Processing math: 2%
    • EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

油菜机械直播同步分层施肥对根系构型和抗倒伏能力影响

高丽萍, 陈慧, 刘嘉诚, 秦永豪, 廖庆喜, 廖宜涛, 王天尧

高丽萍,陈慧,刘嘉诚,等. 油菜机械直播同步分层施肥对根系构型和抗倒伏能力影响[J]. 农业工程学报,2023,39(11):87-97. DOI: 10.11975/j.issn.1002-6819.202302025
引用本文: 高丽萍,陈慧,刘嘉诚,等. 油菜机械直播同步分层施肥对根系构型和抗倒伏能力影响[J]. 农业工程学报,2023,39(11):87-97. DOI: 10.11975/j.issn.1002-6819.202302025
GAO Liping, CHEN Hui, LIU Jiacheng, et al. Effects of synchronous layered fertilization with machinery on the root architecture and lodging resistance of rape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(11): 87-97. DOI: 10.11975/j.issn.1002-6819.202302025
Citation: GAO Liping, CHEN Hui, LIU Jiacheng, et al. Effects of synchronous layered fertilization with machinery on the root architecture and lodging resistance of rape[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(11): 87-97. DOI: 10.11975/j.issn.1002-6819.202302025

油菜机械直播同步分层施肥对根系构型和抗倒伏能力影响

基金项目: 国家重点研发计划项目(2021YFD1600503);国家油菜产业技术体系专项(CARS-12)
详细信息
    作者简介:

    高丽萍,博士生,研究方向为油菜播种技术与装备。Email:gaoliping@webmail.hzau.edu.cn

    通讯作者:

    廖宜涛,教授,博士生导师,研究方向为现代农业装备设计与测控。Email:liaoetao@mail.hzau.edu.cn

  • 中图分类号: S275

Effects of synchronous layered fertilization with machinery on the root architecture and lodging resistance of rape

  • 摘要:

    为探明油菜精量联合直播同步分层施肥机械作业条件下,深浅层施肥比例对油菜根系生长、植株抗倒伏能力和产量等农艺性状的影响,该研究选用“华油杂62”油菜品种作为供试作物,在施肥量600 kg/hm2条件下,以10 cm定位侧深施肥CK1和机械旋耕浅层混施CK2作为对照,设置机械旋耕浅层混施-定位侧深施肥量分层比例为1∶3(FL)、1∶1(FM)和3∶1(FH)3个施肥处理,于2020年和2021年在长江中游冬油菜区开展田间试验,研究不同分层施肥处理对油菜根系分布、耕层土壤坚实度变化、倒伏指数和产量的影响。结果表明,分层深施处理能显著(P<0.05)改善油菜根系构型并促进根系下移,平均根表面积、根体积、根干质量和主根长分别是CK1处理的1.58、1.47、1.29和1.16倍,是CK2处理的3.63、2.79、1.46和1.28倍,且土壤坚实度相较于CK1和CK2处理平均分别降低4.91%和15.25%。不同分层施肥处理的油菜主根长、根表面积、根体积和根干质量在处理间从大到小依次均为:FM、FH、FL;FH处理植株的根茎粗、倒伏角度、抗折力分别是FM处理的1.11、1.25和1.31倍,倒伏指数相较于FM处理平均降低了26.90%,但植株田间倒伏角度比FM处理增加了25.14%。分层深施肥处理的产量、单株分枝数、角果数和千粒质量均显著(P<0.05)大于定位深施和机械混施处理,其中FM处理平均产量与FL、FH、CK1和CK2相比,分别提高9.85%、16.35%、26.88%和37.75%。综合考虑不同施肥处理下冬油菜根系分布、土壤坚实度、倒伏指数和籽粒产量,分层深施肥处理中FM处理为田间机械化直播冬油菜实现高产且抗倒伏的较优施肥方式,研究为提升油菜机械直播农机农艺融合和肥料运筹策略提供了理论依据和技术支撑。

    Abstract:

    An appropriate fertilizer application can be one of the most important indicators for resistance to the downfall and high yield of direct sowing rape. Among them, the fertilizer placement and application rates can dominate the root and plant growth, development, and lodging resistance of winter rapeseed. This study aims to investigate the effects of the different ratios of layered fertilization in the deep and shallow layers under the precision combined seeder on agronomic characteristics, such as the root growth, plant resistance to lodging, and yield of rapeseed. The agricultural machinery and agronomic techniques were integrated to further improve the mechanical application fertilization of winter rapeseed. "Huayouza 62" rapeseed variety was selected as the test crop at the fertilization rate of 600 kg/hm2. The control group was taken as the side deep fertilization of CK1 on the 10 cm positioning under the seed, and the shallow layer mixing fertilization of CK2. Three treatments of deep fertilization were set as the shallow and deep layer fertilization ratios of 1:3 (FL), 1:1 (FM), and 3:1 (FH) experimental groups. A total of five fertilization treatments and field trials were conducted in 2020 and 2021. The experiment site was located in the winter rapeseed area in Jingzhou, Hubei Province in the middle reaches of the Yangtze River basin. A measurement was performed on the root growth characteristics, soil firmness, shoot fresh weight, stem bending resistance and yield of rapeseed during the harvest period. A systematic analysis was then made on the five treatments, in terms of the root distribution, soil penetration resistance of topsoil, lodging index, and yield of rapeseed. The results showed that the layered deep fertilization significantly promoted the root downward migration and the root architecture of rapeseed. The average values of root surface area, root volume, root dry weight, and taproot length were 1.58, 1.47, 1.29, and 1.16 times higher than those in the CK1 treatment, while 3.63, 2.79, 1.46, and 1.28 times higher than those in the CK2 treatment, respectively. Meanwhile, the average soil penetration resistance decreased by 4.91% and 15.25%, respectively, compared with the CK1 and CK2 treatments. The overall performance was ranked in the descending order of the FM > FH > FL, in terms of the taproot length, root surface area, root volume, and root dry weight in the different layered fertilization treatments. The rape plant of root stem diameter, lodging angle, and fracture resistance of the FH treatment were 1.11, 1.25, and 1.31 times higher than those of the FM treatment. The lodging index decreased by 26.90% on average, but the field lodging angle increased by 25.14%, compared with the FM treatment. The yield, number of branches per plant, number of corner fruit, and thousand-grain weight of layered deep fertilization treatment were significantly higher than those of positioned deep fertilization and mechanical mixing fertilization treatment. the average rapeseed yield of FM treatment increased by 9.85%, 16.35%, 26.88%, and 37.75%, respectively, compared with the FL, FH, CK1, and CK2. The root distribution, soil penetration resistance, lodging index, and grain yield of winter rapeseed were considered under different fertilization treatments. The FM treatment was achieved in the better optimal fertilization for the high yield and lodging resistance of field mechanized direct sowing winter rapeseed.

