Processing math: 100%
    • EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

弹性揉搓式马铃薯联合收获机设计与试验

魏忠彩, 王业炜, 李学强, 王金梅, 苏国粱, 孟鹏祥, 韩梦, 金诚谦, 李志合

魏忠彩,王业炜,李学强,等. 弹性揉搓式马铃薯联合收获机设计与试验[J]. 农业工程学报,2023,39(14):60-69. DOI: 10.11975/j.issn.1002-6819.202305177
引用本文: 魏忠彩,王业炜,李学强,等. 弹性揉搓式马铃薯联合收获机设计与试验[J]. 农业工程学报,2023,39(14):60-69. DOI: 10.11975/j.issn.1002-6819.202305177
WEI Zhongcai, WANG Yewei, LI Xueqiang, et al. Design and experiments of the potato combine harvester with elastic rubbing technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(14): 60-69. DOI: 10.11975/j.issn.1002-6819.202305177
Citation: WEI Zhongcai, WANG Yewei, LI Xueqiang, et al. Design and experiments of the potato combine harvester with elastic rubbing technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(14): 60-69. DOI: 10.11975/j.issn.1002-6819.202305177

弹性揉搓式马铃薯联合收获机设计与试验

基金项目: 国家自然科学基金项目(52105266);山东省科技型中小企业创新能力提升工程项目(2021TSGC1332);中国博士后科学基金面上资助项目(2021M701801);南京市博士后科研资助计划项目
详细信息
    作者简介:

    魏忠彩,硕士生导师,研究方向为现代农业装备与计算机测控技术,Email:weizc@sdut.edu.cn

    通讯作者:

    金诚谦,研究员,博士生导师,研究方向为大田作物收获机械化与智能化技术,Email: 412114402@qq.com

  • 中图分类号: S223.2

Design and experiments of the potato combine harvester with elastic rubbing technology

  • 摘要:

    针对现有马铃薯联合收获机薯土分离与清土除杂效果不够理想,伤薯率、破皮率和含杂率较高等问题,该研究采用“双重振动分离+弹性揉搓除杂+缓冲减损集薯输送”收获工艺,设计了一种弹性揉搓式马铃薯联合收获机,主要部件包括挖掘装置、液压调控薯土分离装置、弹性揉搓清土除杂装置和缓冲减损集薯输送装置等。在阐述整机结构、收获工艺特点和工作原理的基础上,分析马铃薯运行轨迹、碰撞过程及土块破碎透筛过程,确定双重振动薯土分离段、弹性揉搓清土除杂段和缓冲减损集薯输送段的结构及运行参数,以满足高效分离除杂和减损防损需求。通过田间试验验证,在挖掘深度为220 mm,作业速度分别为3.17和4.16 km/h时,损失率分别为1.17%和1.43%,伤薯率分别为1.30%和1.27%,破皮率分别为1.98%和1.84%,生产率分别为0.41 和0.54 hm2/h,各项性能指标均满足相关标准的要求,可为装备研发和优化改进提供参考。

    Abstract:

    A combine harvester can be one of the most important links for the potatoes gathering and conveying. However, the current potato combine harvester cannot fully meet the large-scale production in recent years, such as the non-ideal performance of impurity removal, the high rate of potato damage, bruising and impure content in the soil cleaning. In this study, a potato combine harvester was designed with the elastic rubbing technology. The harvesting process was also selected by the "double vibration separation, elastic rubbing type, buffering and loss reducing potatoes gathering and conveying". The main components included the excavation, hydraulic control potato soil separation, elastic rubbing impurity removal, as well as the buffering and reducing losses potatoes gathering and conveying device. A systematic analysis was implemented to clarify the movement track and collision characteristics of potatoes, according the optimal structure of the whole machine, the characteristics of harvesting, and the working principle. A combination of structural parameters were then determined for the key components, in order to fully meet the requirements of efficient separation and impurity removal, as well as the loss reduction and prevention. The whole harvesting process was divided into the three sections of the double vibrating potato soil separation, the elastic rubbing type soil cleaning and impurity removal, as well as the buffer potatoes gathering and conveying. The frequency and amplitude of the vibration were adjusted under the harvest conditions in the double vibration adjustable separation device in time. The rates of the potato damage and bruising were then reduced during the process of the potato and soil separation. The longitudinal non-equidistant soil cleaning and impurity removal device was used to reduce the collision frequency of potato, and then slow down the drop impact response, indicating the higher harvest quality, and the lower impurity content. The buffering and reducing losses potatoes gathering and conveying device was optimized to accurately control the drop height and position of potato at the end of the conveyor belt, in order to effectively avoid the drop damage during potato harvesting. The experiment result showed that the loss rates of the prototype were 1.17% and 1.43%, the potato damage rates were 1.30% and 1.27%, the bruising rates were 1.98% and 1.84% and the productivity values were 0.41 and 0.54 hm2/h, respectively, when the operating velocity values were 3.17 and 4.16 km/h, respectively. All performance indicators were met the requirements of national standards. Once the harvester was operated at a high speed, there was the significant increase in the material flow entering the elastic rubbing impurity removal device in a unit time, indicating the increasing burden of soil cleaning and impurity removal. Among them, part of the soil, seedlings, and vines were remained to mix in the potato cluster, resulting in a high impurity content. By contrast, the low operation speed was greatly contributed to the reduced impurities entering the soil cleaning and impurity removal stage. A better performance was achieved in the removal from the surface soil layer of potatoes in the soil cleaning and impurity removal device. But there was the weak protective effect of the soil on the surface of potatoes, leading to an increase in the frequency of direct contact between potatoes and the soil cleaning and impurity removal wheel. As such, the impurity content was much lower, whereas, there was an increase in the damage and bruising rate of potatoes, compared with the high operation speed. This finding can provide a strong reference for the subsequent research, equipment development, and optimization improvement.

  • 分离和除杂环节的破皮损伤问题是制约马铃薯机械化收获发展的短板[1-3]。2022年初,全国马铃薯机收率仅为32%,西南混作区和南方冬作区,马铃薯机收率尚处于10%以下水平[4]。另外,现有马铃薯机械化收获以分段式收获为主,人工捡拾费工费时的问题尚未得到有效解决[5]。目前,国内外马铃薯收获机一般通过杆条筛、摆动筛、拨辊推送等结构形式实现薯、土、杂分离,其结构布置和参数调整均影响着分离效果及收获品质。

    国外对马铃薯清选分离装置的研究开始时间早、技术更加成熟,RUZHYLO等[6]设计了一种用于薯杂分离的螺旋分离器,分离装置由动力驱动的多个螺旋辊和螺旋弹簧组成,同时在机具机架上部和出料口处设有防止漏薯的筛网;MOSALANEJAD等[7]对倾斜皮带式的薯石分离装置进行了参数优化,对皮带斜置角度、皮带速度以及皮带表面类型进行试验,并通过SPSS软件对试验数据进行分析,得到较佳分离效率的参数组合;国外在马铃薯清选分离装置上还采用了机器视觉技术和基于声学的分离系统,在确保马铃薯清选效率的同时提高了清选准确性[8]

    国内针对小型马铃薯收获机伤薯率和破皮率较高等问题,宋言明等[9]在设计的马铃薯联合收获机上采用软孔带对薯块和土块进行分离,并利用旋转的滚动毛刷去除马铃薯表面的泥土等杂质;针对马铃薯挖掘机在黏重土壤条件下薯土分离效果差等问题,吕金庆等[10]设计了一种两级升运链式分离输送装置,得到了影响分离性能的升运链长度范围和抖动器等结构参数;针对山地黏重板结土壤条件下马铃薯收获机伤薯破皮率高的问题,张兆国等[11]采用多级分离振动、多重缓冲和低位侧铺的方式,设计了一种多级分离缓冲马铃薯收获机,减少了马铃薯的碰撞损伤。

