驱动控制原理仿真与应用[J]. 液压气动与密封,2017,37(2):12-15. QIU Mingjun, GUO Xingliang, NING Bo, et al. Simulation and application of hydraulic motor travelling control system based on MATLAB[J]. Hydraulics Pneumatics & Seals, 2017, 37(2): 12-15. (in Chinese with English abstract)
    [23] 王雪芝,贺尚红. 泵控马达调速液压系统的建模与仿真[J]. 长沙理工大学学报(自然科学版),2012,9(1):73-77. WANG Xuezhi, HE Shanghong. Modeling and simulation of pump control motor speed control system[J]. Journal of Changsha University of Science and Technology (Natural Science), 2012, 9(1): 73-77. (in Chinese with English abstract)
    [24] 邓晓杰. 高含水率玉米低损脱粒智能控制系统的研究[D]. 北京:中国农业大学,2019. DENG Xiaojie. Research on Intelligent Control System for Low Loss and Threshing of High Moisture Content Corn[D]. Beijing: China Agricultural University, 2019. (in Chinese with English abstract)
    [25] LIANG H T, KANG F H. Adaptive mutation particle swarm algorithm with dynamic nonlinear changed inertia weight[J]. Optik, 2016, 127(19): 8036-8042. https: //doi. org/10. 1016/j. ijleo. 2016. 06. 002
    [26] 谭顿,陶建峰,王旭永. 基于改进粒子群算法的双液压马达同步控制策略[J]. 机械工程学报,2020,56(16):254-261. TAN Dun, TAO Jianfeng, WANG Xuyong. Synchronous control strategy of dual hydraulic motors based on improved particle swarm optimization algorithm[J]. Journal of Mechanical Engineering, 2020, 56(16): 254-261. (in Chinese with English abstract)
    [27] HAKLI H, UGUZ H. A novel particle swarm optimization algorithm with Levy flight[J]. Applied Soft Computing, 2014, 23: 333-345. https: //doi. org/10. 1016/j. asoc. 2014. 06. 034
    [28] MAO X J, SONG S J, DING F. Optimal BP neural network algorithm for state of charge estimation of lithium-ion battery using PSO with Levy flight[J]. Journal of Energy Storage, 2022, 49: 104139. https: //doi. org/10. 1016/j. est. 2022. 104139
    [29] YANG R, LIU Y B, YU Y, et al. Hybrid improved particle swarm optimization-cuckoo search optimized fuzzy PID controller for micro gas turbine[J]. Energy Reports, 2021, 7: 5446-5454. https: //doi. org/10. 1016/j. egyr. 2021. 08. 120
    [30] FENG H, MA W, YIN C B, et al. Trajectory control of electro-hydraulic position servo system using improved PSO-PID controller[J]. Automation in Construction, 2021, 127: 103722.
    [31] JIN X, CHEN K K, ZHAO Y, et al. Simulation of hydraulic transplanting robot control system based on fuzzy PID controller[J]. Measurement, 2020, 164: 108023.
    [32] SOMWANSHI D, BUNDELE M, KUMAR G, et al. Comparison of Fuzzy-PID and PID controller for speed control of DC motor using LabVIEW[J]. Procedia Computer Science, 2019, 152: 252-260.
    [33] SU Z, DING Z, TIAN L Q, et al. Design and performance test of variable diameter threshing drum of combine harvester[J]. Food Science & Nutrition, 2021, 9(8): 4322-4334.
  • 期刊类型引用(4)

    1. 付梦,王勇,张慧明,张斌,宋坚利,付威. 履带式风送喷粉机关键部件设计与试验. 石河子大学学报(自然科学版). 2024(04): 414-421 . 百度学术
    2. 张峰硕,苑严伟,刘阳春,王洋,杨悦. 基于IDBO-PID的联合收获机割台控制系统. 农业工程. 2024(10): 21-28 . 百度学术
    3. 冯向梁,王希东,董云蓬,王伟,张万庆,贾强. 玉米收割机减速器传动效率分析与参数优选. 农业装备与车辆工程. 2024(11): 14-18 . 百度学术
    4. 尤泳,李芳旭,纪中良,孙玉玲,马朋勃,卢琦琦,王海翼,王德成. 基于旋转目标检测的青贮机精准抛送系统设计与试验. 农业工程学报. 2024(21): 36-45 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  258
  • HTML全文浏览量:  2
  • PDF下载量:  232
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2023-01-06
  • 发布日期:  2023-01-30

目录

    /

    返回文章
    返回