Processing math: 100%
    • EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

青菜头缩短茎滑切刀研制

向旺, 孙玉华, 刘凡一, 李明生, 谢守勇, 柯超, 黄窈

向旺,孙玉华,刘凡一,等. 青菜头缩短茎滑切刀研制[J]. 农业工程学报,2023,39(16):266-275. DOI: 10.11975/j.issn.1002-6819.202305174
引用本文: 向旺,孙玉华,刘凡一,等. 青菜头缩短茎滑切刀研制[J]. 农业工程学报,2023,39(16):266-275. DOI: 10.11975/j.issn.1002-6819.202305174
XIANG Wang, SUN Yuhua, LIU Fanyi, et al. Development of the sliding cutter for the shortened stem of tumorous stem mustard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(16): 266-275. DOI: 10.11975/j.issn.1002-6819.202305174
Citation: XIANG Wang, SUN Yuhua, LIU Fanyi, et al. Development of the sliding cutter for the shortened stem of tumorous stem mustard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(16): 266-275. DOI: 10.11975/j.issn.1002-6819.202305174

青菜头缩短茎滑切刀研制

基金项目: 国家自然科学基金青年科学基金项目(52105276);重庆市技术创新与应用发展专项重点项目(cstc2021jscxx-gksbX0019)
详细信息
    作者简介:

    向旺,研究方向为智能农机装备设计与开发。Email:1164081532@qq.com

    通讯作者:

    谢守勇,教授,博士生导师,研究方向为智能农机装备开发和机电一体化。Email:xsyswu@163.com

  • 中图分类号: S223.4

Development of the sliding cutter for the shortened stem of tumorous stem mustard

  • 摘要:

    青菜头机械化收获水平低下是制约青菜头产业发展的重要原因之一。为解决青菜头机械化收获过程中缩短茎切割难度大和农机与农艺融合程度低等问题,该研究提出了一款滑切式青菜头收获机并对其滑切刀作业参数进行分析与试验。首先,基于青菜头收获农艺要求阐述青菜头收获机整机及其切根装置的结构及工作原理,根据受力分析确定滑切刀安装方式。然后,对紫色土壤和滑切刀的接触参数进行标定并基于EDEM建立土壤-滑切刀互作模型,仿真分析不同作业速度、刀具夹角对滑切刀作业阻力的影响。结果表明:1)相同速度下,滑切刀交叉夹角与作业阻力负相关;2)相同滑切刀角度下,滑切刀作业阻力与作业速度正相关。以滑切刀切削阻力为评价指标,作业速度、刀具夹角、切割距离为影响因素进行切割试验并对试验参数进行优化,结果表明:滑切刀作业速度与切削阻力呈正相关,切割距离与切削阻力呈负相关,刀具夹角从60°到120°,切削阻力先减小再增大。影响切削阻力大小的主次因素顺序为作业速度、刀具夹角和切割距离。优化圆整后的滑切刀作业速度为0.1 m/s,刀具夹角65°,切割距离20 mm,3次重复试验得到的切削阻力依次为141.24 、156.32 和150.65 N,与理论切削阻力128.63N相对误差分别为9.8%、21.53%和17.12%,较 Box-Behnken试验平均切削阻力分别下降44.30%,38.35%和40.59%,验证了滑切刀作业参数优化的有效性。研究结果可为青菜头机械化收获提供参考,具有重要的工程应用价值。

    Abstract:

    Brassica juncea var. tumida (tumorous stem mustard, TSM) is one of the most important vegetable crops of the Brassica genus of the Cruciferae family. However, the low level of mechanized harvesting cannot fully meet the large-scale production in the TSM industry. There is a high demand to shorten the stem cutting for the better integration of agricultural machinery and agronomy in the process of mechanized harvesting of TSM. In this study, a sliding-cut TSM harvester was proposed to optimize the operating parameters of its sliding cutter. Firstly, the structure and working principle were elaborated for the TSM harvester and root-cutting device, according to the agronomic requirements of the TSM harvesting. The sliding cutting was analyzed to compare the current shortened stem reciprocating and rotary cutting of TSM. The shape and structural parameters were determined to ensure the working strength of the sliding cutter. The installation of the sliding cutter was clarified, according to the force analysis. The contact parameters were calibrated between purple soil and slide cutter in the southwestern region. A soil-sliding cutter interaction model was established using EDEM software. A simulation was then implemented to analyze the impact of different operating speeds and cutter angles on the working resistance of the sliding cutter. The results showed that the angle between the sliding cutter and the working resistance was negatively correlated at the same speed, whereas, the working resistance of the sliding cutter was positively correlated with the working speed at the same sliding cutter angle. The soil tank test was conducted to verify the reliability of the parameter setting in the discrete element model, indicating the better performance of the sliding cutter. The cutting test was also carried out to optimize the test parameters, with the cutting resistance as the evaluation index, and with the operating speed, the angle of the cutter, as well as the cutting distance as the influencing factors. The results showed that the operating speed of the sliding cutter was positively correlated with the cutting resistance, whereas, the cutting distance was negatively correlated with the cutting resistance. The cutting resistance first decreased and then increased, when the tool angle was from 60° to 120°. The influencing factor of cutting resistance was ranked in the order of importance: operating speed, tool angle, and cutting distance. Furthermore, the operating speed of the sliding cutter was 0.1 m/s, the included angle of the cutter was 65°, and the cutting distance was 20 mm after optimized rounding. The values of cutting force in three repeated tests were 141.24, 156.32 and 150.65 N, respectively, where the errors were 9.8%, 21.53%, and 17.12%, respectively, compared with the theoretical of 128.63 N. Those values were 44.30%, 38.35% and 40.59% lower than the average cutting force in the Box-Behnken test. The optimal parameters of sliding knife operation were also verified. The findings can provide a strong reference for the mechanized harvesting of TSM, indicating the important engineering application.