    常见的清选分离装置一般借助机、电、液一体化控制,应用传感技术调控上料量和作业速度,以实现低损增效控制[12-14]。薯杂分离过程中,脆嫩的马铃薯表皮由于承受摩擦、挤压和冲击载荷等作用,从而产生胶质层破裂损伤现象[15-17]。伤薯破皮严重是制约当前国内马铃薯机械化高效低损收获的瓶颈问题,研究马铃薯收获清选分离过程的减损控制技术是马铃薯种植业发展的必然趋势[18-20]。在薯类收获机研究方面,联合收获过程的清土除杂和集薯减损是保证收获品质的关键[21-22]。薯杂混合物的输送分离既有土块的破碎解聚,也有物料的前后运移和透筛[23-25]。马铃薯机械化收获过程中,薯土分离与清土除杂过程复杂多变,仅仅依靠分离筛的杆条式结构难以达到理想的薯杂分离效果[26-28]。因此,配备清土除杂和缓冲减损集薯装置具有重要的实际意义。

    为提高薯杂分离效果,进一步降低含杂率、伤薯率和破皮率,研制了一种弹性揉搓式马铃薯联合收获机,在阐述总体设计和工作原理的基础上,介绍了关键部件的设计与参数选取,分析了薯土分离、清土除杂和集薯跌落过程的薯块运动和碰撞特征,对样机的破皮率、伤薯率和含杂率等指标进行了测试分析,以期在确保收获效率的前提下提高收获品质,为马铃薯收获机薯土分离和清土除杂工艺的优化改进提供参考。

    结合国内北方马铃薯主产区的种植农艺和前期减损防损相关试验,研制的弹性揉搓式马铃薯联合收获机(如图1所示)为双垄作业,作业幅宽为1 650 mm。机具采用拖拉机牵引作业方式,总体结构包括挖掘装置、切土切蔓装置、松土限深装置、薯土分离装置、薯秧分离装置、清土除杂装置和集薯输送装置等。挖掘装置采用固定式组合翼铲结构形式,集薯输送装置采用折叠臂+挡薯板输送带结构形式,变速箱输入轴最大输入转速540 r/min。

    图  1  弹性揉搓式马铃薯联合收获机总体与局部结构示意图
    1.牵引装置 2.松土限深装置 3.切土切蔓装置 4.挖掘装置 5.薯土分离装置6. 折叠架 7.缓冲帘 8.集薯输送带 9.清土除杂装置
    Figure  1.  Diagram of overall structure and local structure of potato combine harvester with elastic rubbing
    1. Traction device 2. Soil loosening and depth control device 3. Cutting device of soil and seedlings 4. Digging device 5. Device of potatoes and soil separation 6. Folding frame 7.Cushion curtain 8. Belt of potatoes gathering and conveying 9. Soil cleaning and impurity removal device

    马铃薯收获机的动力传递采用链传动,其传递路线如图2所示。

    图  2  马铃薯联合收获机动力传递路线
    1.后部振动轴 2.传动轴 3.变速箱 4.橡胶齿驱动轴 5.除杂长辊 6.除杂短辊
    Figure  2.  Power transfer route of potato combine harvester
    1. Vibration shaft at the rear 2. Transmission shaft 3. Gear box 4. Rubber tooth drive shaft 5. Long impurity removal roller 6. Short impurity removal roller

    拖拉机动力输出轴输出的动力经传动轴传递至变速箱,变速箱输出轴上的一个链轮经链传动向前传递至振动轴,另一个链轮经链传动向后传递至分离筛驱动滚筒和分离筛支承滚筒,分离筛驱动滚筒经链传动依次等速将动力传递给4条除杂长辊和1条除杂短辊。前部的振动轴采用液压马达驱动,以精准控制振动频率,确保碎土分离效果。后部的振动轴通过链传动提供动力,调整传动装置的运行速度,即可满足不同收获工况下的薯土分离和清土除杂需求。

    收获过程中,在仿形松土限深轮的作用下,垄上土壤得以疏松,两端切土圆盘刀将秧草切断,挖掘铲将薯杂混合物挖掘输送至分离筛上;在液压调控薯土分离装置的作用下逐步进行薯-土分离;马铃薯表皮的泥土在揉搓辊的揉搓作用下脱附;干净的薯块经缓冲帘减速后运行至集薯装置中,输送至料斗车,待转运至后续处理工位。主要技术参数如表1所示。

    表  1  弹性揉搓式马铃薯联合收获机主要技术参数
    Table  1.  Main technical parameters of potato combine harvester with elastic rubbing
    技术参数Technical parameters 数值Values
    整机尺寸(长×宽×高)/
    Overall dimensions/(mm×mm×mm)
    6 670×2 680×2 890
    整机质量Overall weight/kg 3270
    配套动力Mating power/kW 73.5~118
    收获垄数Harvesting ridge numbers 2
    作业幅宽Working width/mm 1 700
    适应垄宽Adjusting ridge width/mm ≤900
    挖掘深度Digging depth/mm 150~300
    纯工作时间生产率
    Pure work productivity/(hm2∙h–1)
    0.33~0.55
    分离筛相邻杆条中心距
    Center distance between adjacent
    bars of the separation sieve/mm
    45
    伤薯率Damage rate of potatoes/% ≤2
    破皮率Bruising rate of potatoes/% ≤3
    含杂率Impurity content/% ≤4
    损失率Loss rate/% ≤4
    分离筛宽度Width of separation sieve/mm 1660
    装车提升臂最大效率
    Maximum efficiency of loading lifting arm/(t∙h–1)
    60
    最大装车高度Maximum loading height/mm 2940
    最大装车宽度Maximum loading width/mm 3750
    下载: 导出CSV 
    | 显示表格

    液压调控薯土分离装置主要由驱动装置、振动装置、调整装置和分离筛等组成(如图3所示),通过调控液压马达的转速来调整振动频率,通过调整臂改变振动幅度,确保较佳碎土分离效果。薯土分离过程中,振动装置以一定频率连续击打分离筛,使得薯土混合物短暂脱离筛面,随之在重力作用下跌落,再次承受来自分离筛筛面施加的瞬时冲击力,迫使土块破碎与透筛分离。

    图  3  液压调控薯土分离装置结构图及实物图
    1.驱动装置 2.调整臂 3.振动装置 4.分离筛
    Figure  3.  Structural and physical diagram of potato-soil separating device using hydraulic regulation
    1. Drive device 2. Adjusting arm 3. Vibration device 4. Separation sieve

    为实现低损高效的薯土分离效果,对薯块在分离筛筛面上的碰撞过程分析的基础上,分析土块在分离筛筛面上的破碎透筛过程,即在减少薯块碰撞损伤的前提下提高土块的破碎透筛效果。

    为简化计算,将薯块简化为质量均匀的椭球体,将分离筛简化为平面,忽略薯块在运动中所受的空气阻力,对薯块在分离筛上的运动分析如图4所示。

    图  4  薯块在分离筛上的运动分析
    注:vj为作业速度,m·s-1vf为分离筛筛面的线速度,m·s-1vz为薯块因振动装置的击打获得的瞬时速度,m·s-1vhc为薯块即将离开筛面时vfvz的合成速度,m·s-1vy为薯块垂直于筛面方向上的合成速度,m·s-1αs为分离筛的倾斜角度,(°);H为薯块沿垂直于筛面方向的最大跳跃高度,m;h1为薯块跳跃至最大高度时筛面沿垂直方向的上升高度,m;h2为在薯块下落时筛面沿垂直方向的上升高度,m;h3为薯块沿筛面垂直方向的跌落高度,m。
    Figure  4.  Movement analysis of potato on a separation sieve
    Note: vj is operating velocity, m·s-1; vf is linear velocity of surface of potato soil separation sieve, m·s-1; vz is instantaneous velocity of potato obtained by the strike of vibration device,m·s-1; vhc is the synthesis velocity of vf and vz when potato is about to leave sieve surface,m·s-1; vy is synthesis velocity of potato perpendicular to sieve surface direction, m·s-1; αs is inclination angle of separation sieve, (°); H is the maximum jumping height of potato in the direction perpendicular to sieve surface, m; h1 is the maximum rebound height of sieve surface in the vertical direction when potato jumps to its maximum height, m; h2 is the maximum rebound height of sieve surface in the vertical direction when potato falls, m; h3 is the drop height of potato along the vertical direction of the sieve surface, m.

