• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

抽水蓄能机组低水头起动过渡过程压力脉动分析

陈会向, 刘汉中, 王胤淞, 周大庆, 徐辉, 阚阚

陈会向, 刘汉中, 王胤淞, 周大庆, 徐辉, 阚阚. 抽水蓄能机组低水头起动过渡过程压力脉动分析[J]. 农业工程学报, 2023, 39(6): 63-72. DOI: 10.11975/j.issn.1002-6819.202210228
引用本文: 陈会向, 刘汉中, 王胤淞, 周大庆, 徐辉, 阚阚. 抽水蓄能机组低水头起动过渡过程压力脉动分析[J]. 农业工程学报, 2023, 39(6): 63-72. DOI: 10.11975/j.issn.1002-6819.202210228
CHEN Huixiang, LIU Hanzhong, WANG Yinsong, ZHOU Daqing, XU Hui, KAN Kan. Pressure pulsation during low head start-up transient in a pumped-storage hydropower unit[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(6): 63-72. DOI: 10.11975/j.issn.1002-6819.202210228
Citation: CHEN Huixiang, LIU Hanzhong, WANG Yinsong, ZHOU Daqing, XU Hui, KAN Kan. Pressure pulsation during low head start-up transient in a pumped-storage hydropower unit[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(6): 63-72. DOI: 10.11975/j.issn.1002-6819.202210228

抽水蓄能机组低水头起动过渡过程压力脉动分析

基金项目: 国家自然科学基金资助项目(52006053);江苏省自然科学基金资助项目(BK20200508);中央高校基本科研业务费资助项目(B220202069);中国博士后科学基金(2021M690876);江苏省博士后科研资助计划(2021K498C)。

Pressure pulsation during low head start-up transient in a pumped-storage hydropower unit