  • 煤炭作为中国主要的能源,被广泛地应用于社会生产的方方面面,并对中国经济的发展起到至关重要的作用。然而,煤炭资源的开采利用对中国经济和社会的发展提供充足动力的同时,也导致了当地生态环境的破坏[1]。据不完全统计,中国已有6.67×106 hm2的土地因以往长期粗放式的开采而损毁,其中大部分是农耕地或是其他农业用地[2]。被破坏的农用地导致了煤矿区的人地矛盾日益严重,并严重威胁中国的粮食安全和绿色农业的可持续发展[3]。因此,对采煤塌陷区的土壤进行生物、化学复垦,使其土壤肥力提高,对于中国保持土壤耕地面积与质量、坚守耕地红线意义非凡。

    山西作为中国重要的产煤供煤大省,已探知的煤炭储存面积为6.2万 km2,在2023年的煤炭产量已超13.0亿t,并较2022年同比增加1.13亿t,占全国产量近1/3。但随着煤炭开采,已有4166.02 km2的土地变为采空区。因此,在山西开展矿区土壤复垦研究使其恢复土壤肥力,对实现区域耕地质量提升以及绿色农业的可持续发展具有重要意义。施肥作为提升土壤地力以及提高作物产量最直接有效的措施,已有研究证实不同的施肥措施能有效改善土壤理化性质[4]、增加土壤养分含量[5]、调节微生物种群群落[6]以及提高农作物生物性状及产量[7]。此外,就不同施肥措施对复垦土壤作物产量、土壤养分、微生物活性的影响,近年来已有不少报道[2,8-9]。然而,上述的研究发现均基于5a以上的长期定位培肥试验所得,且复垦初期,土壤多为附近土壤与煤矿废弃物混合而成,导致平整后的耕层土壤理化结构差、肥力极低[10]。鉴于此,如何在传统施肥模式下找到更加高效的施肥方式应用于较一般耕地肥力更加贫瘠的复垦土壤,探明短期复垦对有效养分以及微生物活性影响与机理还需进一步研究。功能微生物菌剂作为一种新兴的绿色肥料,与化学肥料相比,对生态系统影响较小,近年来已广泛利用在可持续农业、环境保护以及生态修复等方面。在众多功能微生物菌中,荧光假单胞菌(Pseudomonas fluorescens)因具有抑制病原菌生长、降解污染物、吸附重金属离子以及高效的解磷能力而具有良好的应用市场[11]。相关研究发现,荧光假单胞菌可以防治农作物病害、提高肥料利用率从而促进作物生长以及明显改善土壤养分水平[12]。综上所述,由于前人针对复垦土壤养分含量及生物活性的研究主要基于传统施肥模式(化肥、有机肥的配合施用)下的长期培肥试验,但在短期复垦条件下,通过配施功能菌剂来影响土壤有效磷含量变化的关键因素及主要措施尚不明确。

    因此,本研究选取了山西省晋中市榆次区后沟村经过2a复垦的土壤作为研究对象,通过分析在不同施肥措施下,复垦初期土壤中各形态磷素、酸性和碱性磷酸酶以及玉米产量的变化特征,并探究各形态磷素、微生物量磷以及磷酸酶与有效磷之间的转化关系,以期筛选出一种更适宜荧光假单胞菌发挥效果的施肥模式,为复垦土壤培肥提供可靠的方法和理论依据,保障作物稳产高产。

    试验地位于山西省晋中市榆次区乌金山镇后沟村(112°48′13.64″E,37°50′11.38″N),属乌金山矿区井田范围。煤矿开采导致地面沉陷使地形呈漏斗形,最大落差3~4 m。2019年9月混堆平整后,从附近山体取土覆盖其上部。试验地于2021年开始复垦种植玉米,2022年为土壤复垦第2年。该区气候属于暖温带季风气候,年均降雨量489 mm,无霜期160 d左右,年均气温9~10 ℃,并在7月份温度最高(平均达22 ℃)。土壤类型为石灰性褐土,质地为中壤土。0~20 cm表土初始理化性质为:有机质(soil organic matter, SOM)3.28 g/kg,全氮(total nitrogen, TN)0.23 g/kg,全磷(total phosphorus, TP)0.23 g/kg,全钾(total potassium, TK)1.98 g/kg,碱解氮(available nitrogen,AN)9.32 mg/kg,有效磷(available phosphorus,AP)2.48 mg/kg,速效钾(available potassium,AK)67.08 mg/kg,pH值为 8.43。

    供试菌株为山西农业大学资源环境学院矿区土壤复垦与微生物多样性研究室在山西省石灰性土壤中筛选出具有高效解磷能力的两株荧光假单胞菌W134-1、W137-1,存于中国普通微生物菌种保藏管理中心,两株菌并无拮抗作用。复合菌的解磷量为632.45 mg/L,碱性磷酸酶活性(alkaline phosphatase,ALP)为231.08 μg/(mL·h),酸性磷酸酶活性(acid phosphatase,ACP)为125.54 μg/(mL·h)。采用LB培养基(蛋白胨10 g/L,酵母提取物5 g/L,NaCl 10 g/L)培养至对数生长期(OD600=1)制成菌肥,有效活菌数≥2×108 CFU/g。

    供试化肥为尿素(N 46%)、过磷酸钙(P2O5 16%)、硫酸钾(K2O 52%),有机肥为腐熟鸡粪(有机质 30.12%、N 1.67%、P2O5 1.23%、K2O 1.08%),由太谷区鸿昊养殖专业合作社提供。供试玉米品种为五谷 568,全生育期 130 d,由甘肃五谷种业有限公司提供,其种植密度为 58000 株/hm2

    试验采用随机区组共设7个处理,每个处理重复3次,每个小区30 m2(5 m×6 m),各小区间隔60 cm。其中,不加荧光假单胞菌的处理用等量经灭活的LB液体培养基代替,各处理的施肥用量参考当地农户的习惯施肥量并结合前期课题组对该类型菌在盆栽试验中具体情况,按照等量施肥原则,于玉米播种一周前一次性撒施,随即翻耕入土,各处理具体施肥用量见表1。玉米于2022年4月下旬播种,9月20日收获,在玉米生育期内不进行灌溉。

    表  1  试验处理及肥料用量
    Table  1.  Experimental treatment and fertilizer dosage kg·hm−2
    处理
    Treatment
    尿素
    Urea
    过磷酸钙
    Calcium
    superphosphate
    硫酸钾
    Potassium
    sulfate
    有机肥
    Organic
    fertilizer
    菌肥
    Microbial
    fertilizer
    不施肥(CK) 0 0 0 0 0
    单施化肥(CF) 653 1384 374 0 0
    化肥+菌(CFB) 604 1280 346 0 1500
    单施有机肥(M) 0 0 0 18000 0
    有机肥+菌(MB) 0 0 0 16500 1500
    化肥+有机肥(MCF) 327 692 187 9000 0
    化肥有机肥+菌(MCFB) 272 577 156 7500 1500
    下载: 导出CSV 
    | 显示表格

    玉米收获后,采用五点采样法采集各处理0~20 cm土壤样品,共计21份土样,土样去除植物残根和其他杂质后分为两份,一份过筛(2.00 mm)后于4 ℃冰箱保存用于测定土壤磷以及磷酸酶活性,另一部分制成风干土用于测定土壤各磷素形态以及有效磷。