    图4可见,薯块由于随机具运行而获得向左的水平速度vj,由于随分离筛筛面的运行而获得朝着右上方倾斜的线速度vf,由于振动轮的击打还获得垂直于分离筛筛面的瞬时速度vz,,由运动分析得vzvy的方程为

    vz=Aωfsin(ωft+φ) (1)
    vy=vz+vjsinαs (2)

    式中A为振动轮的振幅,m;ωf为振动轮的角速度,rad/s;φ为振动轮的初相位,(°)。

    薯块因短暂抛起而获得上升初速度,并逐渐跳跃至最大高度位置。在此过程中,机具以速度vj向左水平运行,分离筛在筛面垂直方向将上升一段距离h1,可得:

    {t1=vygcosαsh1=vjt1sinαsH=vy22gcosαs (3)

    式中t1为薯块自筛面跳跃至最大高度所用的时间,s;g为重力加速度,g=9.8 m/s2

    随后薯块重新落到筛面上,将承受来自分离筛的碰撞冲击力。在此过程中,分离筛在筛面垂直方向还将上升一段距离h2,由此得:

    {h2=vjt2sinαsh3=12gt22cosαsH=h1+h2+h3 (4)

    式中t2为薯块从最大高度下落至筛面上所用的时间,s。

    由式(2)~式(4)得

    {t2=vjsinαs+vzgcosαsh3=(vzvjsinαs)22gcosαs (5)

    由式(1)和式(5)得

    h3=[Aωfsin(ωft+φ)vjsinαs]22gcosαs (6)

    物体碰撞接触力的计算式为[29]

    Fst=σcAc (7)

    式中σc为薯块与筛面的碰撞接触应力,N;Ac为薯块与筛面的碰撞接触面积,mm2。查阅文献得:σc≈0.4 MPa,碰撞接触面积Ac与跌落高度h3之间的关系式为[29]

    Ac=1130h3+120.90 (8)

    由式(6)~式(8)得

    Fst=σc(565(Aωfsin(ωft+φ)vjsinαs)2gcosαs+120.90) (9)

    由式(9)可知,薯块与筛面的碰撞接触力主要与机具的作业速度vj、分离筛的倾斜角度αs和振动轮的角速度ωf有关,碰撞接触力越大,薯块受到的机械损伤越大。

    土块的破碎透筛过程分析如图5所示,完整的大土块(图5a)刚刚被击打破碎成小土块时一般近似为正方体。对土块受击打而破碎的过程进行力学分析(图5b),将土块理想化成质量均匀的正方体块,经过振动轮的多次冲击作用而发生碎裂,再经过多次相互冲击后逐渐变成近似的球形颗粒,最终从筛面杆条间隙处落下(图5c)。

    图  5  土块的破碎透筛过程分析
    注:G1G2为碎土块所受的重力,N;W1W2为碎土块受到的惯性力,N;F1F2为土块受到的外部作用力,N;Fa1Fa2为土块内部的黏结力,N;L1L2为碎土块质心到断裂面的垂直距离,m;L3L4为受力点P点与重力的垂直距离,m;Lv为受力点P点与土块质心之间的垂直距离,m。
    Figure  5.  Analysis of the crushing and screening of soil blocks
    Note: G1 and G2 represent weight of crushed clod, N; W1 and W2 are inertial forces acting on crushed clod, N; F1 and F2 are external forces acting on clods, N; F1 and F2 are cohesive forces inside clod, N; L1 and L2 are vertical distances from centroid of crushed clod to fracture surface, m; L3 and L4 are vertical distance between force point P and gravity, m; LV is vertical distance between force point P and centroid of clod, m.

    图5可见,土块主要受到惯性力、重力、外部作用力和黏结力的作用,土块的破碎机理是其所受到的外力构成的破坏转矩大于内力构成的黏结力矩[10]。土块的受力点P的转矩为

    {G1L3+W1L1F1LV>Fa1LVG2L4+W2L2F2LV>Fa2LV (10)

    其中

    {W1=m1azW2=m2az (11)

    式中m1m2为碎土块的质量,kg;az为土块垂直于筛面的加速度,m/s2

    对式(1)求一阶导数得到土块垂直于筛面的加速度

    az=Aω2fcos(ωft+ϕ) (12)

    设正方体土块的边长为Lc,由几何关系可得:

    {m1=m2=12L3cγG1=G2=12L3cγgL1=L2=14LcL3=(14cosαs+12sinαs)LcL4=(12sinαs14cosαs)LcLV=12Lc (13)

    式中γ为土壤容重,g/cm3

    将加速度取最大值后联立式(10)~式(13)可得

    {L3c[γg(14cosαs+12sinαs)+14Aω2f]F1>Fa1L3c[γg(12sinαs14cosαs)+14Aω2f]F2>Fa2 (14)

    由式(14)可知,土块破碎效果与振动装置的角速度有关,振动装置角速度越大,土块破碎效果越好。在尽可能减少薯块损伤的前提下,促使土块破碎,振动装置的最大角速度取约770 r/min。为实现振动频率可在3~8 Hz之间调整,液压马达排量51.7 mL/r,最大连续压降14 MPa,最大连续转矩93 N·m,最大流量40 L/min,最大输出功率7 kW,按式(15)~(16)校验。

    V=2πTpηm (15)
    q=nVηv (16)

    式中V为液压马达排量,mL/r;T为液压马达转矩,N·m;p为液压马达工作压力,MPa;ηm为液压马达机械效率,取0.85;q液压马达的流量,L/min;n液压马达转速,r/min;ηv为液压马达容积效率,取0.95。计算得流量大小为39.840 L/min,因此满足使用要求。

    弹性揉搓清土除杂装置主要由机架、长除杂辊、短除杂辊、传动装置和导流板等组成(如图6所示)。

    图  6  弹性揉搓清土除杂装置结构
    1.传动装置2.机架 3.护罩 4.导流板 5.长除杂辊 6.短除杂辊
    Figure  6.  Structure of impurity removal device with elastic rubbing
    1. Transmission device 2. Frame 3. Shield 4. Guide plate 5. Long impurity removal roller 6. Short impurity removal roller

    除杂辊末端的薯块分别跌落在集薯输送带两侧,避免薯块集中堆积,减少碰撞频次,减轻破皮损伤[30]。马铃薯的长轴长度一般为40~120 mm,为确保揉搓清土效果[10,31],确定相邻除杂辊之间的中心距为142 mm,除杂轮直径为165 mm,相邻除杂轮间距为32 mm。相邻除杂轮的除杂指交错布置。薯块与除杂指的相对位置如图7所示。多数情况下薯块位于相邻的2条除杂辊上方,1、2、3号除杂指位于前除杂辊上,4、5、6号除杂指位于后除杂辊上,1、3号和4、6号除杂指在前后除杂辊上的角度相同且成对布置,2、5号除杂指与同除杂辊上相邻的两个除杂指之间的夹角为15°。

