乌兰, 苏力德, 贾立国, 秦永林, 樊明寿. 基于改进DeepLabv3+网络的马铃薯根系图像分割方法[J]. 农业工程学报, 2023, 39(3): 134-144. DOI: 10.11975/j.issn.1002-6819.202211127
    引用本文: 乌兰, 苏力德, 贾立国, 秦永林, 樊明寿. 基于改进DeepLabv3+网络的马铃薯根系图像分割方法[J]. 农业工程学报, 2023, 39(3): 134-144. DOI: 10.11975/j.issn.1002-6819.202211127
    WU Lan, SU Lide, JIA Liguo, QIN Yonglin, FAN Mingshou. Image segmentation of potato roots using an improved DeepLabv3+ network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(3): 134-144. DOI: 10.11975/j.issn.1002-6819.202211127
    Citation: WU Lan, SU Lide, JIA Liguo, QIN Yonglin, FAN Mingshou. Image segmentation of potato roots using an improved DeepLabv3+ network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(3): 134-144. DOI: 10.11975/j.issn.1002-6819.202211127

    基于改进DeepLabv3+网络的马铃薯根系图像分割方法

    Image segmentation of potato roots using an improved DeepLabv3+ network

    • 摘要: 为实现无接触、低成本的马铃薯根系图像快速准确分割,以阐明内蒙古阴山北麓地区马铃薯的根系时空动态分布特征为目的,该研究提出一种基于改进DeepLabv3+语义分割网络的马铃薯根系图像分割方法,并对其输出的图像进行根系长度计算,获得了马铃薯不同生育时期内不同土层下的根系长度。试验结果表明,改进的DeepLabv3+模型的均交并比(mean intersection over union,MIoU)和平均像素精度(mean pixel accuracy, MPA)分别为94.05%和95.72%,MIoU相较SegNet、PSPNet、U-Net和标准DeepLabv3+分别提高了6.67、4.92、8.80和4.21个百分点;MPA相较SegNet、PSPNet、U-Net和标准DeepLabv3+分别提高了6.7、4.86、8.25、4.53个百分点;训练时间为9.52 h,相较SegNet、PSPNet、U-Net和标准DeepLabv3+分别缩短了6.8、3.99、4.56和3.94 h;浮点运算次数(floating point operations,FLOPs)较SegNet、PSPNet、U-Net和标准DeepLabv3+分别减小了45×109、34×109、29×109、18×109;图像检测帧率较SegNet、PSPNet、U-Net和标准DeepLabv3+分别提高了15.3、11.7、11.4和9帧/s。与手动测量根系长度的回归分析的决定系数达到0.981。在苗期、块茎形成期、块茎膨大期和淀粉积累期,马铃薯80%的根系分别分布在0~20、0~30、0~40及0~30 cm土层内。该研究结果可为内蒙古阴山北麓地区马铃薯高产高效栽培技术提供理论基础。

       

      Abstract: Potato is one of the most typical shallow root crops. The root distribution characteristics can then dominate the effective water and nutrient management. The accurate segmentation of root system can be the essential prerequisite for the key parameters of root system structure. Taking the potato root images as the research object, this study aims to achieve the non-contact, low-cost, fast, and accurate segmentation of potato root images. A potato root image segmentation was also proposed to monitor the growth state of potato using the improved DeepLabv3+ semantic segmentation network. The root length of the output image was then calculated. The spatial and temporal dynamic distribution characteristics of potato roots were calculated in the northern foothills of Yinshan Mountain in Inner Mongolia, China. The test results show that the training time of the improved MobileNetv2 was only 10.05 h, which was 2.27 and 4.1 h less than ResNet50, and Xception, respectively. In terms of the image segmentation performance, the MIoU of MobileNetv2 reached 92.26%, which was 1.84 and 2.68 percentage points higher than that of ResNet50 and Xception, respectively. The MPA reached 94.15%, which was 1.78 and 2.69 percentage points higher than that of the ResNet50 and Xception, respectively. The MIoU and MPA of DeepLabv3+ increased by 1.43 and 1.62 percentage points after the introduction of the improved MobileNetv2 backbone network, according to the standard DeepLabv3+. The MIoU and MPA increased by 1.61 and 1.80 percentage points after the introduction of CARAFE upsampling, respectively. The MIoU and MPA were improved by 2.92 and 2.68 percentage points, respectively, after the introduction of the CBAM attention mechanism. Furthermore, the CARAFE upsampling and CBAM attention mechanisms were introduced to improve the MobileNetv2 backbone network for the combination of different modules. After that, the MIoU and MPA increased by 2.30 and 2.61 percentage points, and 3.02 and 2.82 percentage points, respectively. The MIoU and MPA of the CARAFE upsampling increased by 2.98 and 2.23 percentage points, respectively, after combining with the CBAM attention mechanism. The best three improvement strategies were selected to increase the MIoU and MPA by 4.18 and 4.28 percentage points, respectively. The MIoU and MPA of the improved DeepLabv3+ model were 94.05% and 95.72%, respectively. The MIoU increased by 6.67, 4.92, 8.80 and 4.21 percentage points, respectively, compared with the SegNet, PSPNet, U-Net and standard DeepLabv3+, and the MPA increased by 6.7, 4.86, 8.25, and 4.53 percentage points, respectively. The training time was 9.52 h, which was shortened by 6.8, 3.99, 4.56, and 3.94 h, respectively, compared with the SegNet, PSPNet, U-Net, and standard DeepLabv3+. The FLOPs were reduced by 45×109, 34×109, 29×109, and 18×109, respectively, compared with the SegNet, PSPNet, U-Net and standard DeepLabv3+. The frame rate of image detection increased by 15.3, 11.7, 11.4, and 9 fps, respectively. The coefficient of determination reached 0.981 in the regression analysis with the manually measured root length. The 80% of potato roots were distributed in the soil layers of 0-20, 0-30, 0-40, and 0-30 cm, respectively, during the seedling, tuber formation, tuber bulking, and starch accumulation stage. The finding can provide a theoretical basis for the high-yield and high-efficiency cultivation techniques of potato in the northern Yinshan Mountain in Inner Mongolia of China.

       

    /

    返回文章
    返回