    在每个小区随机采取20株植株用于测定玉米穗粒数、百粒质量并计算产量。采用钼锑抗比色法[13]测定土壤全磷(TP),采用Olsen法[14]测定土壤中有效磷(Olsen-P)。采用WANG等[15]改进的Hedley法依次提取出土壤中的树脂态无机磷(Resin-P)、碳酸氢钠态磷(NaHCO3-Pi和NaHCO3-Po)、氢氧化钠态磷(NaOH-Pi和NaOH-Po)、盐酸态磷(HCl-P)以及残余态磷(Residual-P),后均用钼锑抗比色法测定各形态提取液中的磷含量。除此之外,将Resin-P、NaHCO3- Pi和NaHCO3-Po合称为不稳定态磷(L-P),将NaOH- Pi和NaOH- Po合称为中等不稳定态磷(M-P),将HCl-P和Residual-P合称为稳定态磷(S-P)[16]。微生物量磷(SMBP)用氯仿熏蒸浸提法测定[17];酸性、碱性磷酸酶活性(ACP、ALP)采用磷酸苯二钠比色法测定[18]

    磷活化系数(phosphorus activation coefficient,PAC)用于表征土壤磷的有效性,并使用全磷(TP)和有效磷含量计算[19]

    磷活化系数(%)=有效磷含量(mg/kg)/全磷含量(mg/kg)×100

    采用Microsoft Excel 2016对数据进行初步的整理与计算,采用SPSS 26.0进行单因素方差分析和多重比较以及用最小显著极差法(Duncan)在5%水平上对不同处理的结果进行差异显著性检验,采用IBM SPSS AMOS 24.0软件建立结构方程模型(structural equation modeling,SEM)。通过低χ2/df(χ2/df<3,χ2/df越接近1模型效果越好,P>0.05)、高拟合度指数(GFI>0.9)、低均方根误差(RMSEA<0.05,RMSEA=0表示完全拟合)来评价模型拟合性。

    在整个试验周期内,不同施肥处理对玉米的穗粒数、百粒质量以及产量产生显著影响(图1)。与CK相比,各处理下玉米穗粒数、百粒质量以及产量分别显著增加1.12~1.43倍、0.24~0.37倍以及2.02~2.40倍(P<0.05)。较不施荧光假单胞菌处理相比,相应配施处理均以MB处理对穗粒数和百粒质量的增幅最大,较M处理分别显著增加9.53%和10.58%(P<0.05)。在产量方面,未配施荧光假单胞菌的施肥处理以CF处理较CK处理增幅最大,产量显著提高2.22倍;配施荧光假单胞菌后以MB处理较CK处理增幅最大,产量显著提高2.40倍。

    图  1  不同施肥处理下玉米产量
    注:不同小写字母表示处理间差异显著(P < 0.05)。
    Figure  1.  Maize yield under different fertilization treatments
    Note: Different lowercase letters indicate significant differences between the treatments (P < 0.05).

    不同施肥措施对复垦土壤TP、Olsen-P、PAC值产生显著影响(图2)。与CK相比,Olsen-P含量与PAC值均以MB处理增幅最大,Olsen-P含量显著提高4.50倍、PAC值显著提高4.67倍(P<0.05)。

    图  2  不同施肥处理下复垦土壤全磷和有效磷含量以及磷活化系数值
    Figure  2.  TP ,Olsen-P concentrations and phosphorus activation coefficient values in reclamation soil under different fertilization treatments

    与相应未配施荧光假单胞菌处理相比,配施处理对土壤TP含量以及PAC值均无显著影响,但MB较M处理相比,在Olsen-P含量上能够显著提高,增幅为11.02%。此外,在均配施荧光假单胞菌条件下,MB处理分别较CFB处理以及MCFB处理相比,Olsen-P含量和PAC值均能显著提高,Olsen-P含量分别显著提高43.95%和22.83%,PAC值分别显著提高49.77%和19.71%( P <0.05)。

    与CK处理相比,不同施肥措施显著提高复垦土壤L-P、M-P以及S-P含量(图3),其中L-P、M-P分别是其1.98、2.16倍。与相应未配施处理相比,配施荧光假单胞菌后显著提高L-P含量,CFB较CF处理、MB较M处理、MCFB较MCF处理增幅分别为8.58%、13.56%、12.73%(P<0.05)。在配施荧光假单胞菌后,与相应未配施处理相比,M-P含量以CFB较CF处理和MB较M处理提升效果显著,CFB较CF处理显著提高9.61%、MB较M处理显著提高9.76%(P<0.05)。随着荧光假单胞菌的施入,与相应未配施处理相比,S-P含量一定程度减小。其中,以CFB较CF处理、MCFB较MCF处理降幅显著,S-P含量分别显著降低2.65%和3.51%(P<0.05)。此外,L-P和M-P含量均在MB处理下最高,MB较CFB处理,L-P含量显著提高25.36%、M-P显著提高20.46%;MB较MCFB处理,L-P显著提高8.79%;MB较CK处理,L-P显著提高98.46%、M-P显著提高115.63%( P <0.05)。

    图  3  不同施肥处理下复垦土壤不稳定磷、中等不稳定磷以及稳定磷含量
    Figure  3.  Concentrations of labile P, moderately labile P, and stable P in reclamation soil under different fertilization treatments

    不同施肥处理能够显著影响复垦土壤Resin-P、NaHCO3-Pi、NaHCO3-Po、NaOH-Pi、NaOH-Po以及HCl-P含量,而对Residual-P则是有一定程度的影响(图4)。

    图  4  不同施肥处理下复垦土壤各磷组分含量
    Figure  4.  Concentrations of each P fraction in reclamation soil under different fertilization treatments

    具体而言,各处理与CK处理相比Resin-P含量显著提高40.56%~104.06%、NaHCO3-Pi含量显著提高49.48%~95.95%、NaHCO3-Po含量显著提高31.25%~71.87%、NaOH-Pi含量显著提高53.63%~88.33%、NaOH-Po含量显著提高104.55%~190.91%、HCl-P含量显著提高18.61%~31.75%(P<0.05)。此外,配施荧光假单胞菌各处理较相应未配施处理能够一定程度影响作为活性磷的Resin-P以及NaHCO3-Pi含量。具体而言,Resin-P和NaHCO3-Pi含量均以MB较M处理和MCFB较MCF处理提升效果较佳,MB较M处理Resin-P和NaHCO3-Pi含量分别显著提高16.02%和12.00%;MCFB较MCF处理Resin-P和NaHCO3-Pi含量分别显著提高12.96%和12.65%(P<0.05)。

    不同施肥措施对复垦土壤SMBP水平以及ALP、ACP活性产生显著影响(图5)。与CK相比,不同施肥处理下的SMBP水平以及ALP、ACP活性分别显著提高1.71~3.04倍、 0.78~1.57倍、0.64~1.34倍(P<0.05)。此外,配施荧光假单胞菌各处理较相应未配施处理能够一定程度影响SMBP水平以及ALP活性,但对ACP活性无显著影响。具体而言,配施荧光假单胞菌后,与相应未配施处理相比,SMBP水平均能显著提高,CFB较CF处理、MB较M处理、MCFB较MCF处理增幅分别为14.89%、27.08%、22.71%(P<0.05)。ALP活性以MB较M处理提升效果最佳,显著提高9.56%(P<0.05)。所有处理均以MB处理的SMBP水平以及ALP、ACP活性最高。