    图  7  马铃薯与除杂指相对位置
    Figure  7.  Relative position between potato and impurity removal finger

    清土除杂过程受力分析示意图如图8所示。当薯块由位于前方除杂辊的其中一对除杂轮的除杂指与后方除杂辊的1个位于薯块质心后方右侧的除杂指支撑着实施清土除杂作业时,以顺时针为正向进行转矩分析如式(17)。

    图  8  清土除杂过程受力分析
    注:XYZ为坐标轴;O为坐标系原点;FqzFqyFh分别为前方除杂辊的其中1对除杂轮的左侧除杂指、右侧除杂指与后方除杂辊的对应除杂指对薯块的作用力,N;αzαyβ分别为FqzFqyFhXOY面的夹角,(°);Gs为薯块的重力,N。
    Figure  8.  Force analysis of soil cleaning and impurity removal
    Note: X, Y, and Z are coordinate axes; O is the origin of coordinate system; Fqz, Fqy, and Fh are the forces exerted on potato by left and right fingers of one pair of impurity removal rollers and corresponding impurity removal fingers of rear impurity removal rollers, respectively, N; αzαyβ are angles between Fqz, Fqy, Fh, and XOY surfaces, (°); Gs is gravity of the potato, N.
    {MXY=FqzlqxzcosαzFqylqxycosαyFhlhxcosβMXZ=FqylqxysinαyFqzlqxzsinαz+FhlhxsinβMYZ=i=z,i=y[Fqi(lqysinαi+lqzcosαi)+Fh(lhysinβ+lhzcosβ)] (17)

    式中MXYMXZMYZ分别为薯块在XOYXOZYOZ面受到的转矩,N·m;lqxzlqxy分别为前方某1对除杂轮的左侧除杂指、右侧除杂指与薯块接触点至薯块质心之间的距离在X轴上的投影,m;lhxlhylhz分别为后方除杂指与薯块接触点至薯块质心之间的距离分别在X轴、Y轴、Z轴上的投影,m;lqylqz分别为前方某1对除杂轮的左侧和右侧除杂指与薯块接触点至薯块质心之间的距离分别在Y轴、Z轴上的投影,m。

    分析可知,薯块各个方向受到除杂指的作用力均对薯块形成转矩,迫使薯块“揉搓”翻滚,粘附在薯块表面的泥土被清除掉(如图9a所示)。土块在除杂指的“揉搓”作用力下,逐步解聚成颗粒状小土块,进入两相邻除杂辊之间,土块受到挤压作用力而破碎透筛(如图9b所示)。由橡胶材料制作的除杂指具有强度高和弹性好的特点,可以为“揉搓”作用提供足够的支持力与摩擦力,除杂指受力弯曲变形可增大与薯块的接触面积,提高清土效率的同时防止因薯块的破皮损伤。

    图  9  弹性揉搓清土除杂过程分析
    Figure  9.  Analysis of the process of elastic rubbing for soil cleaning and impurity removal

    薯块在缓冲帘作用下缓冲减速,缓冲帘受到薯块的冲击作用而发生弯曲变形,薯块在清土除杂-缓冲集薯段的运行轨迹如图10所示,vss为集薯输送带运行方向。

    图  10  马铃薯在清土除杂-缓冲集薯段的运行轨迹
    1.集薯输送带 2.护薯板 3.除杂辊 4.缓冲帘 5.马铃薯
    Figure  10.  Running track of potato in the section of soil clearing and impurity removal-buffer potato collection
    1. Belt of potatoes gathering and conveying 2. Potato protection plate 3. Impurity removal roller 4. Cushion curtain 5. Potato

    对薯块经过缓冲帘阻挡缓冲作用后落入集薯输送带上的运动过程进行分析(图11),为了简化计算,将薯块看作质点,忽略薯块在运动过程中受到的空气阻力。

    图  11  马铃薯在清土除杂-缓冲集薯段的运动分析
    注:Og点为装置末端长除杂辊或短除杂辊的中心;Os点为薯块即将脱离除杂轮的位置;Op点为薯块与缓冲帘碰撞的位置;Od点为薯块跌落至集薯输送带处;vs为薯块即将脱离除杂轮时的初速度,m·s−1vsxvsy分别是vs在水平、竖直方向上的分速度,m·s−1αgOs点与Og点的连线与水平方向的夹角,(°);LgpOg点和Op点之间的水平距离,m;Lsp为薯块从Os点运动至Op点的水平距离,m;Hsp为薯块从Os点运动至Op点的铅锤距离,m;Hpd为薯块从Op点运动至Od点的竖直距离,m;HgdOg点和Od点的铅锤距离,m;vp为薯块与缓冲帘碰撞后的速度,m·s−1vd为薯块与集薯输送带接触时的瞬时速度,m·s−1βl为缓冲帘的下半部分向后弯曲的角度,(°)。
    Figure  11.  Movement analysis of potato in the section of soil cleaning and impurity removal-buffer potato collection
    Note: Point Og is center of last long or short impurity removal roller at the end of the device; Point Os is position where potato is about to detach from impurity removal wheel; Point Op is position where potato collides with buffer curtain flexibly; Point Od is position where potato falls onto belt of potatoes gathering; vs is initial velocity of potato when it is about to detach from impurity removal wheel, m·s−1; vsx and vsy are partial velocities of vs in horizontal and vertical directions respectively, m·s−1; αg is angle between line connecting point Os and point Og and horizontal direction, (°); Lgp is horizontal distance between point Og and point Op, m; Lsp is horizontal distance of potato from point Os to point Op, m; Hsp is vertical distance of potato from point Os to point Op, m; Hpd is vertical distance of potato from point Op to point Od, m; Hgd is vertical distance between point Og and point Od, m; vp is speed after flexible collision between potato and buffer curtain, m·s−1; vd is instantaneous velocity when potato comes into contact with surface of conveyor belt, m·s−1; βl is angle at which lower half of buffer curtain bends backwards, (°).

    薯块脱离除杂辊,并获得抛落初速度vs

    vs=Rωq (18)

    式中R为除杂轮的半径,m;ωq为除杂轮的角速度,rad/s。

    随后薯块与缓冲帘发生柔性碰撞,为避免薯块直接落入集薯输送带而不经过缓冲帘缓冲,需满足以下条件:

    {Lsp=vsxtpHsp=vsytp+0.5gt2pLgp=Lsp+Rcosαg (19)

    式中tp为薯块脱离除杂轮到与缓冲帘接触所用时间,s。

    缓冲帘吸收了薯块的动能发生弯曲变形,且由于重心上移获得一部分重力势能。由于薯块与缓冲帘相对摩擦距离较短,因摩擦而消耗的能量忽略不计,故薯块损失的动能与缓冲帘获得的重力势能相同。

    Ecq=12msv2s+msgHsp (20)
    Ech=EcqΔEps (21)

    式中EcqEch分别为薯块与缓冲帘碰撞前、后的动能,J;ms为薯块的质量,kg;ΔEps为薯块与缓冲帘碰撞损失的动能,J。

    图12所示将缓冲帘的弯曲变形简化为缓冲帘下半部分向后折弯成直线,缓冲帘获得的重力势能ΔEps

    图  12  缓冲帘弯曲变化示意图
    注:GqGh点分别为缓冲帘下半部分弯曲变形前、后的重心。
    Figure  12.  Diagram of cushion curtain bending change
    Note: The Gq and Gh points are the center of gravity of the lower half of the buffer curtain before and after bending deformation.
    {ΔEps=12mlgΔHlml=ρHlpBlpDlΔHl=Hlp4(1cosβl) (22)

