基于机器学习和全局敏感性的弧形闸门淹没特性

    Submerged characteristics of radial gate using machine learning and global sensitivity

    • 摘要: 为了实现灌区精确量水、准确率定闸门流量系数,该研究针对弧形闸门泄流特性,采用支持向量机(support vector machine, SVM)、广义回归神经网络(generalized regression neural network, GRNN)、极限学习机(extreme learning machine, ELM)及核函数极限学习机(kernel extreme learning machine, KELM),对其淹没流态的泄流量进行预测,通过评价指标、目标函数(objective function, OBJ)准则和不确定分析等方法对模型性能进行综合评估。基于最优预测模型性能,引入全局敏感性分析Sobol法对无量纲参数进行量化分析,得出各参数对泄流量的重要程度,并进一步探究影响泄流的重要参数与流量系数(Cd)之间的变化规律。结果表明:KELM模型在测试阶段决定系数R2=0.972、平均绝对百分比KMAPE=5.038%、均方根误差KRMSE=0.020、威尔莫特一致性指数KWIA=0.993,目标函数值KOBJ=0.0127,95%置信区间为−0.04927, 0.04956,与SVM、GRNN和ELM模型相比,该模型具有更高的准确性和鲁棒性,可作为弧形闸门流量校核的高效高精度模型;Sobol法全局敏感性分析表明,耳轴销高度与上游水深之比(h/Y0闸门半径与上游水深之比(R/Y0)、闸门宽度与上游水深之比(B/Y0)对Cd的一阶敏感性系数和全局敏感性系数分别为0.1162、0.0754、0.0752和0.5311、0.4966、0.4959,是影响Cd的主要因素,且Cdh/Y0、R/Y0、B/Y0的增加而增大,在工程设计中应当重点考虑。该研究成果可进一步完善和丰富闸门淹没流态下的水力学机制,为校核闸孔流量提供方法。

       

      Abstract: Quantitative performance indicators of irrigation water management are required the measurement of flow rates at key locations in a conveyance and distribution system. Radial gates have been widely used for the agricultural water management in the irrigation areas, due to the small lifting forces and significant economic benefits. However, the inaccurate calibration is often found in the submerged flow, where the error is as high as 50%. Therefore, it is of great significance for the accurate determination of discharge capacity. This study aims to achieve the accurate water measurement and determination of discharge coefficient in the irrigation areas. The discharge capacity of submerged flow pattern was predicted using support vector machine (SVM), generalized regression neural network (GRNN), extreme learning machine (ELM), and kernel extreme learning machine (KELM). The performance of the models was comprehensively evaluated by evaluation indexes, objective function (OBJ) criteria and uncertainty analysis. At the same time, the Sobol's method was used to quantify the dimensionless parameters using the performance of the optimal model. A systematic evaluation was implemented to obtain the importance of each parameter (the discharge coefficient (Cd)) and the interaction of the parameters. In addition, there was the great variation between important parameters and Cd, according to the discharge characteristics of radial gate. The model evaluation results show that the better performance was found in the KELM with the determination coefficient R2=0.972, the mean absolute percentage error KMAPE=5.038%, the root mean square error KRMSE=0.020, the Willmott’s agreement index KWIA=0.993, and objective function KOBJ=0.0127. The uncertainty analysis show that the average error of KELM was the lowest (Se=0.00015), the width of confidence band was the narrowest (BD=0.04942), and the range of 95% confidence interval was the smallest (−0.04927-0.04956), indicating the highly consistent data and the high reliability of the sample. Therefore, the KELM shared the higher accuracy and robustness, compared with the SVM, GRNN, and ELM models. An efficient and high-precision model was achieved for the flow calibration of the radial gate. The Sobol’s sensitivity analysis showed that the main influencing factors were the ratio of trunnion pin height to upstream water depth (h/Y0), the ratio of gate radius to upstream water depth (R/Y0), and the ratio of gate width to upstream water depth (B/Y0). Furthermore, these parameters (h/Y0, R/Y0, B/Y0) should be considered emphatically in the design of radial gates in practice. The first-order sensitivity coefficient and global sensitivity coefficient to Cd were ranked in the descending order of 0.1162, 0.0754, 0.0752, and 0.5311, 0.4966, 0.4959, respectively. Therefore, the global sensitivity coefficient was much higher than the first-order sensitivity, indicating that the interaction of parameters increased the influence of each parameter on the discharge coefficient. The variation between important parameters and discharge coefficient Cd showed that the Cd increased linearly with the increase of h/Y0, R/Y0 and B/Y0. In addition, the smaller the gate opening W was, the larger the increase of the discharge coefficient Cd was. This finding can further improve and enrich the hydraulic mechanism of the radial gate under submerged flow conditions. A strong reference can be offered for the calibration of submerged radial gates during the engineering design in irrigation areas.

       

    /

    返回文章
    返回