    图  5  不同施肥处理下复垦土壤微生物量磷以及碱性、酸性磷酸酶活性
    Figure  5.  SMBP, ALP and ACP activities in reclaimed soil under different fertilization treatments

    为了明确各形态磷素与土壤肥力的关系,将复垦土壤各形态磷素与Olsen-P进行相关性分析(图6)。

    图  6  土壤各形态磷素与有效磷的关系
    注: **表示P < 0.01;*表示P < 0.05。
    Figure  6.  The relationship between each phosphorus fraction and Olsen-P
    Note: **means significant differences at P < 0.01; *means significant differences at P < 0.05.

    结果表明Olsen-P含量值与Resin-P、NaHCO3-Pi、NaHCO3-Po、NaOH-Pi、NaOH-Po、HCl-P含量呈显著正相关关系 (P<0.01),与Residual-P含量呈负相关关系。其中,Olsen-P与Resin-P以及NaHCO3-Pi正相关系数较大,分别为0.92和0.94,这说明不同肥料与荧光假单胞菌配施对Resin-P以及NaHCO3-Pi的影响最为密切,这与本文之前的结果分析保持一致。显然,各形态磷素与Olsen-P密切相关。

    通过利用结构方程模型(SEM),在相关性分析的基础上进一步揭示了各形态磷(L-P、M-P、S-P)、微生物量磷(SMBP)、酸碱磷酸酶活性(ALP、ACP)以及有效磷(Olsen-P)之间的因果关系(图7),用于进一步解释和量化各形态磷素对SMBP、ALP、ACP、Olsen-P的影响、评价土壤肥力。模型与数据拟合度较高,可以解释SMBP、ALP、ACP、Olsen-P的方差比例分别是95%、90%、85%、95%。SMBP、ALP受L-P、M-P、S-P的直接影响,ACP受L-P、M-P的直接影响,Olsen-P受L-P、M-P、S-P、SMBP、ALP、ACP的直接影响。其中,以L-P至Olsen-P和SMBP的标准化路径系数较高,分别为0.63和0.61,且均呈显著正相关关系。

    图  7  土壤各形态磷素与土壤微生物量磷、酶活性以及有效磷的结构方程模型
    注:实线和虚线分别表示正负关系;箭头上面的数字表示标准化后的路径系数;指标附近的R2值表示变量的方差解释比例;*表示P < 0.05。
    Figure  7.  Structural equation model analysis of each P fraction, soil microbial biomass phosphorus, enzyme activity and Olsen P
    Note: Positive and negative effects are respectively showed in solid line and dotted line. The standardized coefficients are marked above each path. R2 values represent the proportion of the variance explained for each endogenous variable; *means P < 0.05.

    本研究结果表明,单施化肥、有机肥以及化肥有机肥配施与CK相比均能够显著提高复垦土壤玉米产量,配施荧光假单胞菌后效果更好这与梁利宝等[20]研究结果一致。但较自然耕地以及长期连续培肥的复垦土壤相比,产量较低[21-22]。这是因为初期复垦的土壤作物所必需的N、P、K营养元素均较低、土壤结构差、微生物极少。随着化肥、有机肥以及荧光假单胞菌的施入虽然能够一定程度上改善土壤情况,但和自然耕地以及长期培肥的复垦土壤相比还远远不够。

    有机肥、化肥配施荧光假单胞菌可以提高复垦土壤各形态磷素,这与吴文丽等[23]研究在复垦土壤上连续施用菌肥对Hedley磷形态的影响的结果一致。本研究发现,配施荧光假单胞菌后,在相对应未配施处理的基础上,土壤各形态磷素(HCl-P、Residual-P除外)以及PAC值均有所提高,这与CHEN等[16]研究发现,化肥配施粪肥后较单施化肥相比,对HCl-P以及Residual-P含量有所提高的结论不一致,其原因可能是土壤类型和施肥类型共同决定的。CHEN研究的供试土壤是用于水稻种植的自然耕地,其本身基础的理化性质就比较优越。杨振兴等[24]研究发现,磷肥的施入会导致土壤中磷素的积累,而有机肥的施入更会加剧这种累积。因此HCl-P和Residual-P作为难以被植物吸收利用的稳定态磷,成为土壤磷素累积的主要成分。而用于此次试验的复垦土壤处于复垦初期,土壤磷素十分匮乏,为了最大程度地促使种植作物吸收土壤中的磷素,有益微生物会加速对稳定态磷的分解矿化。除此之外,解磷菌的施入可以通过酶解等途径使土壤中的稳定态磷转化,补给作物对磷的需求[25],因此具有解磷效果的荧光假单胞菌施入更能够加速稳定态磷的矿化,本文研究结果:不稳定态磷、中等不稳定态磷含量以及PAC值在配施荧光假单胞菌后有所提高也从侧面进行了佐证(图3)。

    研究发现,施用有机肥、化肥以及有机肥化肥配施可以显著提高土壤中SMBP水平以及ALP、ACP活性[26]。在本研究中,单施化肥、有机肥能够显著提高SMBP水平,配施荧光假单胞菌后,较相应未配施的处理相比SMBP水平显著提高,并以MB处理的效果最好(图5)。这可能是因为化肥的施入可以为微生物提供磷源,而有机肥的施入在此基础上可以进一步改善土壤的理化性状,为微生物生长提供良好的生活环境[27]。除此之外,菌的施入能够提高复垦土壤有机质、有机磷含量,进而增加了土壤微生物量。另外,单施化肥、有机肥能够显著提高复垦土壤ALP、ACP活性,添加荧光假单胞菌的处理的ALP、ACP活性较相应未添加的各处理相比均有不同程度的提升。其原因可能一方面是因为较自然耕地相比复垦土壤本身就缺磷,而在长期缺磷的环境可以提高土壤磷酸酶的活性[28];另一方面,较自然耕地相比复垦土壤本身微生物数量就稀少,减少了土壤原有微生物对添加的外源微生物的拮抗作用,而土壤中活体微生物数量的增加能够增强了土壤生物活性和生化活性,促进土壤酶活性。