    式中ml为缓冲帘的质量,kg;ΔHl为缓冲帘下半部分重心上移的距离,m;ρ为缓冲帘的密度,kg/m3Hlp为缓冲帘碰撞面的高度,m;Blp为缓冲帘碰撞面的宽度,m;Dl为缓冲帘的厚度,m。

    经缓冲帘阻挡减速后薯块随后抛落到集薯输送带上,并在重力作用下获得动能ΔEsp

    {Esd=Ech+ΔEspΔEsp=msgHpdHpd=Hgd+RsinαgHsp (23)

    式中Esd为薯块刚与集薯输送带接触时的动能,J; ΔEsp为薯块在抛落后获得的动能,J。

    根据速度与动能的关系式,联立式(18)~(23)得到薯块与集薯输送带表面接触时的瞬时速度vd

    vd=R2ω2q+2g(Hgd+Rsinαg)DlHlp2Blp(1cosβl)ρg4ms (24)

    由式(24)可知,影响薯块与集薯输送带表面接触时的瞬时速度的主要因素有除杂轮半径R、除杂轮中心到集薯输送带表面的高度Hgd和缓冲帘的厚度Dl等。若除杂轮半径或除杂轮到集薯输送带的高度增大,薯块与筛面接触瞬时速度则增大。查阅文献可知,马铃薯与集薯输送带碰撞损伤的临界速度为2.506 m/s[32]。为避免碰撞瞬时速度过大而损伤,除杂轮的直径取165 mm,除杂轮中心到集薯输送带的高度取200 mm,缓冲帘厚度取3 mm,清土除杂装置末端除杂辊与缓冲帘之间的距离取200 mm。

    缓冲减损集薯输送装置如图13所示,主要包括集薯输送带、折叠架、液压缸、驱动装置以及测速模块等。作业过程中,末端折叠架可伸入料斗车内,始终保持跌落高度小于薯块的临界损伤高度。

    图  13  缓冲减损集薯输送装置
    1.集薯输送带 2.末端折叠架 3.驱动装置 4.中间折叠架 5.水平架 6.缓冲帘 7.液压缸
    Figure  13.  Buffer and loss reducing potato conveying device
    1. Belt of potatoes gathering and conveying 2. End folding frame 3. Drive device 4. Middle folding frame 5. Horizontal frame 6. Cushion curtain 7. Hydraulic cylinder

    薯块经缓冲帘减速阻挡后做自转和抛落运动,与集薯输送带碰撞接触时,薯块朝着集薯输送带运行方向的反方向滚动或滑动。因集薯输送带的摩擦力作用,薯块的动能逐步消耗殆尽,并逐步堆积在集薯挡板周围。分析过程如图14所示。

    图  14  缓冲减损集薯抛落过程分析
    注:X轴正向指向集薯输送带远离除杂轮的方向,Y轴正向指向集薯输送带的运行方向,Z轴正向朝上;O1O2分别为两薯块的重心;FN为集薯输送带对薯块的支承力,N;Ft为集薯挡板对薯块的推力,N;GS为薯块所受重力,N;fxfy分别为集薯输送带在X轴和Y轴方向对薯块的摩擦力,N;fz为集薯挡板在Z轴方向对薯块的摩擦力,N。
    Figure  14.  Analysis of dropping process of buffer and loss reducing collecting potatoes
    Note: The positive direction of X-axis points towards direction of collecting potato conveyor belt away from impurity removal wheel, the positive direction of Y-axis points towards running direction of collecting potato conveyor belt, and Z-axis points upwards; O1 and O2 are centers of gravity of potatoes, respectively; FN is supporting force of belt of potatoes gathering and conveying on potato, N; Ft is force exerted by potato collecting baffle on potato, N; GS is gravity of potato, N; fx and fy are frictional forces of belt of potatoes gathering and conveying on the potato in X-axis and Y-axis directions, N; fz is frictional force of potato collecting baffle on potato in Z-axis direction, N.

    集薯输送带运行方向与薯块抛落过程的初速度方向垂直,集薯输送带对薯块的摩擦力所形成的转矩使得薯块产生转动,增加了薯块的转动动能和平动动能[33-34]。即

    {Mxz=fxlzMyz=fylzEkpxz+Ekzxz+Ep=Efx+EdbzEfy=Ekpyz+Ekzyz (25)

    式中MxzMyz分别为摩擦力fxfy在薯块上的转矩,N·m;lz为薯块质心到集薯输送带的距离,m;EkpxzEkpyz分别为薯块在XOZYOZ面的平动动能,J;EkzxzEkzyz分别为薯块在XOZYOZ面的转动动能,J;Ep为薯块抛落时的势能,J;EfxfxXOZ面所作的功,J;EfyfyYOZ面所作的功,J;Edbz为集薯输送带变形所消耗的能量,J。

    驱动装置如图15所示,主要由液压马达、驱动轴、驱动轮、测速轮和传感器等组成。经计算得,集薯输送带长度14300 mm,宽度600 mm,集薯挡板宽度500 mm,集薯挡板高度160 mm,集薯挡板节距240 mm。集薯输送带采用输送带加装栅条式组合结构,外侧包裹弹性输送材料,可有效缓冲薯块的碰撞冲击,增加碰撞接触面积,减小最大碰撞加速度,减缓切线擦伤和机械损伤[35-36]

    图  15  缓冲减损集薯驱动装置
    1.链传动装置 2.驱动轴 3.驱动轮 4.液压马达 5.测速轮 6.传感器
    Figure  15.  Drive of buffer loss reducing potato collecting
    1. Chain drives 2. Drive shaft 3. Drive wheel 4. Hydraulic motor 5. Speed measuring wheel 6. Sensor

    试验于山东省乐陵市山东思代尔农业装备有限公司马铃薯种植基地进行,中性土壤,土壤平均含水率11.2%,单垄单行种植,马铃薯品种为“希森3号”,2022年3月上旬,采用切块薯种机械化种植,种植株距为200 mm,未采用覆膜种植。提前1周机械化杀秧,去除滴灌带,产量估测为52500~60000 kg/hm2,试验现场如图16所示。

    图  16  田间收获试验
    Figure  16.  Field experiment of harvest

    基于前期试验,选取挖掘深度为220 mm,作业速度分别设定为3.17和4.16 km/h,稳定区收获作业长度为10 m,数据采集区收获作业长度为30 m,样机输入轴转速为400 r/min,集薯输送带液压马达的转速为60~70 r/min,漏挖和漏拾的薯块记作损失,损伤薯肉记作伤薯,表皮损伤面积大于0.2 cm2记作破皮,将纯作业时间的损失率e1、伤薯率e2和破皮率e3作为评价指标。

    e1=M1+M2M×100\text{%}  (26)
    e2=M3M×100% (27)
    e3=M4M×100% (28)

    式中M1为漏挖薯质量,kg;M2为漏拾薯质量,kg;M为总质量,kg;M3为伤薯质量,kg;M4为破皮薯质量,kg。

    样机测试结果如表2所示,在作业速度为3.17和4.16 km/h时,损失率分别为1.17%和1.43%,伤薯率分别为1.30%和1.27%,破皮率分别为1.98%和1.84%,生产率分别为0.41和0.54 hm2/h,各项性能指标满足《NY/T648-2015 马铃薯收获机质量评价技术规范》。