  • 摘要: 抽蓄机组在低水头起动时易进入其全特性曲线的反S不稳定区,从而导致机组并网失败,严重影响机组的安全稳定运行。其中机组内部复杂流动演变导致的剧烈压力脉动是影响机组动态特性的关键。该研究基于计算流体动力学(computational fluid dynamics,CFD)数值模拟方法对水泵水轮机低水头起动过程进行研究,重点分析了导叶与尾水管区域的压力脉动特性及产生原因。研究结果表明:机组起动过程中,无叶区时均压力幅值是固定导叶与活动导叶间的6倍,且时均压力幅值在无叶区沿周向分布不均。动静干涉主导了无叶区时均压力和脉动压力的变化,而在上游固定导叶与活动导叶间的动静干涉作用主要影响的是压力脉动幅值。尾水管直锥段压力脉动在机组起动过程不同阶段表现出不同的波动特征,PID(proportion integration differentiation)调节阶段压力波动较为明显。通过内部流动对比发现,活动导叶开启会引起无叶区水流速度的分布变化和波动,活动导叶小开度下转轮进口和无叶区存在明显的大尺度旋涡,这些和动静干涉联合作用是导致无叶区时均压力和脉动压力波动幅值高的原因。尾水管涡带在起动过程经历了从边条状涡带转为螺旋状涡带,之后又转变为幕布状涡带的过程。涡带的持续存在和动态变化不仅诱导了压力径向分布不均,也是导致压力波动剧烈的主要原因。研究成果可为提高抽蓄电站机组低水头起动并网成功率提供参考。
    Abstract: Abstract: Pumped storage hydropower (PSH) can be focused on the transient stability in the field of energy sources in the world. A great challenge can be the hydraulic instability characteristics of PSH units in the anti-S instability zone. The PSH units are prone to enter the anti-S instability zone during low head start, leading to the failure of the grid connection. There was a serious threat to the safe and stable operation of the units. The severe pressure pulsations can be caused by the complex flow evolution in the dynamic characteristics of the unit. In this study, a computational fluid dynamics (CFD) numerical simulation was introduced to explore the start-up process of a pump turbine at low-head in PSH. Experimental verification was also made on the accuracy of the numerical simulation. A dynamic mesh was used to realize the dynamic opening of the guide vanes. A proportional-integral-differentiation (PID) regulation was also introduced. A closed-loop feedback model was established to regulate the opening of the guide vane using rotational speed fluctuations, in order to realize the simulation of the low-head star-up process of a PSH whole flow system. The numerical simulation was focused on the pressure pulsation characteristics in the area of the guide vane and draft tube. The results show that the numerical simulation was in an excellent agreement with the experimental, and the maximum error does not exceed 10%. The PID regulation model was added to simulate the variation pattern of the active guide vane opening. The strong dynamic and static interaction was caused by the speed of the unit. There were the significant mean pressure changes in the vaneless zone, followed by the speed of the unit. The stator-rotor interaction was dominated the variation of the time-averaged pressure dimensionless amplitude and pulsating pressure dimensionless amplitude in the vaneless zone. By contrast, there were the effects of dynamic and static interference on the pulsation amplitude of the pressure in the upstream. The pressure pulsation signal was evenly distributed over the circumference in the area between the stay vane and the guide vane, whereas, there was the uneven distribution along the circumference in the vaneless area. The vortex near the rotor area first appeared in the center of the blade, and then progressed upstream, eventually forming a stable vortex ring structure at the mid-plane position in the vaneless zone. There were the different fluctuation characteristics in the pressure pulsation in the straight cone section of the draft tube in different stages of the start-up process. The pressure fluctuation was more significant in the PID regulation. The comparison of internal flow revealed that the guide vane opening was caused some changes in the distribution and fluctuations of the velocity in the vaneless zone. Significant large-scale vortices were found in the runner inlet and the vaneless zone at the small guide vane opening. The stator-rotor interaction was combined to be responsible for the high amplitude of the time-averaged pressure and pulsation pressure fluctuations in the vaneless zone. The draft tube vortex rope was ever changing from a side strip vortex rope to a spiral vortex rope, and then to a curtain vortex rope during the start-up process. The persistence and dynamics of the vortex rope were induced the uneven pressure radial distribution. The main reasons were attributed to the drastic pressure fluctuations. The findings can provide a strong reference to improve the success rate of the starting pump-turbine at the low head and connecting to the grid.
  • [1] HOFFSTAEDT J P, TRUIJEN D P K, FAHLBECK J, et al. Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling[J]. Renewable & Sustainable Energy Reviews, 2022, 158:112119.
    [2] GUO W C, WU F L. Hydraulic-mechanical coupling vibration performance of pumped storage power station with two turbine units sharing one tunnel[J]. Journal of Energy Storage, 2022, 53: 105082.
    [3] 毛秀丽,孙奥冉,Giorgio Pavesi,等. 水泵水轮机甩负荷过程流动诱导噪声数值模拟[J]. 农业工程学报,2018,34(20):52-58.MAO Xiuli, SUN Aoran, GIORGIO Pavesi, et al. Simulation of flow induced noise in process of pump-turbine load rejection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 52-58. (in Chinese with English abstract)
    [4] LI D Y, FU X L, ZUO Z G, et al. Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems-A review[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 26-46.
    [5] 唐拥军,樊玉林. 张河湾抽蓄电站运行时过大厂房振动分析与处理[J]. 水电能源科学,2019,37(5):149-151, 158.TANG Yongjun, FAN Yulin. Analysis and treatment of violent vibration of powerhouse for Zhanghewan pumped storage power station[J]. Water Resources and Power, 2019, 37(5): 149-151, 158. (in Chinese with English abstract)
    [6] 毕智伟,赵补石,魏加富,等. 某水电站机组及厂房振动问题成因与处理[J]. 水电能源科学,2021,39(9):188-191.BI Zhiwei, ZHAO Bushi, WEI Jiafu, et al. Causes and treatment of vibration problems of unit and powerhouse of a hydropower station[J]. Water Resources and Power, 2021, 39(9): 188-191. (in Chinese with English abstract)
    [7] 孙龙刚,郭鹏程,郑小波等. 混流式水轮机叶道空化涡诱发高振幅压力脉动特性[J]. 农业工程学报,2021,37(21): 62-70.SUN Longgang, GUO Pengcheng, ZHENG Xiaobo, et al. Characteristics of high-amplitude pressure fluctuation induced by inter-blade cavitation vortex in Francis turbine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 62-70. (in Chinese with English abstract)
    [8] 朱国俊,李康,冯建军等. 空化对轴流式水轮机尾水管压力脉动和转轮振动的影响[J]. 农业工程学报,2021,37(11):40-49.ZHU Guojun, LI Kang, FENG Jianjun, et al. Effects of cavitation on pressure fluctuation of draft tube and runner vibration in a Kaplan turbine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(11): 40-49. (in Chinese with English abstract)