    Olsen-P作为一种土壤磷指标,可以直接反映土壤有效磷含量的水平,评估土壤磷供应能力,指导磷肥管理和施肥决策,并在土壤肥力评估中发挥重要作用。本研究中Olsen-P水平与Resin-P、NaHCO3-Pi、NaHCO3-Po的相关性较好(分别为0.92、0.94、0.84),并与NaHCO3-Pi的相关性最高(图6),这说明L-P(Resin-P、NaHCO3- Pi、NaHCO3- Po)水平可以反映在荧光假单胞菌配合化肥有机肥施入复垦土壤后,能够提高复垦土壤对作物供磷的潜力,而通过结构方程模型也可以得出L-P的水平可以显著直接正向影响着Olsen-P的含量(图7),这与吴文丽等[23]的研究结果一致。

    土壤微生物在碳氮磷循环中发挥着分解、固定和转化的重要作用,促进着碳氮和磷在生态系统中的循环和平衡,被认同是表现土壤质量变化过程中最敏感和最有潜力的指标[29],而土壤磷酸酶可以使有机磷降解、参与磷循环以及影响土壤肥力和磷肥利用效率,对植物生长和土壤环境的健康具有重要影响。在本研究中SMBP、ALP受L-P、M-P、S-P的直接正向影响,而ACP只受L-P、M-P的直接正向影响,这可能是因为土壤磷酸酶活性受土壤pH显著影响[30],所以ACP在本试验地的碱性环境中(土壤pH值8.43)有益作用受到抑制,况且S-P作为稳定态磷本身就很难参与微生物中磷的矿化反应,因此,即使S-P含量变化也无法影响ACP的活性变化。除此之外,L-P与SMBP有显著的直接正向影响且标准化路径系数较大,这说明,除了微生物量的增多可以通过微生物对磷矿化或固定化直接或间接影响各形态磷的转化外[31],随着不稳定态的磷含量增多,也可以促使与磷素相关的微生物增多,本试验配施的荧光假单胞菌数量可能会增多。而这再结合结构方程模型中L-P对ALP、ACP以及Olsen-P的直接正向影响,也从侧面说明了在土壤贫瘠、微生物数量少的复垦土壤中有机肥、化肥配施荧光假单胞菌,可以促使磷素在农田生态系统中的循环转化,并产生积极的正向影响。

    综上,由于土壤微生物量磷、土壤磷酸酶活性、有效磷以及磷活化系数可以一定程度上综合反映土壤肥力,因此,探究不同施肥方案对土壤各磷素形态的影响,并在有机肥、化肥配施荧光假单胞菌的施肥措施下建立土壤各形态磷素与土壤微生物量磷、土壤磷酸酶活性、有效磷以及磷活化系数值之间的联系,可以更好地解释有机肥、化肥配施荧光假单胞菌的不同施肥方案是如何影响各形态磷素水平,从而影响土壤肥力,便于更好地评估施肥方案对复垦土壤肥力的影响。

    1)在整个试验周期,与不施肥(CK)相比,不同施肥处理均能显著提高玉米产量以及各形态磷素。其中,以有机肥配施荧光假单胞菌(MB)处理下的玉米产量、有效磷、磷活化系数、不稳定态磷和部分不稳定态磷含量最高,玉米产量显著提高2.40倍,有效磷含量、磷活化系数值、不稳定态磷含量、部分不稳定态磷含量分别显著提高4.50倍、4.67倍、0.98倍、1.16倍。此外,与未配施荧光假单胞菌处理相比,相应配施处理玉米穗粒数、百粒质量、土壤有效磷、不稳定态磷以及部分不稳定态磷含量均以MB较M处理提升效果最佳,分别显著提高9.53%、10.58%、11.02%、13.56%、9.76%。

    2)在微生物活性方面,与CK处理相比,化肥、有机肥配施荧光假单胞菌能够显著提高土壤微生物量磷以及酸性和碱性磷酸酶活性,配施荧光假单胞菌后,微生物量磷水平和碱性磷酸酶活性均以MB较M处理提升幅度最大,分别显著提高27.08%和9.56%,而酸性磷酸酶活性受供试土壤pH影响,配施荧光假单胞菌处理较相应未配施处理并没有显著影响其活性。

    3)结合相关性分析以及结构方程模型,随着荧光假单胞菌和化肥有机肥的施入,提高了不稳定态磷素含量的同时也提高有效磷的供应能力(显著正相关,标准化路径系数为0.63),促进磷素在复垦土壤农田生态系统中的循环转化,并产生积极的正向影响。

  • 图  1   青菜头及其种植农艺示意图

    注:m为行距,cm;n为株距,cm;h为起垄高度,cm;f为垄宽,cm;l为垄沟宽度,cm;r为青菜头土壤窝洞曲率半径,cm;q为青菜头叶自然展开宽度,cm;p为叶和叶柄高度,cm;s为缩短茎长度,cm。

    Figure  1.   Schematic diagram of tumorous stem mustard and its planting agronomy

    Note: m is the row spacing, cm; n is the plant spacing , cm; h is the ridge height, cm; f is the width of the ridge, cm; l is the width of the furrow, cm; r is the radius of the soil cavity of tumorous stem mustard, cm; q is the natural unfolded width of tumorous stem mustard leaf, cm; p is the height of leaf and petiole, cm; s is the shorten stem length,cm.

    图  2   青菜头收获机结构图

    Figure  2.   Structural diagram of mustard harvester

    图  3   青菜头切根夹叶机构组成

    1.电机支座 2.抛叶杆 3.电机 4.主动同步轮 5.刀具调整杆固定装置 6.张紧轮固定叉 7.张紧轮 8.张紧板 9.张紧弹簧 10.仿形支撑架固定装置 11.从动同步轮 12.仿形支撑装置弹簧13.仿形支撑架 14.插销 15.滑切刀 16.刀具调整杆 17.弹簧限位架 18.张紧辊 19.机架 20.螺栓 21.同步带 22.轴承座 23.电机轴

    Figure  3.   Composition of the root cutting and leaf clamping mechanism for tumorous stem mustard

    1.Motor support 2.Leaf throwing lever 3.Motor 4.Active synchronous wheel 5.Cutter regulating lever fixing device 6.Tensioning wheel fixing bracket 7.Tensioning wheel 8.Tensioning plate 9. Tensioning spring 10.Profiling support frame fixing device 11.Driven synchronous wheel 12.Profiling support device spring 13.Profiling support frame 14.Latch pin 15.Sliding cutter 16.Cutter regulating lever 17.Spring limit bracket 18.Tension roller 19.Rack 20.Bolt 21.Timing belt 22.Bearing seat 23.Motor shaft

    图  4   滑切刀结构参数示意图

    注:l1是刀背长度,mm;l2是刀刃长度,mm;l3是刀面宽度,mm;l4是刀具厚度,mm;l5是刀柄直径,mm;α是刃口斜度,(°);β是刃口与侧边夹角,(°)。

    Figure  4.   Sliding cutter structure parameters diagram

    Note: l1 is the back length of cutter, mm; l2 is the length of cutting edge, mm; l3 is the width of cutter face, mm; l4 is the thickness of cutter, mm; l5 is the diameter of cutter handle, mm; α is the slope of cutting edge, (°); β is the angle between the cutting edge and the side, (°).