    表  2  样机测试结果
    Table  2.  Test results of prototype
    评价参数
    Evaluation parameters
    作业速度
    Working speed/(km∙h−1)
    3.17 4.16
    损失率 Loss rate e1/% 1.17 1.43
    伤薯率 Damage rate of potatoes e2 /% 1.30 1.27
    破皮率 Bruising rate of potatoes e3 /% 1.98 1.84
    纯工作小时生产率 Pure work productivity/(hm2∙h−1) 0.41 0.54
    含杂率 Impurity content /% 2.53 3.11
    下载: 导出CSV 
    | 显示表格

    样机采用“双重振动分离+弹性揉搓除杂+缓冲减损集薯输送”收获工艺,缩短了薯块自挖掘至集薯装车之间的运行时间,有效降低了薯块的碰撞频次及回流、翻滚弹跳的概率,缓冲帘与弹性揉搓清土除杂装置之间的配合减损效果良好。试验表明,作业速度较快时,单位时间内进入弹性揉搓清土除杂装置的物料明显增多,清土除杂负担加重;单位时间内与缓冲帘产生碰撞接触的不仅仅是薯块,还有少量土块等杂质,在清土除杂阶段部分土壤、秧蔓等混杂于薯群,导致含杂率较高。作业速度较慢时,进入清土除杂阶段的杂质明显减少,清除马铃薯表皮土层的效果较好,但会导致马铃薯与除杂轮碰撞接触的频次增加,伤薯破皮率有所增大,但含杂率较低。对于集薯装车过程,传感器可实时获取集薯输送带的运行速度,可根据工况控制薯块的跌落高度和位置,还可根据收获产量和土壤特性等作业工况及时调整集薯输送带的运行速度,有效避免薯块的跌落损伤。

    1)样机采用“双重振动分离+弹性揉搓除杂+缓冲减损集薯输送”收获工艺,主要部件包液压控制调频振动装置、薯秧分离装置、弹性揉搓清土除杂装置和缓冲减损集薯输送装置等,可满足马铃薯机械化收获的高效分离、清土除杂和减损防损需求。

    2)作业速度为3.17 和4.16 km/h时,样机的损失率分别为1.17%和1.43%,伤薯率分别为1.30%和1.27%,破皮率分别为1.98%和1.84%,生产率分别为0.41 和0.54 hm2/h,完全能够满足规范的各项指标要求。

  • 图  1   弹性揉搓式马铃薯联合收获机总体与局部结构示意图

    1.牵引装置 2.松土限深装置 3.切土切蔓装置 4.挖掘装置 5.薯土分离装置6. 折叠架 7.缓冲帘 8.集薯输送带 9.清土除杂装置

    Figure  1.   Diagram of overall structure and local structure of potato combine harvester with elastic rubbing

    1. Traction device 2. Soil loosening and depth control device 3. Cutting device of soil and seedlings 4. Digging device 5. Device of potatoes and soil separation 6. Folding frame 7.Cushion curtain 8. Belt of potatoes gathering and conveying 9. Soil cleaning and impurity removal device

    图  2   马铃薯联合收获机动力传递路线

    1.后部振动轴 2.传动轴 3.变速箱 4.橡胶齿驱动轴 5.除杂长辊 6.除杂短辊

    Figure  2.   Power transfer route of potato combine harvester

    1. Vibration shaft at the rear 2. Transmission shaft 3. Gear box 4. Rubber tooth drive shaft 5. Long impurity removal roller 6. Short impurity removal roller

    图  3   液压调控薯土分离装置结构图及实物图

    1.驱动装置 2.调整臂 3.振动装置 4.分离筛

    Figure  3.   Structural and physical diagram of potato-soil separating device using hydraulic regulation

    1. Drive device 2. Adjusting arm 3. Vibration device 4. Separation sieve

    图  4   薯块在分离筛上的运动分析

    注:vj为作业速度,m·s-1vf为分离筛筛面的线速度,m·s-1vz为薯块因振动装置的击打获得的瞬时速度,m·s-1vhc为薯块即将离开筛面时vfvz的合成速度,m·s-1vy为薯块垂直于筛面方向上的合成速度,m·s-1αs为分离筛的倾斜角度,(°);H为薯块沿垂直于筛面方向的最大跳跃高度,m;h1为薯块跳跃至最大高度时筛面沿垂直方向的上升高度,m;h2为在薯块下落时筛面沿垂直方向的上升高度,m;h3为薯块沿筛面垂直方向的跌落高度,m。

    Figure  4.   Movement analysis of potato on a separation sieve

    Note: vj is operating velocity, m·s-1; vf is linear velocity of surface of potato soil separation sieve, m·s-1; vz is instantaneous velocity of potato obtained by the strike of vibration device,m·s-1; vhc is the synthesis velocity of vf and vz when potato is about to leave sieve surface,m·s-1; vy is synthesis velocity of potato perpendicular to sieve surface direction, m·s-1; αs is inclination angle of separation sieve, (°); H is the maximum jumping height of potato in the direction perpendicular to sieve surface, m; h1 is the maximum rebound height of sieve surface in the vertical direction when potato jumps to its maximum height, m; h2 is the maximum rebound height of sieve surface in the vertical direction when potato falls, m; h3 is the drop height of potato along the vertical direction of the sieve surface, m.

    图  5   土块的破碎透筛过程分析

    注:G1G2为碎土块所受的重力,N;W1W2为碎土块受到的惯性力,N;F1F2为土块受到的外部作用力,N;Fa1Fa2为土块内部的黏结力,N;L1L2为碎土块质心到断裂面的垂直距离,m;L3L4为受力点P点与重力的垂直距离,m;Lv为受力点P点与土块质心之间的垂直距离,m。

    Figure  5.   Analysis of the crushing and screening of soil blocks

    Note: G1 and G2 represent weight of crushed clod, N; W1 and W2 are inertial forces acting on crushed clod, N; F1 and F2 are external forces acting on clods, N; F1 and F2 are cohesive forces inside clod, N; L1 and L2 are vertical distances from centroid of crushed clod to fracture surface, m; L3 and L4 are vertical distance between force point P and gravity, m; LV is vertical distance between force point P and centroid of clod, m.

    图  6   弹性揉搓清土除杂装置结构

    1.传动装置2.机架 3.护罩 4.导流板 5.长除杂辊 6.短除杂辊

    Figure  6.   Structure of impurity removal device with elastic rubbing

    1. Transmission device 2. Frame 3. Shield 4. Guide plate 5. Long impurity removal roller 6. Short impurity removal roller

    图  7   马铃薯与除杂指相对位置

    Figure  7.   Relative position between potato and impurity removal finger

    图  8   清土除杂过程受力分析

    注:XYZ为坐标轴;O为坐标系原点;FqzFqyFh分别为前方除杂辊的其中1对除杂轮的左侧除杂指、右侧除杂指与后方除杂辊的对应除杂指对薯块的作用力,N;αzαyβ分别为FqzFqyFhXOY面的夹角,(°);Gs为薯块的重力,N。

    Figure  8.   Force analysis of soil cleaning and impurity removal

    Note: X, Y, and Z are coordinate axes; O is the origin of coordinate system; Fqz, Fqy, and Fh are the forces exerted on potato by left and right fingers of one pair of impurity removal rollers and corresponding impurity removal fingers of rear impurity removal rollers, respectively, N; αzαyβ are angles between Fqz, Fqy, Fh, and XOY surfaces, (°); Gs is gravity of the potato, N.