  • 随着农业装备不断向现代化、智能化和规模化发展[1],工业机器人的应用范围扩展至农业装备领域是必然趋势。旋转矢量(rotate vector,RV)减速器具有体积小、传动比范围大、质量轻、精度保持稳定、效率高等特点,农业机械经常需要大比例减速的情况,常选用RV减速器[2]。RV减速器作为农业机器人及农业机械的核心传动部件,其健康状况直接决定了传动精度、可靠性、生产效率和农机寿命。然而,由于RV减速器结构复杂,且在实际工作中工况多变,作业环境恶劣,随时发生故障[3]。RV减速器故障严重时会导致生产停滞,造成巨大的经济损失。因此,研究农业机器人RV减速器的故障诊断方法,及早发现并处理故障,缩短维护时间,对保障机器人安全运行、提高企业生产效率和经济效益具有重大意义。

    振动信号能够有效反映部件的健康状态,在故障诊断中得到广泛应用[4]。近年来,许多学者对此开展了研究,提出了神经网络[5]、深度学习[6]、时频分析[7]、盲反卷积[8]等方法。汪久根等[9]采用残差网络提高了RV减速器不同故障的分类准确率。YIN等[10]开发了一种基于知识和数据双驱动的传输网络用于RV减速器故障诊断。彭鹏等[11]提出了一种抗干扰的 RV 减速器故障识别卷积神经网络模型。韩特等[12]在深度特征嵌入空间下构建特征图,通过标签传播算法生成伪标签,利用信息熵评估健康状态概率的分布。上述关于RV减速器的故障诊断精度较高,主要采用神经网络、深度学习、机械学习等算法,但是此类算法的实现需要大量不同类型的数据支撑。而基于时域、频域或时频域的分析方法能够在少量数据的支撑下完成故障诊断。XIE等[13]提出了一种基于电流信号的瞬时频率趋势图与参数自适应变分模态分解算法相结合的RV减速器故障诊断方法,实现了RV减速器太阳轮故障特征提取。GUO等[14]将计算阶跟踪和同步平均相结合识别了RV减速器行星齿轮齿根裂纹故障。雷亚国等[15]利用脊线提取完成RV减速器振动信号的平稳数据截取,有效提取了RV减速器行星轮的故障信息。由于RV减速器因润滑、制造误差和不合理受力会引起各种机械故障,使得实际运行中裂纹、点蚀等故障往往同时或先后出现,传感器采集的信号往往是多个故障源相互耦合的结果,使故障诊断变得非常困难。文献[13-15]提出的故障诊断方法适于单一故障诊断,对RV减速器复合故障检测能力下降甚至失效。因此,如何在复合故障相互耦合以及往复运动、时变转速工况下,精确分离提取耦合故障特征是RV减速器故障诊断领域亟待攻克的难题。盲源分离(blind source separation,BSS)技术可以在传输通道未知的情况下,从混合信号中把多个信号源分离出来。独立成分分析(independent component analysis,ICA) [16]和稀疏分量分析(sparse component analysis,SCA) [17] 是常用的以信号处理技术求解BSS问题。ICA算法的前提是源信号是统计独立的,且每个独立分量必须符合非高斯分布。而现代机械设备难以满足统计独立性的假设,但SCA方法的稀疏性假设相对容易满足。

    SCA算法中,聚类方法是混合矩阵估计的首选。WANG等[18]提出了一种两阶段的聚类算法,从而提高了混合矩阵的估计精度。NORSALINA等[19]引入自适应时频阈值提高混合矩阵估计的精度。DING等[20]利用同步压缩S变换估计含谐波传输阻抗的混合矩阵。密度峰值聚类算法(density peak clustering,DPC)考虑局部密度和相对距离绘制决策图,快速识别簇中心并完成聚类。 DPC具有唯一输入参数,无需先验知识和迭代[21]。在解决振动源数目估计方面有一定的潜力。SCA算法还包括了源信号的恢复,主流方法有两类:一是通过优化逼近L0范数的函数恢复源信号。BU等[22]使用光滑的连续函数来近似L0范数。ZHANG等[23]用复三角函数逼近L0范数。但是上述方法具有源信号射入方向越近恢复精度越低。二是压缩感知(compressed sensing,CS)重构算法[24],该方法使用L1范数优化取代L0范数优化恢复源信号,避免了L0范数优化的NP-Hard问题。正交匹配追踪算法(orthogonal matching pursuit,OMP)克服匹配追踪算法的缺陷,在算法迭代过程中,残差能够与已经选择的原子正交,保证相同索引不会被重复选择,迭代过程在有限的次数内收敛[25],在重构信号算法的研究中发挥了重要作用。

    结合上述分析,本文提出一种基于时频图像脊线提取与改进稀疏分量分析相结合的RV减速器复合故障盲提取方法,旨在实现往复运动、时变转速、故障源数目未知工况下的RV减速器复合故障诊断。首先使用时频图像脊线提取(ridge extraction from time-frequency images,RETF)从时频图中提取脊线,完成对平稳信号的同步截取,然后利用sinC函数改进形态滤波(sinC-morphological filtering,SMF)、DPC和OPM相结合的盲源分离方法(SMF-DPC-OMP)实现平稳信号复合故障的分离提取,采用SMF对观测信号进行滤波降噪处理,在提高信噪比的同时突出信号的冲击分量,并对滤波后的信号进行密度峰值聚类处理,得到聚类中心,构建传感矩阵;接着将滤波后的信号转换到频域以满足SCA的稀疏性要求;最后利用OMP算法在频域重构源信号,在提高计算速度和适应性的同时,实现复合故障特征的提取。

    盲源分离是指在源信号和信号传输通道均未知的情况下,仅依赖传感器拾取的观测信号恢复和估计源信号的技术[26]。含噪声SCA的数学模型为

    {{\boldsymbol{X}}_{m \times t}} = {{\boldsymbol{A}}_{m \times n}}{{\boldsymbol{S}}_{n \times t}} + {{\boldsymbol{V}}_{m \times t}} (1)

    式中 {\boldsymbol{X}} 为观测矩阵,即采集到的振动信号; {\boldsymbol{A}} 为混合矩阵; {\boldsymbol{S}} 是具有稀疏性的未知源信号; {\boldsymbol{V}} 为噪声或其他随机干扰成分; m 为传感器数量; n 为源信号数量; t 为观测时间,s。

    短时傅里叶变换(short-time fourier transform,STFT)是有效捕获时变频率的方法之一,其定义为[27]

    Q\left( {t,f} \right) = \int\limits_R {x\left( \tau \right){h_\sigma }\left( {\tau - t} \right){{\text{e}}^{ - {j}_0 2{\text{π }}f\tau }}{\text{d}}\tau } (2)

    式中x\left( \tau \right) 为多分量信号;Q\left( {t,f} \right)是信号的时频表达(time frequency representation,TFR);{h_\sigma }\left( {\tau - t} \right)是长度为\tau 的高斯窗;R为实数集;t为时间;f为频率;j表示复数。

    从TFR中提取时频脊线估计瞬时频率(instantaneous frequency,IF)是完全非参数的,并且能适应不同的情况。有效的脊线提取方法是寻找TFR的最大位置[27],其定义如下:

    \overline {{D}} (t) = \mathop {\arg \max }\limits_{f \in J} \left| {Q(t,f)} \right|,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} t = {t_0}, \ldots ,{t_{N - 1}} (3)

    式中 \overline {{D}} (t) 表示得到的脊线,是理论 {{D}}(t) 的估计, J 是频率的集合,N 为信号截止时间。RETF算法的具体实现步骤如下:

    1)初始化参数,并创建一个预存矩阵{{\boldsymbol{K}}_i}

    2)对时域信号x\left( t \right)进行STFT变换,得到其时频分布Q\left( {t,f} \right)

    3)寻找并标记最大能量点\left[ \begin{gathered} {t_0} \\ {f_0} \\ \end{gathered} \right],将该点存储为{\boldsymbol{K}}矩阵的第一列;

    4)使Q\left( {{t_0},f} \right)在最大值点{t_0}附近时刻归0,即Q\left( {{t_0},f} \right) = 0f \in \left[ {{f_0} - \Delta f,{f_0} + \Delta f} \right],其中\Delta f为滤波带宽惩罚参数,控制滤波带宽;

    5)在Q\left( {{t_0},f} \right)的邻域内寻找下一个最大能量点 \left[ \begin{gathered} t_{0}' \\ f_{0}' \\ \end{gathered} \right] = \ {\mathrm{\max}} _{\left( {{t_\alpha },{f_\alpha }} \right)}Q\left( {t,f} \right) {t_\alpha } \in \left[ {{t_0} - 1,{t_0} + 1} \right] {f_\alpha } \in \left[ {f_0} -F,{f_0} + F \right]H为选定的窗参数,控制迭代中 \overline {{D}} (t) 增量的平滑程度,H越小, \overline {{D}} (t) 增量越平滑;