    [9] 张飞,樊玉林,祝宝山,等. 模型可逆式水泵水轮机S区压力脉动测试[J]. 流体机械,2019,47(6):6-11, 28.ZHANG Fei, FAN Yulin, ZHU Baoshan, et al. S-shape region pressure pulsation measurement of model reversible pump-turbine[J]. Fluid Machinery, 2019, 47(6): 6-11, 28. (in Chinese with English abstract)
    [10] 张自超,李延频,陈德新. 水泵水轮机压力脉动传播特性试验研究[J]. 农业机械学报,2022,53(7):171-178.ZHANG Zichao, LI Yanpin, CHEN Dexin. Experimental investigation on transmission characteristics of pressure fluctuation in pump-turbine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 171-178. (in Chinese with English abstract)
    [11] 张飞,王宪平. 抽水蓄能机组甩负荷试验时尾水锥管压力[J]. 农业工程学报,2020,36(20):93-101.ZHANG Fei, WANG Xianping. Draft cone tube pressure of pumped-storage power unit in load rejection test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 93-101. (in Chinese with English abstract)
    [12] 孙跃昆,刘树红,刘锦涛,等. 水泵水轮机开机过程压力脉动的试验研究[J]. 工程热物理学报,2012,33(8):1330-1333.SUN Yuekun, LIU Shuhong, LIU Jintao, et al. Experiment study of pressure fluctuation of a pump-turbine in starting[J]. Journal of Engineering Thermophysics, 2012, 33(8): 1330-1333. (in Chinese with English abstract)
    [13] 吴亚军,杨振彪,田迪阳. 导叶开度对水泵水轮机泵工况零流量外特性和稳定性的影响[J]. 水电能源科学,2021,39(6):158-160, 157.WU Yajun, YANG Zhenbiao, TIAN Diyang. Study on pressure fluctuation in vaneless space of pump-turbine[J]. Water Resources and Power, 2021, 39(6): 158-160, 157. (in Chinese with English abstract)
    [14] 李剑华,张文武,祝宝山,等. 水泵水轮机无叶区压力脉动研究[J]. 工程热物理学报,2021,42(5):1213-1223.LI Jianhua, ZHANG Wenwu, ZHU Baoshan, et al. Causes and treatment of vibration problems of unit and powerhouse of a hydropower station[J]. Journal of Engineering Thermophysics, 2021, 42(5): 1213-1223. (in Chinese with English abstract)
    [15] 王小龙,刘德民,刘小兵,等. 水泵水轮机无叶区内部流场及压力脉动分析[J]. 水力发电学报,2021,40(4):59-72.WANG Xiaolong, LIU Demin, LIU Xiaobing, et al. Analysis on flow structures and pressure pulsation in vaneless space of reversible pump turbine[J]. Journal of Hydroelectric Engineering, 2021, 40(4): 59-72. (in Chinese with English abstract)
    [16] 李琪飞,谭海燕,李仁年,等. 异常低水头对水泵水轮机压力脉动的影响[J]. 排灌机械工程学报,2016,34(2):99-104.LI Qifei, TAN Haiyan, LI Rennian, et al. Influence of abnormally low head on pressure fluctuation of pump turbine[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(2): 99-104. (in Chinese with English abstract)
    [17] ZHANG W W, CHEN Z M, ZHU B S, et al. Pressure fluctuation and flow instability in S-shaped region of a reversible pump-turbine[J]. Renewable Energy, 2020, 154: 826-840.
    [18] XIA L S, CHENG Y G, YANG J D, et al. Evolution of flow structures and pressure fluctuations in the S-shaped region of a pump turbine[J]. Journal of Hydraulic Research, 2019, 57: 107-121.
    [19] 杨建东,胡金弘,曾威,等. 原型混流式水泵水轮机过渡过程中的压力脉动[J]. 水利学报,2016,47(7):858-864.YANG Jiandong, HU Jinhong, ZENG Wei, et al. Transient pressure pulsations of prototype Francis pump-turbines[J]. Journal of Hydraulic Engineering, 2016, 47(7): 858-864. (in Chinese with English abstract)
    [20] 张蓝国,周大庆,陈会向. 抽蓄电站全过流系统水泵工况停机过渡过程CFD模拟[J]. 排灌机械工程学报,2015,33(8):674-680.ZHANG Languo, ZHOU Daqing, CHEN Huixiang, et al. CFD simulation of shutdown transient process of pumped storage power station under pump conditions[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(8): 674-680. (in Chinese with English abstract)
    [21] 周勤,夏林生,张春泽,等. 水泵水轮机甩负荷过渡过程中的压力脉动和转轮受力[J]. 水利学报,2018,49(11):1429-1438.ZHOU Qin, XIA Linsheng, ZHANG Chunze, et al. Transient pressure fluctuations and runner loadings of a model pump-turbine during a load rejection process[J]. Journal of Hydraulic Engineering, 2018, 49(11): 1429-1438. (in Chinese with English abstract)
    [22] 张成华,尤建锋,泰荣,等. 水泵水轮机水泵断电飞逸过程压力脉动CFD模拟[J]. 水力发电学报,2020,39(4):62-72.ZHANG Chenghua, YOU Jianfeng, TAI Rong, et al. CFD simulations of pump-trip runaway process pressure pulsation of a model pump-turbine[J]. Journal of Hydroelectric Engineering, 2020, 39(4): 62-72. (in Chinese with English abstract)
    [23] 陈秋华,张晓曦,何思源. 初始运行工况对水泵水轮机飞逸过渡过程水力特性的影响[J]. 水利学报,2020,51(7):858-868.CHEN Qiuhua, ZHANG Xiaoxi, HE Siyuan, et al. Influence of the initial working condition on the hydraulic performance of the pump-turbine during runaway transient scenario[J]. Journal of Hydraulic Engineering, 2020, 51(7): 858-868. (in Chinese with English abstract)
    [24] 许哲,郑源,阚阚,等. 基于熵产理论的超低扬程双向卧式轴流泵装置飞逸特性[J]. 农业工程学报,2021,37(17):49-57.XU Zhe, ZHENG Yuan, KAN Kan, et al. Runaway characteristics of bidirectional horizontal axial flow pump with super low head based on entropy production theory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(17): 49-57. (in Chinese with English abstract)
    [25] 郭俊勋,周大庆,陈会向,等. 导叶波动对抽蓄机组低水头空载稳定影响分析[J]. 中国电机工程学报:42(15):5587-5595.GUO Junxun, ZHOU Daqing, CHEN Huixiang, et al. Influence analysis of guide vane fluctuation rate on pump storage units under no-load condition of low head[J]. Proceedings of the CSEE: 42(15): 5587-5595. (in Chinese with English abstract)
    [26] 康顺,石磊,戴丽萍,等. CFD模拟的误差分析及网格收敛性研究[J]. 工程热物理学报,2010,31(12):2009-2013.KANG Shun, SHI Lei, DAI Liping, et al. Analyse of CFD simulation error and study of grid convergence[J]. Journal of Engineering Thermophysics, 2010, 31(12): 2009-2013. (in Chinese with English abstract)
    [27] 王胤淞,周大庆,陈会向,等. 水泵水轮机低水头起动过程水力特性分析[J/OL]. 中国电机工程报:1-10[2022-07-24]. DOI: 10. 13334/j. 0258-8013. pcsee. 220511.WANG Yinsong, ZHOU Daqing, CHEN Huixiang, et al. Study on hydraulic characteristics during low head startup process of pump-turbine[J/OL]. Proceedings of the CSEE, 1-10[2022-07-24]. DOI: 10. 13334/j. 0258-8013. pcsee. 220511. (in Chinese with English abstract)
    [28] 李琪飞,赵超本,权辉,等. 水泵水轮机飞逸工况下无叶区高速水环研究[J]. 农业机械学报,2019,50(5):159-166.LI Qifei, ZHAO Chaoben, QUAN Hui, et al. Research on high-speed water ring in bladeless zone under runaway condition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(5): 159-166. (in Chinese with English abstract)
    [29] 张飞,陈振木,祝宝山. 水泵水轮机水环特性及其控制[J]. 中国电机工程学报,2022,42(22):8232-8243.ZHANG Fei, CHEN Zhenmu, ZHU Baoshan, et al. Water-ring characteristics and control of pump-turbine[J]. Proceedings of the CSEE, 2022, 42(22): 8232-8243. (in Chinese with English abstract)
    [30] 李琪飞,张正杰,权辉,等. 水泵水轮机空化流及转轮轴向受力分析[J]. 太阳能学报,2020,41(3):192-198.LI Qifei, ZHANG Zhengjie, QUAN Hui, et al. Analysis on cavitating flow and axial force in pump-turbine[J]. Acta Energiae Solaris Sinica, 2020, 41(3): 192-198. (in Chinese with English abstract)
  • 期刊类型引用(6)