    图  5   滑切刀安装示意图

    Figure  5.   Installation diagram of sliding cutter

    图  6   滑切刀切割过程受力分析图

    注:Fx是前进方向阻力,N;Fa是平行切根夹叶机架的推力,N;Fz是土壤对刀具的支持力,N;Fp为滑切刀对土壤的压力,N; Fx为底盘推力,N;Ff是土壤摩擦力,N;Fb是切削力,N;Fc是刀具对土壤的破碎力,N;Fd是滑切刀受到的径向阻力,N;θ是切根夹叶机构机架与地面的夹角,(°);v是前进方向速度,m·s-1

    Figure  6.   Force analysis of sliding cutter during cutting process

    Note: Fx is the resistance in the forward direction, N; Fa is the thrust of the parallel root-cutting and leaf-clamping frame, N; Fz is the support force of the soil on cutter, N; Fp is the pressure of slip cutting on the soil, N; Fx is the chassis thrust, N; Ff is the soil friction, N; Fb is the cutting force, N; Fc is the breaking force of cutter on the soil, N; Fd is the radial resistance on sliding cutter, N; θ is the angle between the frame of the root-cutting and leaf-clamping mechanism and the ground, (°); v is the speed in the forward direction, m·s-1.

    图  7   土壤颗粒接触模型

    注:cnct分别是法向和切向阻尼比,knkt分别为法向和切向刚度,μ′为土壤间摩擦系数。

    Figure  7.   Soil particle contact model

    Note: cn and ct are the normal and tangential damping ratios, respectively, kn and kt are the normal and tangential stiffnesses, respectively, and μ′ is the friction coefficient between soils.

    图  8   土壤休止角测量

    Figure  8.   Repose angle measurement of soil

    图  9   土壤-刀具互作过程

    Figure  9.   Soil-cutter interaction process

    图  10   刀具作业阻力

    注:图例数据为滑切刀作业速度和夹角。

    Figure  10.   Cutter working resistance

    Note: The datas in legend mean the working speed and included angle of the sliding cutter.

    图  11   土槽试验平台

    1. 从动件 2. 拉力传感器 3. 三相电机 4. 主动件 5. 变送器 6. 笔记本电脑 7. 串口 8. 齿条 9. 土槽 10. 滑切刀

    Figure  11.   Soil tank test platform

    1.Driven parts 2.Pull sensor 3.Three-phase motor 4.Driving parts 5.Transmitter 6.Laptop computer 7.Serial port 8.Rack 9.Soil tank 10.Sliding cutter

    图  12   数据采集流程图

    Figure  12.   Data acquisition flow chart

    图  13   土槽试验结果对比分析图

    Figure  13.   Comparison analysis chart of soil tank test results

    图  14   试验材料及切割位置示意图

    Figure  14.   Schematic diagram of test material and cutting position

    图  15   缩短茎切割试验

    Figure  15.   Shorten stem cutting test

    表  1   青菜头收获机主要参数

    Table  1   Main parameters of mustard harvester

    参数Parameters数值Values
    整机尺寸(长×宽×高)/mm2000×770×1300
    底盘动力/kW4
    收获行数2
    前进速度/(km·h−1)0~0.5
    收获行距/mm270~490
    倾斜机架可调角度(与地面夹角)/(°)30~60
    理论工作效率/(hm2·h−1)0.039
    切根夹叶装置机架倾斜角度(与地面夹角)/(°)10
    下载: 导出CSV

    表  2   土壤-刀具仿真参数

    Table  2   Soil-tool simulation parameters

    参数Parameters数值Values
    土壤密度/(g·cm-3)
    1.72
    土壤泊松比
    0.35
    土壤剪切模量/Pa
    1.02×107
    土壤-土壤恢复系数
    0.3
    土壤-土壤静摩擦系数
    0.75
    土壤-土壤动摩擦系数
    0.231
    高速钢密度/(g·cm-3)
    8.7
    高速钢泊松比
    0.3
    高速钢杨氏模量/Pa
    2.1×1011
    土壤-高速钢恢复系数
    0.3
    土壤-高速钢静摩擦系数
    1.04
    土壤-高速钢动摩擦系数
    0.228
    下载: 导出CSV

    表  3   粘接键仿真参数

    Table  3   Sticky bond simulation parameters

    参数Parameters数值Values
    单位面积法向刚度/(N·m-3)
    2×106
    单位面积切向刚度/(N·m-3)
    2×106
    临界法向应力/Pa
    1.5×104
    临界切向应力/Pa
    1.5×104
    粘结半径/mm
    3
    下载: 导出CSV

    表  4   单因素试验结果

    Table  4   Results of single factor test

    因素
    Factors
    数值
    Values
    切削阻力
    Cutting resistance/N
    作业速度
    Operating speed/(m·s−1)
    0.1204.73
    0.2243.44
    0.3293.90
    0.4344.25
    滑切刀夹角
    Sliding cutter angle/(°)
    60290.83
    90261.19
    120271.44
    150336.32
    切割距离
    Cutting distance/mm
    0299.65
    10238.37
    20211.92
    30143.12
    下载: 导出CSV

    表  5   试验因素水平表

    Table  5   Test factor level table

    水平
    Levels
    作业速度
    Operating speed
    A/( m·s−1)
    滑切刀夹角
    Sliding cutter angle
    B/(°)
    切割距离
    Cutting distance
    C/mm
    10.1600
    20.29010
    30.312020
    下载: 导出CSV

    表  6   Box-Behnken试验结果

    Table  6   Box-Behnken test results

    试验序号
    Test No.
    a

    b

    c

    切削阻力
    Cutting
    resistance/N
    1332174.09
    2213239.32
    3121251.66
    4222341.95
    5211387.19
    6222225.55
    7112188.71
    8132184.31
    9222234.07
    10233282.75
    11123134.35
    12231207.03
    13323221.74
    14222226.49
    15312354.71
    16222325.84
    17321331.04
    k1189.76292.48294.23
    k2274.47254.74250.64
    k3270.40212.05219.54
    e84.7180.4374.69
    切削阻力均值
    Average cutting resistance/N
    253.58
    主次因素
    Primary and secondary factors
    ABC
    注:abcABC的水平值,ek1k2k3的极差。
    Note: a, b, c are the level values of A, B, C, and e is the range of k1, k2, k3.
    下载: 导出CSV