    图  9   弹性揉搓清土除杂过程分析

    Figure  9.   Analysis of the process of elastic rubbing for soil cleaning and impurity removal

    图  10   马铃薯在清土除杂-缓冲集薯段的运行轨迹

    1.集薯输送带 2.护薯板 3.除杂辊 4.缓冲帘 5.马铃薯

    Figure  10.   Running track of potato in the section of soil clearing and impurity removal-buffer potato collection

    1. Belt of potatoes gathering and conveying 2. Potato protection plate 3. Impurity removal roller 4. Cushion curtain 5. Potato

    图  11   马铃薯在清土除杂-缓冲集薯段的运动分析

    注:Og点为装置末端长除杂辊或短除杂辊的中心;Os点为薯块即将脱离除杂轮的位置;Op点为薯块与缓冲帘碰撞的位置;Od点为薯块跌落至集薯输送带处;vs为薯块即将脱离除杂轮时的初速度,m·s−1vsxvsy分别是vs在水平、竖直方向上的分速度,m·s−1αgOs点与Og点的连线与水平方向的夹角,(°);LgpOg点和Op点之间的水平距离,m;Lsp为薯块从Os点运动至Op点的水平距离,m;Hsp为薯块从Os点运动至Op点的铅锤距离,m;Hpd为薯块从Op点运动至Od点的竖直距离,m;HgdOg点和Od点的铅锤距离,m;vp为薯块与缓冲帘碰撞后的速度,m·s−1vd为薯块与集薯输送带接触时的瞬时速度,m·s−1βl为缓冲帘的下半部分向后弯曲的角度,(°)。

    Figure  11.   Movement analysis of potato in the section of soil cleaning and impurity removal-buffer potato collection

    Note: Point Og is center of last long or short impurity removal roller at the end of the device; Point Os is position where potato is about to detach from impurity removal wheel; Point Op is position where potato collides with buffer curtain flexibly; Point Od is position where potato falls onto belt of potatoes gathering; vs is initial velocity of potato when it is about to detach from impurity removal wheel, m·s−1; vsx and vsy are partial velocities of vs in horizontal and vertical directions respectively, m·s−1; αg is angle between line connecting point Os and point Og and horizontal direction, (°); Lgp is horizontal distance between point Og and point Op, m; Lsp is horizontal distance of potato from point Os to point Op, m; Hsp is vertical distance of potato from point Os to point Op, m; Hpd is vertical distance of potato from point Op to point Od, m; Hgd is vertical distance between point Og and point Od, m; vp is speed after flexible collision between potato and buffer curtain, m·s−1; vd is instantaneous velocity when potato comes into contact with surface of conveyor belt, m·s−1; βl is angle at which lower half of buffer curtain bends backwards, (°).

    图  12   缓冲帘弯曲变化示意图

    注:GqGh点分别为缓冲帘下半部分弯曲变形前、后的重心。

    Figure  12.   Diagram of cushion curtain bending change

    Note: The Gq and Gh points are the center of gravity of the lower half of the buffer curtain before and after bending deformation.

    图  13   缓冲减损集薯输送装置

    1.集薯输送带 2.末端折叠架 3.驱动装置 4.中间折叠架 5.水平架 6.缓冲帘 7.液压缸

    Figure  13.   Buffer and loss reducing potato conveying device

    1. Belt of potatoes gathering and conveying 2. End folding frame 3. Drive device 4. Middle folding frame 5. Horizontal frame 6. Cushion curtain 7. Hydraulic cylinder

    图  14   缓冲减损集薯抛落过程分析

    注:X轴正向指向集薯输送带远离除杂轮的方向,Y轴正向指向集薯输送带的运行方向,Z轴正向朝上;O1O2分别为两薯块的重心;FN为集薯输送带对薯块的支承力,N;Ft为集薯挡板对薯块的推力,N;GS为薯块所受重力,N;fxfy分别为集薯输送带在X轴和Y轴方向对薯块的摩擦力,N;fz为集薯挡板在Z轴方向对薯块的摩擦力,N。

    Figure  14.   Analysis of dropping process of buffer and loss reducing collecting potatoes

    Note: The positive direction of X-axis points towards direction of collecting potato conveyor belt away from impurity removal wheel, the positive direction of Y-axis points towards running direction of collecting potato conveyor belt, and Z-axis points upwards; O1 and O2 are centers of gravity of potatoes, respectively; FN is supporting force of belt of potatoes gathering and conveying on potato, N; Ft is force exerted by potato collecting baffle on potato, N; GS is gravity of potato, N; fx and fy are frictional forces of belt of potatoes gathering and conveying on the potato in X-axis and Y-axis directions, N; fz is frictional force of potato collecting baffle on potato in Z-axis direction, N.

    图  15   缓冲减损集薯驱动装置

    1.链传动装置 2.驱动轴 3.驱动轮 4.液压马达 5.测速轮 6.传感器

    Figure  15.   Drive of buffer loss reducing potato collecting

    1. Chain drives 2. Drive shaft 3. Drive wheel 4. Hydraulic motor 5. Speed measuring wheel 6. Sensor

    图  16   田间收获试验

    Figure  16.   Field experiment of harvest

    表  1   弹性揉搓式马铃薯联合收获机主要技术参数

    Table  1   Main technical parameters of potato combine harvester with elastic rubbing

    技术参数Technical parameters 数值Values
    整机尺寸(长×宽×高)/
    Overall dimensions/(mm×mm×mm)
    6 670×2 680×2 890
    整机质量Overall weight/kg 3270
    配套动力Mating power/kW 73.5~118
    收获垄数Harvesting ridge numbers 2
    作业幅宽Working width/mm 1 700
    适应垄宽Adjusting ridge width/mm ≤900
    挖掘深度Digging depth/mm 150~300
    纯工作时间生产率
    Pure work productivity/(hm2∙h–1)
    0.33~0.55
    分离筛相邻杆条中心距
    Center distance between adjacent
    bars of the separation sieve/mm
    45
    伤薯率Damage rate of potatoes/% ≤2
    破皮率Bruising rate of potatoes/% ≤3
    含杂率Impurity content/% ≤4
    损失率Loss rate/% ≤4
    分离筛宽度Width of separation sieve/mm 1660
    装车提升臂最大效率
    Maximum efficiency of loading lifting arm/(t∙h–1)
    60
    最大装车高度Maximum loading height/mm 2940
    最大装车宽度Maximum loading width/mm 3750
    下载: 导出CSV

    表  2   样机测试结果

    Table  2   Test results of prototype

    评价参数
    Evaluation parameters
    作业速度
    Working speed/(km∙h−1)
    3.17 4.16
    损失率 Loss rate e1/% 1.17 1.43
    伤薯率 Damage rate of potatoes e2 /% 1.30 1.27
    破皮率 Bruising rate of potatoes e3 /% 1.98 1.84
    纯工作小时生产率 Pure work productivity/(hm2∙h−1) 0.41 0.54
    含杂率 Impurity content /% 2.53 3.11
    下载: 导出CSV
  • [1] 杨然兵,田光博,尚书旗,等. 马铃薯收获机辊组式薯土分离装置设计与试验[J]. 农业机械学报,2023,54(2):107-118.

    YANG Ranbing, TIAN Guangbo, SHANG Shuqi, et al. Design and experiment of roller type potato soil separator for potato harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(2): 107-118. (in Chinese with English abstract)

    [2] 王相友,吕丹阳,任加意,等. 装袋型马铃薯联合收获机清选装置研制[J]. 农业工程学报,2022,38(增刊):8-17.

    WANG Xiangyou, LYU Danyang, REN Jiayi, et al. Design and parameter optimization of the cleaning device for a bagged potato combine harvester[J]. Transactions of the Chinese Society of Agricultual Engineering (Transactions of the CSAE), 2022, 38(Supp.): 8-17. (in Chinese with English abstract)

    [3] 吕金庆,杜长霖,刘中原,等. 马铃薯料斗机除杂装置设计与试验[J]. 农业机械学报,2021,52(1):82-90,61.