    6)将 \left[ \begin{gathered} t_0' \\ f_0' \\ \end{gathered} \right] 存储为{\boldsymbol{K}}矩阵的下一列;

    7)使Q\left( {t_0',f} \right)在最大值点t_0'附近时刻归0,即Q\left( {t_0',f} \right) = 0f \in \left[ {{f_0} - \Delta f,{f_0} + \Delta f} \right]

    8)如果时间指标{t_\alpha }和频率指标{f_\alpha }未达到TFR矩阵的边界,返回步骤5);否则返回步骤1),并创建一个新的预存矩阵{{\boldsymbol{K}}_{i + 1}}

    9)当剩余TFR能量小于阈值\varepsilon 时停止算法(每一个预存矩阵,即是一条时频脊线)。

    \sin C函数又称辛格函数,定义如下:

    \sin C\left( x \right) = \frac{{\sin \left( {{\text{π}}x} \right)}}{{{\text{π}}x}} (4)

    本文选取 \sin C 函数作为结构元素时主要定义长度L和主瓣比p。长度是指整个图像的长度,主瓣比是指从中间截取整个图像的百分比。图1L = 20 p = 50\text{%} {\mathrm{sin}} C 结构元素。

    图  1  sinC函数参数图
    Figure  1.  Parameter diagram of sinC function

    形态滤波器的构建主要包括结构元素和形态算子。结构元素的选择包括结构元素的形状、长度、高度(振幅)等。在处理一维信号时 ,结构元素的形状一般有线形、三角形、半圆形、正弦等,本文选择 sin C函数作为结构元素 ,结合形态算子腐蚀Θ、膨胀\oplus 、形态开○和形态闭●,构建基于sinC函数的SMF平均组合滤波器。

    设原信号f\left( n \right)和结构元素g\left( m \right)为分别定义在F\left( {1,2, \ldots ,n - 1} \right)G = \left( {1,2, \ldots, m - 1} \right)上的离散函数, N \geqslant M。则f\left( n \right)关于g\left( m \right)的腐蚀运算、膨胀运算、开运算和闭运算[28]分别为

    (f\Theta g)(n) = \min[f(n + m) - g(m)] (5)
    (f \oplus g)(n) = \max [f(n - m) + g(m)] (6)
    (f \circ g){\kern 1pt} (n) = (f\Theta g \oplus g)(n) (7)
    (f \bullet g){\kern 1pt} (n) = (f \oplus g\Theta g)(n) (8)

    通常使用形态开和形态闭的级联形式去除信号中的正、负噪声。TANG[28]为了去除信号中的正、负噪声,定义了形态闭-开(closing-opening,CO)和开-闭(opening-closing,OC)滤波器:

    {\mathrm{CO}}{\kern 1pt} (f(n)) = (f \bullet g \circ g)(n) (9)
    {\mathrm{OC}}{\kern 1pt} (f(n)) = (f \circ g \bullet g)(n) (10)

    为了抑制统计偏倚,本文采用结合OC和CO的平均组合滤波器[28]:

    y(n) = [{\mathrm{OC}}(f(n) + {\mathrm{CO}}(f(n)]/2 (11)

    为了验证基于{\mathrm{sin}}\; C 函数的SMF滤波效果,生成模拟轴承外圈故障的仿真信号并添加信噪比(signal-to-noise ratio,SNR)为−3 dB的白噪声。图2为含噪声的仿真信号及滤波后的时域波形图,SMF降噪后的信噪比为0.7 dB,说明SMF较好的滤除干扰噪声,突显了信号的冲击特性。

    图  2  滤波前后信号波形对比
    Figure  2.  Comparison of signal waveforms before and after filtering

    将本文的SMF滤波器与文献[29]中的直线型滤波器(幅值为0,长度为10)进行对比,滤波器参数及滤波效果如图3所示。分析图3可知无论滤波器的参数如何选择,SMF的滤波后的信噪比总是要优于直线型滤波器。

    图  3  滤波参数及滤波效果对比
    Figure  3.  Comparison of filtering parameters and filtering effect

    DPC算法主要基于2个假设:1)聚类中心周围是低密度的点;2)聚类中心与密度较高的样本点之间的距离较大。设数据集U{{ = }}\left\{ {{u_1},{u_2}, \cdots, {u_R}} \right\} {u_i}{{ = }}{\left( {{u_{i1}},{u_{i2}}, \cdots, {u_{io}}} \right)^{\mathrm{T}}} ,其中i = 1,2, \cdots ,R{u_{ij}}表示数据点ij维属性,j = 1,2, \cdots ,OR为总体样本数。

    1)计算局部密度\rho

    对于每个数据点{u_i}i = 1,2, \cdots ,R,局部密度{\rho _i}可以被认为是距离点{u_i}较近的点的数量,{\rho _i}的定义如下[30]

    {\rho _i} = \sum\limits_{j,j \ne i} {\chi \left( {{d_{ij}} - {d_c}} \right)} (12)

    式中\chi \left( x \right)为分段函数,x < 0时,\chi \left( x \right){\text{ = }}1,否则\chi \left( x \right){\text{ = 0}}{d_{ij}}表示ij之间的距离(通常为欧氏距离),{d_c}表示截断距离。

    2)计算最近邻距离\delta

    每个点的最近邻距离{\delta _i}

    {\delta _i} = \left\{ \begin{gathered} \mathop {\min \left( {{d_{ij}}} \right)}\limits_{j:{\rho_j} > {\rho_i}} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rho _i} < \max \left( \rho \right) \\ \mathop {\max \left( {{d_{ij}}} \right)}\limits_j ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rho _i} = \max \left( \rho \right) \\ \end{gathered} \right. (13)

    对于密度较低的样本点,计算该样本点与高于其密度的最近样本点之间的距离;而对于密度最高的样本点,则计算该点与最远样本点之间的距离。

    3)选取聚类中心 V

    聚类中心定义为同时具有高密度{\rho _i}和较大距离{\delta _i}的点{x_i},令{V_i} = {\rho _i}{\delta _i},取 V > \dfrac{2}{N}\displaystyle\sum\limits_{i = 1}^N {{V_i}} 为聚类中心。由于聚类对象为RV故障信号,{V_i}大多为0。为保证不遗漏正确的聚类中心,因此选取大于均值2倍的数据点为聚类中心。

    利用压缩感知重构算法中的OMP算法对源信号进行重构。将 m 个长度为 t 的观测信号表示为 {\boldsymbol{y}} = ({y_{11}}, {y_{12}}, \cdots {y_{1\;t}}, \cdots ,{y_{m1}},{y_{m2}}, \cdots {y_{mt}})^{\mathrm{T}}

    利用聚类中心 {\boldsymbol{V}}(m \times n) 构造传感矩阵 {\boldsymbol{W}} 。根据压缩感知模型,当混合信号长度为 mt \times 1 ,其传感矩阵 {\boldsymbol{W}} 的长度为 mt \times nt 。利用傅里叶变换正交矩阵 {{\boldsymbol{E}}_{t \times t}} 扩充矩阵 {\boldsymbol{V}} 的元素值,变换关系为 {{\boldsymbol{B}}_{ij}} = {{\boldsymbol{E}}_{t \times t}}{{\boldsymbol{V}}_{ij}} ,具体变换如式(14)所示。

    {\boldsymbol{y}} = \left[ \begin{gathered} {{\boldsymbol{{\boldsymbol{B}}}}_{11}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{12}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{1n}} \\ {{\boldsymbol{B}}_{21}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{21}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{2n}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots \\ {{\boldsymbol{B}}_{m1}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{m2}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{mn}} \\ \end{gathered} \right]{\boldsymbol{x}} (14)

    {\boldsymbol{x}} = {({x_{11}},{x_{12}}, \cdots ,{x_{1\;t}}, \cdots ,{x_{n1}},{x_{n2}}, \cdots ,{x_{nt}})^{\mathrm{T}}} 的长度是 (nt \times 1) 。至此,盲源分离的重构模型构建完成。