    1. 叶长红,袁玲丽,谭军,龚莉,刘芮麟,邓祥平. 中低水头混流式水轮机涡带区压力脉动研究. 人民长江. 2025(02): 158-166+182 . 百度学术
    2. 熊必文,王渊博,许海洋,宫傲,闫文峰,刘成杰. 沙沱水电站机组振动特性研究. 水电与新能源. 2024(06): 8-11+43 . 百度学术
    3. 汤国和,闫晓彤,何腾,张志兵,郑源,阚阚. 抽蓄系统抽水快转发电过渡过程的水力不稳定性. 南水北调与水利科技(中英文). 2024(04): 821-832 . 百度学术
    4. 郑文超,杨建刚,周浩,沈德明. 水力脉动下水泵水轮机轴系扭振及疲劳寿命分析. 水电能源科学. 2024(07): 174-178 . 百度学术
    5. 赵亚萍,郑小波,张欢,郭鹏程. 多能互补条件下转轮优化对水轮机低负荷区稳定性能的影响. 农业工程学报. 2023(07): 67-76 . 本站查看
    6. 周玉国,王浩博,董钟明,李秘,王彦龙,邹双喜,邹顺,周大庆,于安,郭俊勋. 巨型混流式水轮机尾水管涡带CFD研究. 水力发电学报. 2023(12): 87-95 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  107
  • HTML全文浏览量:  0
  • PDF下载量:  74
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-10-26
  • 修回日期:  2023-02-23
  • 发布日期:  2023-03-30

目录

    /

    返回文章
    返回