    表  7   Box-Behnken试验方差分析

    Table  7   Box-Behnken test analysis of variance

    来源
    Source
    平方和
    Sunm of squares
    自由度
    Degrees of ferrdom
    均方
    Mean square
    FP
    模型Model
    57379.9269563.323.76 0.0318*
    a13004.81113004.815.120.0472*
    b12940.38112940.385.090.0476*
    c11157.19111157.194.390.0626
    ab7763.3717763.373.060.1110
    ac16.04116.046.313e-30.9382
    bc12498.12112498.124.920.0509
    残差25409.51102540.95
    失拟项
    11957.7561992.960.590.7303
    纯误差
    13451.7543362.94
    总计
    82789.4316
    注:*表示该项显著(P<0.05)。
    Note: * indicates that the item is significant(P<0.05).
    下载: 导出CSV
  • [1] 陈德军. 产业链金融“链长制”试点的地方实践[J]. 中国金融,2022(23):94-95.
    [2] 潘超杰,王辉,金香凤,等. 青菜头收获机械化发展现状与展望[J]. 南方农机,2022,53(18):29-31. doi: 10.3969/j.issn.1672-3872.2022.18.007
    [3] 张涛, 李英, 宋树民, 等. 基于柔性夹持的青菜头收获机设计与试验[J]. 农业机械学报, 2020, 51(S2): 162-169, 190

    ZHANG Tao, LI Ying, SONG Shumin, et al. Design and experiment of tumorous stem mustard harvester [J]. Transactions of the Chinese Society for Agricultural Machinery, 20, 51(S2): 162-169, 190. (in Chinese with English abstract)

    [4] 龚境一,叶进,杨仕,等. 榨菜收获机的设计研究[J]. 农机化研究,2018,40(3):120-124. GONG Jingyi, YE Jin, YANG Shi, et al. Research and design of tumorous stem mustard harvester[J]. Journal of Agricultural Mechanization Research, 2018, 40(3): 120-124. (in Chinese with English abstract doi: 10.3969/j.issn.1003-188X.2018.03.024

    GONG Jingyi, YE Jin, YANG Shi, et al. Research and design of tumorous stem mustard harvester [J]. Agricultural Mechanization Research, 2018, 40(03): 120-124. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-188X.2018.03.024

    [5] 黎奎良,叶进,岳高峰,等. 青菜头收获机切割装置设计与试验研究[J]. 农机化研究,2019,41(12):140-144. LI Kuiliang, YE Jin, YUE Gaofeng, et al. Design and experimental study on cutting device of tumorous stem mustard harvester[J]. Journal of Agricultural Mechanization Research, 2019, 41(12): 140-144. (in Chinese with English abstract doi: 10.3969/j.issn.1003-188X.2019.12.025

    LI Kuiliang, YE Jin, YUE Gaofeng, et al. Design and experimental study on Cutting Device of tumorous stem mustard harvester [J]. Journal of Agricultural Mechanization Research, 2019, 41(12): 140-144. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-188X.2019.12.025

    [6] 冯伟,李平,张先锋,等. 榨菜收获机割台结构设计与试验[J]. 南方农业,2018,12(34):127-129,133. FENG Wei, LI Ping, ZHANG Xianfeng, et al. Structural design and experiment of heading platform of tumorous stem mustard harvester[J]. Southern China Agriculture, 2018, 12(34): 127-129,133. (in Chinese with English abstract doi: 10.19415/j.cnki.1673-890x.2018.34.035

    FENG Wei, LI Ping, ZHANG Xianfeng, et al. Structural design and experiment of heading platform of tumorous stem mustard harvester [J]. Southern Agriculture, 2018, 12(34): 127-129, 133. (in Chinese with English abstract) doi: 10.19415/j.cnki.1673-890x.2018.34.035

    [7] 金月,肖宏儒,宋志禹,等. 手扶自走式青菜头联合收获机设计与试验[J]. 中国农机化学报,2020,41(11):45-50. JIN Yue, XIAO Hongru, SONG Zhiyu, et al. Design and experiment of self-propelled tumorous stem mustard harvester[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(11): 45-50. (in Chinese with English abstract

    JIN Yue, XIAO Hongru, SONG Zhiyu, et al. Design and experiment of self-propelled tumorous stem mustard harvester [J]. Chinese Journal of Agricultural Mechanization, 2020, 41(11): 45-50. (in Chinese with English abstract)

    [8] 叶俊杰. 涪陵地区丘陵山地榨菜收获机设计与试验研究[D]. 杭州: 浙江农林大学, 2021.

    YE Junjie. Design and Experimental Study on Mustard Harvester in Hilly and Mountainous Areas of Fuling Area [D]. Hangzhou: Zhejiang A & F University, 2021. (in Chinese with English abstract)

    [9] 吴渭尧. 一种榨菜收割机: CN201410218522.9[P]. 2014-10-01.
    [10] 吴渭尧. 榨菜收割机: CN201420266019.6[P]. 2014-10-08.
    [11] 郝林杰,叶进,岳高峰,等. 青菜头缩短茎物理力学特性的试验研究[J]. 西南大学学报(自然科学版),2018,40(12):30-36. HAO Linjie, YE Jin, YUE Gaofeng, et al. A study of the physical and mechanical properties of the shortend stem of tumorous stem mustard[J]. Journal of Southwest University (Natural Science Edition), 2018, 40(12): 30-36. (in Chinese with English abstract

    HAO Linjie, YE Jin, YUE Gaofeng, et al. A study of the physical and mechanical properties of the shortend stem of tumorous stem mustard [J]. Journal of Southwest University (Natural Science Edition), 2018, 40(12): 30-36. (in Chinese with English abstract)

    [12]

    DIDAMONY M I E, SHAL A M E. Fabrication and evaluation of a cabbage harvester prototype[J]. Agriculture, 2020, 10(12): 1-11.

    [13]

    KIM H J, CHOI Y S. Pulling performance of a self-propelled chinese cabbage harvester and design of a preprocessing unit[J]. Journal of Agriculture & Life Science, 2020, 54(1): 99-108.

    [14]

    YASMEEN Z, ASHRAF M, AHMAD S, et al. Development and economic evaluation of carrot harvester cum trimmer[J]. Journal of Agriculture Engineering, 2023, 61(1): 65-76.

    [15] 郝志豪,郑恩来,李勋,等. 免耕播种机旋耕刀耕作性能分析与结构优化[J]. 农业工程学报,2023,39(2):1-13. HAO Zhihao, ZHENG Enlai, LI Xun, et al. Performance analysis of the soil-contacting parts for no-tillage planters and optimization of blade structure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(2): 1-13. (in Chinese with English abstract

    HAO Zhihao, ZHENG Enlai, LI Xun, et al. Performance analysis of the soil-contacting parts for no-tillage planters and optimization of blade structure [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(02): 1-13. (in Chinese with English abstract)

    [16] 樊昱. 基于离散元法的马铃薯挖掘机理研究及仿生铲设计[D]. 沈阳: 沈阳农业大学, 2020.