    OMP是一种常用的压缩感知重构算法。首先在每次迭代过程中对所有选定的原子进行Schmidt正交化,以确保每次迭代的结果都是最优解。利用OMP算法进行重构的核心思想是构造频域感知矩阵。具体算法步骤如下:

    1)初始化残差 {r_0} ,迭代次数 \ell ,傅立叶正交变换矩阵 {{\boldsymbol{E}}_{t \times t}} ,并根据 {{\boldsymbol{B}}_{ij}} = {{\boldsymbol{E}}_{t \times t}}{{\boldsymbol{V}}_{ij}} 构造传感矩阵 {\boldsymbol{W}}{\kern 1pt} {\kern 1pt} {\text{ = }}{\kern 1pt} {\kern 1pt} {\kern 1pt} \left[ \begin{gathered} {{\boldsymbol{B}}_{11}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{12}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{1n}} \\ {{\boldsymbol{B}}_{21}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{21}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{2n}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots \\ {{\boldsymbol{B}}_{m1}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{m2}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{mn}} \\ \end{gathered} \right]

    2)使用内积法计算传感矩阵 {\boldsymbol{W}} 的列向量与残差{r_i}的投影系数,并记录最大投影系数相对应的位置 {{\boldsymbol{\beta}} _i} ,随后将最大投影系数所对应的传感矩阵 {\boldsymbol{W}} 的列置0;

    3)使用最小二乘法计算本次迭代的重构信号的估计值 {x_i} = {({{\boldsymbol{\beta}} _i}^{\mathrm{T}} \cdot {{\boldsymbol{\beta}} _i})^{ - 1}} \cdot {{\boldsymbol{\beta}} _i}^{\mathrm{T}} \cdot {{\boldsymbol{r}}_i}

    4)更新残差 {r_{i + 1}} = {r_i} - {x_i} ,并重复步骤2),直到迭代结束;

    5)使用 {E_{t \times t}} 做逆傅立叶变换得到维数为 (kt \times 1) 的时域信号 x ,并根据聚类中心的维数k,将维数为 (kt \times 1) 的时域信号 x 分割为k个维数为\left( {t \times 1} \right)的时域信号,从而完成信号的盲源分离。

    1)平稳阶段截取:提取一组观测信号x\left( t \right)并进行STFT得到其时频表达Q\left( {t,f} \right)。随后提取时频脊线并截取恒速时段信号,获得平稳信号{x_1}\left( t \right)

    2)信号预处理:构造基于 \sin C 结构元素的平均组合滤波器,并对平稳信号{x_1}\left( t \right)进行滤波降噪,得到滤波信号{x_2}\left( t \right)

    3)估计混合矩阵:对滤波信号{x_2}\left( t \right)进行DPC得到聚类中心,即混合矩阵;

    4)源信号重构:利用步骤3)的混合矩阵构造传感矩阵,使用OMP算法在频域重构源信号;

    5)故障识别:对重构源信号进行快速傅里叶变换(fast Fourier transform,FFT)处理,根据分离信号频谱中的频率进行故障识别。

    本文算法的总体流程图如图4所示。

    图  4  RETF-SMF-DPC-OMP算法流程图
    Figure  4.  Flowchart of RETF-SMF-DPC-OMP algorithm

    试验信号来自于模拟农业机器人单关节臂往复运动的RV减速器试验台,如图5所示。将2个型号为333B30的PCB加速度传感器相互垂直安装于减速器保持架上拾取信号。水平方向为传感器1,垂直方向为传感器2。其中,试验台基座7上安装减速器保持架4,通过减速器保持架4装RV减速器5,型号为SV-X2MH100C-B2 LN的电机6输出轴通过RV减速器5连接关节臂1。图6为故障齿轮的实物图,图6a为太阳轮磨损图,图6b为行星轮磨损图。

    图  5  试验台及传感器位置示意图
    1. 关节臂 2. 加速度传感器1 3. 加速度传感器2 4. 减速器保持架 5. RV减速器 6. 电机 7. 基座
    Figure  5.  Diagram of position of test platform and sensor
    1. Articulated arm 2. Acceleration sensor 1 3. Acceleration sensor 2 4. Reducer cage 5. RV reducer 6. Motor 7. Test stand base
    图  6  故障齿轮
    Figure  6.  Faulty gear

    试验选用RV40E型减速器并以针轮固定的方式固定于试验台,减速比121、行星齿轮数目为2,太阳轮齿数{Z_1} = 12,行星轮齿数{Z_2} = 42,摆线轮齿数{Z_3} = 39,针轮齿数{Z_4} = 40。采集系统包括NI-USB9234采集卡与单向加速度传感器,采样频率为25.6 kHz。试验预设摆臂运动范围为0°~90°(单次抬升或下降90°),运行速度为100°/s。RV减速器的各个特征频率计算式见表1

    表  1  RV减速器各零件的工作频率
    Table  1.  Working frequency of each part of RV reducer
    名称Name 计算公式Calculation formula
    电机主轴转速
    Motor spindle speed {n_1}/(r·min−1)
    {n_1} = 60f/P
    太阳轮转频
    Sun gear rotation frequency {f_1}/Hz
    {f_1} = {n_1}/60
    行星轮转频
    Planetary gear rotation frequency {f_2}/Hz
    {f_2} = \dfrac{{{z_1}{z_4}}}{{({z_3} - {z_4})\left( {{z_1} + {z_2}{z_4}} \right)}}{f_1}
    一级啮合频率
    First stage engagement frequency {f_{1c}}/Hz
    {f_{1c}} = \dfrac{{{z_1}{z_2}{z_4}}}{{{z_1} + {z_2}{z_4}}}{f_1}
    注:P为伺服电机磁极对数,{{\textit{z}}_1}为太阳轮齿数,{{\textit{z}}_2}为行星轮齿数,{{\textit{z}}_3} 为摆线轮齿数,{{\textit{z}}_4} 为针轮齿数。
    Note: P is the number of magnetic poles of the servo moto, {{\textit{z}}_1} is the number of solar gear, {{\textit{z}}_2} is the number of planetary gear, {{\textit{z}}_3} is the number of cycloidal gear, and {{\textit{z}}_4} is the number of needle gear.
    下载: 导出CSV 
    | 显示表格

    行星轮故障频率{f_p}为行星轮相对于行星架的旋转频率,{f_p} = {f_2} - {f_3};太阳轮故障频率{f_s}为太阳轮相对于行星架的旋转频率,{f_s} = {f_1} + {f_3}。由于摆臂转速=100(°)/s =0.27 Hz,即支撑盘转频{f_3}=0.27 Hz。根据表1及太阳轮故障频率计算式计算可得太阳轮故障频率{f_s}为38.34 Hz,行星轮故障频率{f_p}为10.83 Hz。

    由传感器1和传感器2采集的2组信号都具有相同的运动状态,即同时加速或同时减速。因此本文在平稳阶段选取水平方向传感器1的振动信号用以分析机械臂的运动状态。图7为选取的振动信号进行STFT获得的时频图。可以看出,由于RV减速器的瞬时冲击过大,无法通过时频图区分出机械臂的3种运动状态,即启动加速阶段,恒速运动阶段以及减速停滞阶段。

    图  7  基于STFT的时频图
    Figure  7.  Time-frequency diagram based on STFT

    时频图中的脊线对应时频域中能量最大的路径,可以近似看作设备瞬时频率的时频轨迹。对时频图进行脊线提取,结果如图8所示。分析脊线走势能够较为清楚地区分机械臂的不同运行阶段,包括启动加速阶段,平稳运行阶段以及减速停滞阶段(后续分析均为此阶段)。图9a为水平方向传感器1采集信号的时域波形,图9b为垂直方向传感器2采集信号的时域波形。图9时域波形体现了机械臂启动、平稳到停止整个工作过程幅值的变化。依据图8中脊线的平稳阶段区间,在图9中标注同步截取相应时段的时域振动信号(后续分析皆是截取后的振动信号)。

    图  8  基于时频图像提取的时频脊线
    Figure  8.  Time-frequency ridges extracted from TFR

    图10a为截取平稳阶段传感器1的信号波形,图10b为截取平稳阶段传感器2信号波形。对图10振动信号进行SMF处理,对图10振动信号进行SMF处理,传感器2的滤波前后的信号波形对比如图11所示,从图11b中能够观测到故障所导致的冲击更加明显。

    图  9  基于时频脊线的传感器信号同步截取
    Figure  9.  Synchronous sensor signal interception based on time-frequency ridge
    图  10  恒速阶段的时域波形
    Figure  10.  Time domain waveform of constant velocity phase
    图  11  传感器2的滤波前后信号波形对比
    Figure  11.  Comparison of signal waveforms of sensor 2 before and after filtering

    对滤波后的信号进行包络谱分析,如图12所示,传感器1和传感器2滤波信号的频谱分别如图12a、12b所示。分析图12a、12b发现,太阳轮与行星轮的故障特征频率成分完全混合在一起,故障类型判断困难。

    图  12  恒速阶段的频域波形
    Figure  12.  Frequency domain waveform of constant velocity phase

    经SMF-DPC-OMP算法处理的频谱如图13所示,图13a的频率谱线集中在37.5 Hz及其倍频,与太阳轮理论计算故障频率38.34 Hz接近,故可推断图13a为太阳轮故障。图13b的频率谱线分布在10.94 Hz及其倍频,与行星轮理论计算故障频率10.83 Hz逼近,故识别其为行星轮故障。相比图12图13中的频率混合现象已经完全被消除,说明本文方法可实现复合故障的完全分离。采用文献[29]提出的结合形态滤波与稀疏分量分析(MF-SCA)的盲分离算法进行对比进一步验证本文方法的有效性,结果如图14所示,分析可见,图14a、14b均存在太阳轮和行星轮故障特征频率,说明MF-SCA方法无法有效实现RV减速器复合故障的分离。与MF-SCA方法相比,SMF-DPC-OMP算法能够节省约75%的时间运行成本。

    图  13  复合故障频谱SMF-DPC-OMP分离结果
    注:fs为太阳轮故障频率,fp为行星轮故障频率,Hz。
    Figure  13.  Separation composite faults spectrum by SMF-DPC-OMP
    Note: fs is the Sun gear fourlty frequency, fp is the planetary gear fourlty frequency, Hz.
    图  14  复合故障频谱MF- SCA分离结果
    Figure  14.  Separation composite faults spectrum by MF-SCA

    本文结合时频图像脊线提取、\sin C函数改进形态滤波和密度峰值聚类改进的稀疏分量分析各算法的优点,提出一种新的往复运动、变转速工况的RV减速器复合故障盲分离方法。通过RETE算法提取的脊线解决旋转机械变转速的问题,利用SMF-DPC-OMP实现了RV减速器复合故障的分离提取。试验台采集的RV减速器的太阳轮和行星轮磨损复合故障信号的分析结果显示,本文方法能够有效地完成复合故障的盲分离任务,主要结论如下:

    1)RETE算法能够在变转速工况导致时频图较为模糊的情况下,识别出RV减速器的运动状态;

    2)SMF-DPC-OMP算法能够在故障源数目未知的情况下,有效完成复合故障的盲分离任务;

    3)与MF-SCA方法比较,SMF-DPC-OMP算法能够节省约75%的时间运行成本,使得频谱更为简洁,抑制精细侧频和干扰分量。

    本文今后的工作将重点放在欠定条件下的故障提取上,或者进一步将该算法推广到旋转机械声信号的故障诊断中。

  • 图  1   油菜播种机分层混施作业示意图

    1. 肥箱 2. 外槽轮排肥器 3. 开畦沟犁组 4. 旋耕装置 5. 深施肥铲 6. 平土托板 7. 浅层肥料 8. 深层肥料 9. 油菜种子 10. 水稻秸秆 11. 畦沟 12. 双圆盘开沟器 13. 正负气压组合式精量排种器

    Figure  1.   Schematic diagram of layered and mixed fertilizer application of rape seeder

    1. Fertilizer box 2. Outer grooved wheel fertilizer apparatus 3. Furrow opening plough group 4. Rotary tillage device 5. Deep fertilizeation shovel 6. Leveling plate 7. Fertilizer in shallow 8. Fertilizer in deep 9. Rape seed 10. Rice straw 11. Furrow 12. Double-disc opener 13. Positive and negative pressure combination seed metering device

    图  2   两年试验点冬油菜生育期逐日气温和降雨量变化

    Figure  2.   Daily air temperature and precipitation changes during winter rapeseed growth period at the experimental site of two years

    图  3   油菜植株倒伏角度及抗折力测定

    1. 角度尺 2. YYD-1型茎秆强度测量仪

    Figure  3.   Determination of rape plant lodging angle and breaking resistance

    1. Angle ruler 2.YYD-1 stem strength measuring instument

    图  4   不同施肥处理对油菜根系形态影响

    Figure  4.   Effects of different fertilization treatments on root structure of rapeseed

    图  5   不同施肥处理下不同耕层深度油菜根系分布

    Figure  5.   Root distribution of rapeseed at different topsoil depths under different fertilization treatments

    图  6   不同施肥处理下0~30 cm耕层播种后不同时长的土壤坚实度变化

    Figure  6.   Variation of soil firmness of 0-30 cm topsoil under different fertilization treatments atfer different seed days

    图  7   不同施肥处理的冬油菜地上部鲜质量和根冠比

    Figure  7.   Shoot fresh weight of winter rape under different fertilization treatment

    图  8   不同施肥处理下油菜植株株高

    Figure  8.   Plant height of rapeseed under different fertilization treatments

    图  9   不同施肥方式下冬油菜产量及产量构成因素

    Figure  9.   Yield and yield components of winter rape under different fertilization treatments

    表  1   不同施肥处理下深浅层氮、磷和钾养分含量

    Table  1   Nitrogen, phosphonus and potassium nutrinet content under different fertilizer treatments (kg·hm−2)

    处理
    Treatment
    施肥方式
    Fertilizer method
    NP2O5K2O
    浅层 Shallow layer深层 Deep layer浅层 Shallow layer深层 Deep layer浅层 Shallow layer深层 Deep layer
    CK110 cm 定位侧深施0150.0042.0048
    FL浅层:深层=1:337.5112.510.531.51236
    FM浅层:深层=1:175.075.021212424
    FH浅层:深层=3:1112.537.531.510.53612
    CK2机械混施150.0042.00480
    下载: 导出CSV

    表  2   不同施肥处理冬油菜根系生长特性及方差分析

    Table  2   Factors of root growth characteristics of winter rapeseed under different fertilization treatments

    年份
    Year
    施肥处理
    Fertilizer treatments
    主根长
    Taproot length/cm
    根表面积
    Root surface area/cm2
    根体积
    Root volume/cm3
    根干质量
    Dry weight of root/g
    2020-2021CK120.97 c267.24 d30.10 c7.25 c
    FL23.49 b324.32 c33.59 bc8.62 b
    FM25.83 a479.07 a47.22 a10.90 a
    FH22.87 b418.22 b43.30 ab9.28 b
    CK218.97 d116.71 e13.53 d6.35 d
    2021-2022CK120.67 c307.46 c39.57 c8.00 c
    FL23.07 b322.51 c48.16 bc8.53 c
    FM25.52 a623.31 a73.60 a11.78 ab
    FH23.97 b553.94 b61.13 ab9.80 b
    CK218.65 d133.19 d23.21 d7.13 d
    年份Year(YNs****Ns
    施肥处理Fertilizer treatments(F********
    年份×施肥处理Y×FNs**NsNs
    注:不同小写字母代表处理间差异显著。Ns代表不显著;*代表显著(P<0.05);**代表极显著(P<0.01),下同。
    Note:Different lowercase letters indicate significant differences among treatments. Ns means not significant; * means significant (P<0.05); ** means extremely significant (P<0.01). The same as below.
    下载: 导出CSV