    FAN Yu. Research on Potato Digging Mechanism Based on Discrete Element Method and Design of Bionic Shovel[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese with English abstract)

    [17] 方会敏,姬长英,张庆怡,等. 基于离散元法的旋耕刀受力分析[J]. 农业工程学报,2016,32(21):54-59. FANG Huimin, JI Changying, ZHANG Qingyi, et al. Force analysis of rotary blade based on distinct element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 54-59. (in Chinese with English abstract doi: 10.11975/j.issn.1002-6819.2016.21.007

    FANG Huimin, JI Changying, ZHANG Qingyi, et al. Force analysis of rotary blade based on distinct element method [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 54-59. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2016.21.007

    [18]

    UCGUL M, FIELKE J M, SAUNDERS C. Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil[J]. Biosystems Engineering, 2014, 121: 105-117. doi: 10.1016/j.biosystemseng.2014.02.005

    [19]

    UCGUL M, FIELKE J M, SAUNDERS C. Three-dimensional discrete element modelling (DEM) of tillage: Accounting for soil cohesion and adhesion[J]. Biosystems Engineering, 2015, 129: 298-306. doi: 10.1016/j.biosystemseng.2014.11.006

    [20]

    UCGUL M, SAUNDERS C, FIELKE J M. Discrete element modelling of tillage forces and soil movement of a one-third scale mouldboard plough[J]. Biosystems Engineering, 2017, 155: 44-54. doi: 10.1016/j.biosystemseng.2016.12.002

    [21]

    UCGUL M, SAUNDERS C, LI P, et al. Analyzing the mixing performance of a rotary spader using digital image processing and discrete element modelling (DEM)[J]. Computers and Electronics in Agriculture, 2018, 151: 1-10. doi: 10.1016/j.compag.2018.05.028

    [22]

    TONG Z, LI L, ZHANG X, et al. Design and experiment of the components for soil flow direction control of hilling machine based on EDEM[J]. International Journal of Agricultural and Biological Engineering, 2022, 15(3): 122-131. doi: 10.25165/j.ijabe.20221503.5857

    [23] 向伟,吴明亮,吕江南,等. 基于堆积试验的黏壤土仿真物理参数标定[J]. 农业工程学报,2019,35(12):116-123. XIANG Wei, WU Mingliang, LYU Jiangnan, et al. Calibration of simulation physical parameters of clay loam based on soil accumulation test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 116-123. (in Chinese with English abstract doi: 10.11975/j.issn.1002-6819.2019.12.014

    XIANG Wei, WU Mingliang, LV Jiangnan, et al. Calibration of simulation physical parameters of clay loam based on soil accumulation test [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 116-123. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2019.12.014

    [24] 张学宁,尤泳,王德成,等. 基于离散元法的板结草地破土切根刀优化设计与试验[J]. 农业机械学报,2022,53(11):176-187. ZHANG Xuening, YOU Yong, WANG Decheng, et al. Design and experiment of soil-breaking and root-cutter based on discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(11): 176-187. (in Chinese with English abstract doi: 10.6041/j.issn.1000-1298.2022.11.017

    ZHANG Xuening, YOU Yong, WANG Decheng, et al. Design and experiment of soil-breaking and root-cutter based on discrete element method [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(11): 176-187. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2022.11.017

    [25] 王宪良,胡红,王庆杰,等. 基于离散元的土壤模型参数标定方法[J]. 农业机械学报,2017,48(12):78-85. WANG Xianliang, HU Hong, WANG Qingjie, et al. Calibration method of soil contact characteristic parameters based on DEM theory[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 78-85. (in Chinese with English abstract

    WANG Xianliang, HU Hong, WANG Qingjie, et al. Calibration method of soil contact characteristic parameters based on DEM theory [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 78-85. (in Chinese with English abstract)

    [26] 王宪良,钟晓康,耿元乐,等. 基于离散元非线性弹塑性接触模型的免耕土壤参数标定[J]. 农业工程学报,2021,37(23):100-107. WANG Xianliang, ZHONG Xiaokang, GENG Yuanle, et al. Construction and parameter calibration of the nonlinear elastoplastic discrete element model for no-tillage soil compaction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(23): 100-107. (in Chinese with English abstract doi: 10.11975/j.issn.1002-6819.2021.23.012

    WANG Xianliang, ZHONG Xiaokang, GENG Yuanle, et al. Construction and parameter calibration of the nonlinear elastoplastic discrete element model for no-tillage soil compaction [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(23): 100-107. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.23.012

    [27] 王学振,岳斌,高喜杰,等. 深松铲不同翼铲安装高度时土壤扰动行为仿真与试验[J]. 农业机械学报,2018,49(10):124-136. WANG Xuezhen, YUE Bin, GAO Xijie, et al. Discrete element simulations and experiments of disturbance behavior as affected by mounting height of subsoiler's wing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 124-136. (in Chinese with English abstract doi: 10.6041/j.issn.1000-1298.2018.10.014

    WANG Xuezhen, YUE Bin, GAO Xijie, et al. Discrete element simulations and experiments of disturbance behavior as affected by mounting height of subsoiler's wing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 124-136. doi: 10.6041/j.issn.1000-1298.2018.10.014

    [28]

    FAN Y, ZHAO P, QIU L C, et al. Simulation analysis and experiment on performance of bionic potato digging shovel[J]. International Agricultural Engineering Journal, 2019, 28(1): 206-216.

  • 期刊类型引用(3)

    1. 郭峰,张金闯,胡晖,胡安娜,周欢,王嘉煜,王强. 挤压过程中淀粉对花生蛋白挤出物膨化结构及品质的影响. 农业工程学报. 2025(03): 280-289 . 本站查看
    2. 符馨予,王丽敬,刘思园,张思琪,谢欣悦,陈思雨,邵俊花,李冬男,赵海波,李春强. 豌豆纤维添加量对3D打印预乳化猪肉糜制品冻融稳定性的影响. 农业工程学报. 2025(05): 288-296 . 本站查看
    3. 刘远琨,高婷婷,张丽,高泽岳,陈晨,乌玉洁,付宸睿. 挤压型植物基人造肉的来源及加工工艺研究进展. 粮食加工. 2024(04): 80-82+99 . 百度学术

    其他类型引用(2)

图(15)  /  表(7)
计量
  • 文章访问数:  202
  • HTML全文浏览量:  23
  • PDF下载量:  114
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-05-20
  • 修回日期:  2023-06-29
  • 网络出版日期:  2023-09-11
  • 刊出日期:  2023-08-29

目录

/

返回文章
返回