    表  3   不同施肥处理下冬油菜倒伏性相关性状及方差分析

    Table  3   Effects and variance analysis of different fertilizer treatments on lodging related indices of winter rapeseed

    年份
    Year
    施肥处理
    Fertilizer treatments
    株高
    Plant height/cm
    倒伏角度
    Lodging angle/(°)
    根茎粗
    Stem diameter/mm
    抗折力
    Breaking resistance/N
    倒伏指数
    Lodging index
    2020-2021CK1166.48 c9.07 d14.78 d11.53 d4.39 bc
    FL180.69 b10.92 c16.52 c14.44 c5.25 b
    FM188.78 a14.25 b17.71 b20.03 b3.89 bc
    FH179.87 b18.82 a19.37 a26.62 a3.11 c
    CK2161.60 c4.94 d13.15 e4.94 e10.47 a
    2021-2022CK1186.63 b9.83 c14.86 d12.84 d4.01 b
    FL192.73 ab10.55 bc16.76 c17.84 c3.14 bc
    FM201.67 a12.68 ab18.36 b24.55 b3.28 bc
    FH193.00 ab14.88 a20.54 a31.95 a2.54 c
    CK2164.43 c8.03 c13.61 e7.99 e5.41 a
    年份Year(YNs******
    施肥处理Fertilizer treatments(F**********
    年份×施肥处理Y×FNs*NsNsNs
    下载: 导出CSV
  • [1] 鲁剑巍,任涛,丛日环,等. 我国油菜施肥状况及施肥技术研究展望[J]. 中国油料作物学报,2018,40(5):712-720. LU Jianwei, REN Tao, CONG Rihuan, et al. Prospects of research on fertilization status and technology of rapeseed in China[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 712-720. (in Chinese with English abstract

    LU Jianwei, REN Tao, CONG Rihuan, et al. Prospects of research on fertilization status and technology of rapeseed in China[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 712-720. (in Chinese with English abstract)

    [2] 刘成,冯中朝,肖唐华,等. 我国油菜产业发展现状、潜力及对策[J]. 中国油料作物学报,2019,41(4):485-489. LIU Cheng, FENG Zhongchao, XIAO Tanghua, et al. Development, potential and adaptation of Chinese rapeseed industry[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 485-489. (in Chinese with English abstract

    LIU Cheng, FENG Zhongchao, XIAO Tanghua, et al. Development, potential and adaptation of Chinese rapeseed industry[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(4): 485-489. (in Chinese with English abstract)

    [3] 中华人民共和国国家统计局. 油菜播种[EB/OL]. 2023-01-07. http: //www.stats.gov.cn/tjsj/
    [4] 张青松,廖庆喜,肖文立,等. 油菜种植耕整地技术装备研究与发展[J]. 中国油料作物学报,2018,40(5):702-711. ZHANG Qingsong, LIAO Qingxi, XIAO Wenli, et al. Research process of tillage technology and equipment for rapeseed growing[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 702-711. (in Chinese with English abstract

    ZHANG Qingsong, LIAO Qingxi, XIAO Wenli, et al. Research process of tillage technology and equipment for rapeseed growing[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 702-711. (in Chinese with English abstract)

    [5] ADNAN N S, MOHSIN T, ATIQUEUR R, et al. Lodging stress in cereal-effects and management:an overview[J]. Environmental Science and Pollution Research, 2017(24):5222-5237.

    ADNAN N S, MOHSIN T, ATIQUEUR R, et al. Lodging stress in cereal-effects and management: An overview[J]. Environmental Science and Pollution Research, 2017(24): 5222-5237.

    [6] 李宝军,任奕林,李猛,等. 基于茎秆生物力学特性的油菜抗倒调控机制研究[J]. 中国农业科技导报,2020,22(12):68-76. LI Baojun, REN Yilin, LI Meng et al. Regulation mechanisms of lodging resistance in rapeseed based on stems biomechanical properties[J]. Journal of Agricultural Science and Technology, 2020, 22(12): 68-76. (in Chinese with English abstract

    LI Baojun, REN Yilin, LI Meng et al. Regulation mechanisms of lodging resistance in rapeseed based on stems biomechanical properties[J]. Journal of Agricultural Science and Technology, 2020, 22(12): 68-76.

    [7] WU W, MA B L, FAN J J, et al. Management of nitrogen fertilization to balance reducing lodging risk and increasing yield and protein content in spring wheat[J]. Field Crops Research, 2019(24):107584.

    WU W, MA B L, FAN J J, et al. Management of nitrogen fertilization to balance reducing lodging risk and increasing yield and protein content in spring wheat[J]. Field Crops Research, 2019, 241: 107584.

    [8] 袁圆,汪波,周广生,等. 播期和种植密度对油菜产量和茎秆抗倒性的影响[J]. 中国农业科学,2021,54(8):1613-1626. YUAN Yuan, WANG Bo, ZHOU Guangsheng, et al. Effects of different sowing dates and planting densities on the yield and stem lodging resistance of rapeseed[J]. Scientia Agricultura Sinica, 2021, 54(8): 1613-1626. (in Chinese with English abstract

    YUAN Yuan, WANG Bo, ZHOU Guangsheng, et al. Effects of different sowing dates and planting densities on the yield and stem lodging resistance of rapeseed[J]. Scientia Agricultura Sinica, 2021, 54(8): 1613-1626. (in Chinese with English abstract)

    [9] WU W, SHAH F, DUNCAN R W, et al. Grain yield, root growth habit and lodging of eight oilseed rape genotypes in response to a short period of heat stress during flowering[J]. Agricultural and Forest Meteorology. 2020, 287(15):107954.

    WU W, SHAH F, DUNCAN R W, et al. Grain yield, root growth habit and lodging of eight oilseed rape genotypes in response to a short period of heat stress during flowering[J]. Agricultural and Forest Meteorology. 2020, 287(15): 107954.

    [10] WU W, SHAH F, MA B L. Understanding of crop lodging and agronomic strategies to improve the resilience of rapeseed production to climate change[J]. Crop and Environment, 2022, 1(2):133-144. doi: 10.1016/j.crope.2022.05.005

    WU W, SHAH F, MA B L. Understanding of crop lodging and agronomic strategies to improve the resilience of rapeseed production to climate change[J]. Crop and Environment, 2022, 1(2): 133-144. doi: 10.1016/j.crope.2022.05.005

    [11] 冯雷,徐万里,唐光木,等. 生物炭配施氮素对陆地棉盛花期根系形态与构型的影响[J]. 农业机械学报,2019,50(3):241-249. FENG Lei, XU Wanli, TANG Guangmu, et al. Effects of biochar combined with nitrogen on root morphology and system architecture during gossypium hirsutum L. Full- bloom stage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3): 241-249. (in Chinese with English abstract

    FENG Lei, XU Wanli, TANG Guangmu, et al. Effects of biochar combined with nitrogen on root morphology and system architecture during gossypium hirsutum L. Full- bloom stage[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3): 241-249. (in Chinese with English abstract)

    [12] LIU C H, YAN H H, WANG W Y, et al. Layered application of phosphate fertilizer increased winter wheat yield by promoting root proliferation and phosphorus accumulation[J]. Soil and Tillage Research, 2023, 225:105546.

    LIU C H, YAN H H, WANG W Y, et al. Layered application of phosphate fertilizer increased winter wheat yield by promoting root proliferation and phosphorus accumulation[J]. Soil and Tillage Research, 2023, 225: 105546.

    [13] 李奔,王贵彦,陈召月,等. 不同灌水条件下分层施肥对冬小麦产量和水分利用效率的影响[J]. 水土保持学报,2021,35(3):326-332. LI Ben, WANG Guiyan, CHEN Zhaoyue, et al. Effects of layered fertilization on yield and water use Efficiency of winter wheat under different irrigation conditions[J]. Journal of Soil and Water Conservation, 2021, 35(3): 326-332. (in Chinese with English abstract

    LI Ben, WANG Guiyan, CHEN Zhaoyue, et al. Effects of layered fertilization on yield and water use Efficiency of winter wheat under different irrigation conditions[J]. Journal of Soil and Water Conservation, 2021, 35(3): 326-332. (in Chinese with English abstract)

    [14] 张万锋,杨树青,娄帅,等. 耕作方式与秸秆覆盖对夏玉米根系分布及产量的影响[J]. 农业工程学报,2020,36(7):117-124. ZHANG Wanfeng, YANG Shuqing, LOU Shuai, et al. Effects of tillage methods and straw mulching on the root distribution and yield of summer maize[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2020, 36(7): 117-124. (in Chinese with English abstract

    ZHANG Wanfeng, YANG Shuqing, LOU Shuai, et al. Effects of tillage methods and straw mulching on the root distribution and yield of summer maize[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2020, 36(7): 117-124. (in Chinese with English abstract)

    [15] BADR M A, ABOU-HUSSEIN S D, EI-TOHAMY W A. Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region[J]. Agricultural Water Management, 2016, 169:90-97. doi: 10.1016/j.agwat.2016.02.012

    BADR M A, ABOU-HUSSEIN S D, EI-TOHAMY W A. Tomato yield, nitrogen uptake and water use efficiency as affected by planting geometry and level of nitrogen in an arid region[J]. Agricultural Water Management, 2016, 169: 90-97. doi: 10.1016/j.agwat.2016.02.012

    [16] 冯军,石超,LINNA Cholidah,等. 不同覆盖类型下减量施肥对油菜产量及水肥利用效率影响[J]. 农业工程学报,2019,35(15):85-93. FENG Jun, SHI Chao, LINNA Cholidah, et al. Effects of reducing fertilizer application rate under different mulching types on yield and water-fertilizer utilization efficiency of rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 85-93. (in Chinese with English abstract doi: 10.11975/j.issn.1002-6819.2019.15.012

    FENG Jun, SHI Chao, LINNA CHOLIDAH, et al. Effects of reducing fertilizer application rate under different mulching types on yield and water-fertilizer utilization efficiency of rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 85-93. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2019.15.012

    [17] 谷晓博,李援农,杜娅丹,等. 施肥深度对冬油菜产量、根系分布和养分吸收的影响[J]. 农业机械学报,2016,47(6):120-128,206. GU Xiaobo, LI Yuannong, DU Yadan, et al. Effects of fertilization depth on yield, root distribution and nutrient uptake of winter oilseed rape ( Brassica napus L. )[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 120-128,206. (in Chinese with English abstract

    GU Xiaobo, LI Yuannong, DU Yadan, et al. Effects of fertilization depth on yield, root distribution and nutrient uptake of winter oilseed rape ( Brassica napus L. )[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 120-128+206. (in Chinese with English abstract)

    [18] 陈慧,高丽萍,陈勇,等. 机械直播同步深施肥对冬油菜茎秆抗倒性和产量的影响[J]. 农业工程学报,2022,38(5):20-27. CHEN Hui, GAO Liping, CHEN Yong, et al. Effects of mechanical direct seeding synchronous deep fertilization on winter rapeseed stem lodging resistance and yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(5): 20-27. (in Chinese with English abstract

    CHEN Hui, GAO Liping, CHEN Yong, et al. Effects of mechanical direct seeding synchronous deep fertilization on winter rapeseed stem lodging resistance and yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(5): 20-27. (in Chinese with English abstract)

    [19] REN T, LIU B, LU J W, et al. Optimal plant density and N fertilization to achieve higher seed yield and lower N surplus for winter oilseed rape(Brassica napus L.)[J]. Field Crops Research, 2017, 204:199-207. doi: 10.1016/j.fcr.2017.01.018

    REN T, LIU B, LU J W, et al. Optimal plant density and N fertilization to achieve higher seed yield and lower N surplus for winter oilseed rape(Brassica napus L. )[J]. Field Crops Research, 2017, 204: 199-207. doi: 10.1016/j.fcr.2017.01.018

    [20] VILLOWOCK D, KURZ S, HARTUNG J, et al. Effects of stand density and N fertilization on the performance of Maize (Zea mays L.) intercropped with climbing beans (Phaseolus vulgaris L.)[J]. Agriculture, 2022, 12(7):967. doi: 10.3390/agriculture12070967

    VILLOWOCK D, KURZ S, HARTUNG J, et al. Effects of stand density and N fertilization on the performance of Maize (Zea mays L. ) intercropped with climbing beans (Phaseolus vulgaris L. )[J]. Agriculture, 2022, 12(7): 967. doi: 10.3390/agriculture12070967

    [21] 马昕,杨艳明,刘智蕾,等. 机械侧深施控释掺混肥提高寒地水稻的产量和效益[J]. 植物营养与肥料学报,2017,23(4):1095-1103. MA Xin, YANG Yanming, LIU Zhilei, et al. Yield increasing effect of mechanical topdressing of polymer-coated urea mixed with compound fertilizer in cold area rice[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 1095-1103. (in Chinese with English abstract

    MA Xin, YANG Yanming, LIU Zhilei, et al. Yield increasing effect of mechanical topdressing of polymer-coated urea mixed with compound fertilizer in cold area rice[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 1095-1103. (in Chinese with English abstract)

    [22] 钟雪梅,黄铁平,彭建伟,等. 机插同步一次性精量施肥对双季稻养分累积及利用率的影响[J]. 中国水稻科学,2019,33(5):436-446. ZHONG Xuemei, HUANG Tieping, PENG Jianwei, et al. Effects of machine-transplanting synchronized with one- time precision fertilization on nutrient uptake and use efficiency of double cropping rice[J]. Chinese Journal of Rice Science, 2019, 33(5): 436-446. (in Chinese with English abstract

    ZHONG Xuemei, HUANG Tieping, PENG Jianwei, et al. Effects of machine-transplanting synchronized with one- time precision fertilization on nutrient uptake and use efficiency of double cropping rice[J]. Chinese Journal of Rice Science, 2019, 33(5): 436-446. (in Chinese with English abstract)

    [23] 吕伟生,肖小军,肖国滨,等. 缓释肥侧位深施及用量对油菜产量和肥料利用率的影响[J]. 农业工程学报,2020,36(19):19-29. LYU Weisheng, XIAO Xiaojun, XIAO Guobin, et al. Effects of lateral deep application and dosage of slow-release fertilizer on yield and fertilizer utilization efficiency of rape(Brassica napus L. )[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2020, 36(19): 19-29. (in Chinese with English abstract

    LYU Weisheng, XIAO Xiaojun, XIAO Guobin, et al. Effects of lateral deep application and dosage of slow-release fertilizer on yield and fertilizer utilization efficiency of rape(Brassica napus L. )[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2020, 36(19): 19-29. (in Chinese with English abstract)

    [24] 孔洁,庞茹月,王铭伦,等. 分层减量施肥对花生根系生长的影响[J]. 中国土壤与肥料,2022(5):77-83. KONG Jie, PANG Ruyue, WANG Minglun, et al. Effects of layered and reduced fertilization on root growth of peanut[J]. Soil and Fertilizer Sciences in China, 2022(5): 77-83. (in Chinese with English abstract

    KONG Jie, PANG Ruyue, WANG Minglun, et al. Effects of layered and reduced fertilization on root growth of peanut[J]. Soil and Fertilizer Sciences in China, 2022(5): 77-83.

    [25] 廖宜涛,高丽萍,廖庆喜,等. 油菜精量联合直播机深施肥装置设计与试验[J]. 农业机械学报,2020,51(2):65-75. LIAO Yitao, GAO Liping, LIAO Qingxi, et al. Design and test of side deep fertilizing device of combined precision rapeseed seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 65-75. (in Chinese with English abstract

    LIAO Yitao, GAO Liping, LIAO Qingxi, et al. Design and test of side deep fertilizing device of combined precision rapeseed seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 65-75. (in Chinese with English abstract)

    [26] 高丽萍,施彬彬,廖庆喜,等. 正负气压组合油菜精量排种器锥孔盘排种性能[J]. 农业工程学报,2022,38(6):22-33. GAO Liping, SHI Binbin, LIAO Qingxi, et al. Seeding performance of conical-hole seeding plate of the positive and negative pressure combination precision seed metering device for rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(6): 22-33. (in Chinese with English abstract doi: 10.11975/j.issn.1002-6819.2022.06.003

    GAO Liping, SHI Binbin, LIAO Qingxi, et al. Seeding performance of conical-hole seeding plate of the positive and negative pressure combination precision seed metering device for rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(6): 22-33. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.06.003

    [27] 中华人民共和国工业和信息化部. 播种机 外槽轮排种器: JB/T9873-2013[S]. 北京: 机械工业出版社, 2013.
    [28] CHEN H, GAO L P, LI M C, et al. Fertilization depth effect on mechanized direct-seeded winter rapeseed yield and fertilizer use efficiency[J]. Journal of the Science of Food and Agriculture. 2023, 30:2574-2584.

    CHEN H, GAO L P, LI M C, et al. Fertilization depth effect on mechanized direct-seeded winter rapeseed yield and fertilizer use efficiency[J]. Journal of the Science of Food and Agriculture. 2023, 30:2574-2584.

    [29] HOU P F, YUAN W S, LI G H, et al. Deep fertilization with controlled-release fertilizer for higher cereal yield and N utilization in paddies:The optimal fertilization depth[J]. Agronomy Journal, 2021, 6(113):5027-5039.

    HOU P F, YUAN W S, LI G H, et al. Deep fertilization with controlled-release fertilizer for higher cereal yield and N utilization in paddies: The optimal fertilization depth[J]. Agronomy Journal, 2021, 6(113): 5027-5039.

    [30] 徐萍,杨宪杰,邓学斌,等. 遁耕分层施肥对夏玉米产量形成的调控效应[J]. 中国生态农业学报,2022,30(3):389-398. XU Ping, YANG Xianjie, DENG Xuebin, et al. Regulating effect of deep tillage and delamination fertilization on the yield formation of summer maize[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 389-398. (in Chinese with English abstract

    XU Ping, YANG Xianjie, DENG Xuebin, et al. Regulating effect of deep tillage and delamination fertilization on the yield formation of summer maize[J]. Chinese Journal of Eco-Agriculture, 2022, 30(3): 389−398. (in Chinese with English abstract)

    [31] 白非,白桂萍,王春云,等. 翻耕深度对遮阴油菜根系生长和养分吸收利用的影响[J]. 中国农业科学,2022,55(14):2726-2739. BAI Fei, BAI Guiping, WANG Chunyun, et al. Effects of tillage depth and shading on root growth and nutrient utilization of rapeseed[J]. Scientia Agricultura Sinica, 2022, 55(14): 2726-2739. (in Chinese with English abstract

    BAI Fei, BAI Guiping, WANG Chunyun, et al. Effects of tillage depth and shading on root growth and nutrient utilization of rapeseed[J]. Scientia Agricultura Sinica, 2022, 55(14): 2726-2739. (in Chinese with English abstract)

    [32] LIU P, YAN H H, XU S N, et al. Moderately deep banding of phosphorus enhanced winter wheat yield by improving phosphorus availability, root spatial distribution, and growth[J]. Soil and Tillage Research, 2022, 220:105388. doi: 10.1016/j.still.2022.105388

    LIU P, YAN H H, XU S N, et al. Moderately deep banding of phosphorus enhanced winter wheat yield by improving phosphorus availability, root spatial distribution, and growth[J]. Soil and Tillage Research, 2022, 220: 105388. doi: 10.1016/j.still.2022.105388

    [33] KENDALL S L, HOLMES H, WHITE C A, et al. Quantifying lodging-induced yield losses in oilseed rape[J]. Field Crops Research, 2017, 211:106-113. doi: 10.1016/j.fcr.2017.06.013

    KENDALL S L, HOLMES H, WHITE C A, et al. Quantifying lodging-induced yield losses in oilseed rape[J]. Field Crops Research, 2017, 211: 106-113. doi: 10.1016/j.fcr.2017.06.013

    [34] MARTINEZ-VAZQUEZ, P. Crop lodging induced by wind and rain[J]. Agricultural and Forest Meteorology, 2016, 22:265-275.

    MARTINEZ-VAZQUEZ, P. Crop lodging induced by wind and rain[J]. Agricultural and Forest Meteorology, 2016, 22: 265-275.

    [35] JI X D, CONG X, DAI X Q, et al. Studying the mechanical properties of the soil-root interface using the pullout test method[J]. Journal of Mountain Science, 2018, 15:882-893. doi: 10.1007/s11629-015-3791-4

    JI X D, CONG X, DAI X Q, et al. Studying the mechanical properties of the soil-root interface using the pullout test method[J]. Journal of Mountain Science, 2018, 15: 882-893. doi: 10.1007/s11629-015-3791-4

    [36] LI J Y, LIU Y, TANG Y F, et al. Optimizing fertilizer management based on controlled-release fertilizer to improve yield, quality, and reduce fertilizer application on apples[J]. Journal of Soil Science and Plant Nutrition, 2022, 22:394-495.

    LI J Y, LIU Y, TANG Y F, et al. Optimizing fertilizer management based on controlled-release fertilizer to improve yield, quality, and reduce fertilizer application on apples[J]. Journal of Soil Science and Plant Nutrition, 2022, 22: 393-405.

    [37] 沈玉芳,李世清. 施肥深度对不同水分条件下冬小麦根系特征及提水作用的影响[J]. 西北农林科技大学学报(自然科学版),2019,47(4):65-73. SHENG Yufang, LI Shiqing. Effect of fertilization depth on root characteristics and hydraulic lift of winter wheat under different water treatments[J]. Journal of Northwest A & F University(Natural Science Edition), 2019, 47(4): 65-73. (in Chinese with English abstract

    SHENG Yufang, LI Shiqing. Effect of fertilization depth on root characteristics and hydraulic lift of winter wheat under different water treatments[J]. Journal of Northwest A & F University(Natural Science Edition), 2019, 47(4): 65-73. (in Chinese with English abstract)

  • 期刊类型引用(4)

    1. 郭俊杰,郭正红. 基于深度置信网络的旋转机械在线故障诊断. 计算机测量与控制. 2025(01): 60-68 . 百度学术
    2. 刘喜庆,张文豪,潘真真. 基于DAL的工业机器人RV齿轮箱故障识别分析. 现代工业经济和信息化. 2024(09): 217-219 . 百度学术
    3. 高国泽,郭瑜,赵博涵,王红伟. 基于瞬时角速度信号窄带解调的RV减速器针齿故障检测. 振动与冲击. 2024(22): 155-161+208 . 百度学术
    4. 孙长胜,曹浩男. 基于VMD和CNN方法的电机传动系统故障诊断研究. 机械管理开发. 2024(12): 75-77 . 百度学术

    其他类型引用(1)

图(9)  /  表(3)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  0
  • PDF下载量:  53
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-02-06
  • 修回日期:  2023-05-07
  • 网络出版日期:  2023-08-01
  • 刊出日期:  2023-06-14

目录

/

返回文章
返回