    LYU Jinqing, DU Changlin, LIU Zhongyuan, et al. Design and test of impurity removal device of potato receiving hopper[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(1): 82-90, 61. (in Chinese with English abstract)

    [4] 农业农村部南京农业机械化研究所. 中国农业机械化年鉴[M]. 北京:中国农业科学技术出版社,2021.
    [5] 王学军,蒋金琳. 小型薯类联合收获机设计与田间试验[J]. 农机化研究,2014,36(2):176-178.

    WANG Xuejun, JIANG Jinlin. Small potato combine harvester design and field test[J]. Journal of Agricultural Mechanization Research, 2014, 36(2): 176-178. (in Chinese with English abstract)

    [6]

    RUZHYLO Z, BULGAKOV V, ADAMAHUK V, et al. Experimental research into impact of kinematic and design parameters of a spiral potato separator on quality of plant residues and soil separation[J]. Journal of Agricultural Science, 2020, 31(2), 202-207.

    [7]

    MOSALANEJAD H, MOBLI H, POURSOITAN A. The main parame-ters assessment of clod and stone separation from potato crop (inclined belt type)in potato harvester [J]. Majlesi Journal of Mechanical Engineering, 2011(2): 79-84.

    [8] 赵胜雪,刘崇林,胡军,等. 国内外马铃薯收获清选机械研究现状[J]. 黑龙江八一农垦大学学报,2019,31(1):78-83.

    ZHAO Shengxue, LIU Chonglin, HU Jun, et al. Research status of harvesting machinery for domestic potato[J]. Journal of Heilongjiang Bayi Agricultural University, 2019, 31 (1): 78-83. (in Chinese with English abstract)

    [9] 宋言明,王芬娥. 新型马铃薯联合收获机的总体设计[J]. 甘肃农业大学学报,2009,44(1):151-154.

    SONG Yanming, WANG Fen'e. Overall design of a new potato combine harvester[J]. Journal of Gansu Agricultural University, 2009, 44(1): 151-154. (in Chinese with English abstract)

    [10] 吕金庆,孙贺,兑瀚,等. 粘重土壤下马铃薯挖掘机分离输送装置改进设计与试验[J]. 农业机械学报,2017,48(11):146-155.

    LYU Jinqing, SUN He, DUI Han, et al. Design and experiment on conveyor separation device of potato digger under heavy soil condition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (11): 146-155. (in Chinese with English abstract)

    [11] 张兆国,王海翼,李彦彬,等. 多级分离缓冲马铃薯收获机设计与试验[J]. 农业机械学报,2021,52(2):96-109.

    ZHANG Zhaoguo, WANG Haiyi, LI Yanbin, et al. Design and experiment of multi-stage separation buffer potato harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2): 96-109. (in Chinese with English abstract)

    [12]

    BLAHOVEC J. Shape of bruise spots in impacted potatoes[J]. Postharvest Biology and Technology, 2006, 39(3): 278-284. doi: 10.1016/j.postharvbio.2005.11.004

    [13]

    CELIK H K, CINAR R, YILMAZ D, et al. Mechanical collision simulation of potato tubers[J]. Journal of Food Process Engineering, 2019, 42(5): 1-7.

    [14] 魏忠彩,李学强,张宇帆,等. 马铃薯全程机械化生产技术与装备研究进展[J]. 农机化研究,2017,39(9):1-6.

    WEI Zhongcai, LI Xueqiang, ZHANG Yufan, et al. Reviews on technology and equipment of potato production[J]. Journal of Agricultural Mechanization Research, 2017, 39(9): 1-6. (in Chinese with English abstract)

    [15]

    KHEIRALIPOUR K, KHAZAEE Y, HOSAINPOUR A, et al. Development of an algorithm based on image processing technique and sport vector machine to distinct potato from clod and stone[J]. Journal of Researches in Mechanics of Agricultural Machinery, 2019, 8(1): 1-11.

    [16]

    BULGAKOV V, RUZHYLO Z, Olt J, et al. Theory of impact interaction between potato bodies and rebounding conveyor[J]. Agronomy Research, 2018, 16(1): 52-63.

    [17] 冯斌,孙伟,石林榕,等. 收获期马铃薯块茎碰撞恢复系数测定与影响因素分析[J]. 农业工程学报,2017,33(13):50-57.

    FENG Bin, SUN Wei, SHI Linrong, et al. Determination of restitution coefficient of potato tubers collision in harvest and analysis of its influence factors[J]. Transactions of the Chinese Society of Agricultual Engineering (Transactions of the CSAE) 2017, 33(13): 50-57. (in Chinese with English abstract)

    [18] 吕金庆,田忠恩,杨颖,等. 4U2A 型双行马铃薯挖掘机的设计与试验[J]. 农业工程学报,2015,31(6):17-24.

    LYU Jinqing, TIAN Zhong’en, YANG Ying, et al. Design and experimental analysis of 4U2A type double-row potato digger[J]. Transactions of the Chinese Society of Agricultual Engineering (Transactions of the CSAE), 2015, 31(6): 17-24. (in Chinese with English abstract)

    [19] 王相友,孙景彬,许英超,等. 拨辊推送式马铃薯清选分选机设计与试验[J]. 农业机械学报,2017,48(10):316-322,279.

    WANG Xiangyou, SUN Jingbin, XU Yingchao, et al. Design and experiment of potato cleaning and sorting machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 316-322, 279. (in Chinese with English abstract)

    [20] 谢胜仕,王春光,邓伟刚,等. 摆动分离筛薯土分离机理分析与参数优化试验[J]. 农业机械学报,2017,48(11):156-164.

    XIE Shengshi, WANG Chunguang, DENG Weigang, et al. Separating mechanism analysis and parameter optimization experiment of swing separation sieve for potato and soil mixture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017 , 48(11): 156-164. (in Chinese with English abstract)

    [21] 魏宏安,张俊莲,杨小平,等. 4UFD-1400 型马铃薯联合收获机改进设计与试验[J]. 农业工程学报,2014,30(3):12-17.

    WEI Hong'an, ZHANG Junlian, YANG Xiaoping, et al. Improved design and test of 4UFD-1400 type potato combine harvester[J]. Transactions of the Chinese Society of Agricultual Engineering (Transactions of the CSAE), 2014, 30(3): 12-17. (in Chinese with English abstract)

    [22] 戴飞,赵武云,孙伟,等. 马铃薯收获与气力辅助残膜回收联合作业机设计与试验[J]. 农业机械学报,2017,48(1):64-72.

    DAI Fei, ZHAO Wuyun, SUN Wei, et al. Design and experiment of combined operation machine for potato harvesting and plastic film pneumatic auxiliary collecting[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1): 64-72. (in Chinese with English abstract)

    [23] 魏忠彩,李学强,孙传祝,等. 马铃薯收获与清选分级机械化伤薯因素分析[J]. 中国农业科技学报,2017,19(8):63-70.

    WEI Zhongcai, LI Xueqiang, SUN Chuanzhu, et al. Analysis of potato mechanical damage in harvesting and cleaning and sorting storage[J]. Journal of Agricultural Science and Technology, 2017, 19(8): 63-70. (in Chinese with English abstract)

    [24] 吕金庆,田忠恩,吴金娥,等. 4U1Z型振动式马铃薯挖掘机的设计与试验[J]. 农业工程学报,2015,31(12):39-47.

    LYU Jinqing, TIAN Zhong’en, WU Jin’e, et al. Design and experiment on 4U1Z vibrating potato digger [J]. Transactions of the Chinese Society of Agricultual Engineering (Transactions of the CSAE), 2015, 31 (12): 39-47. (in Chinese with English abstract)

    [25] 魏忠彩,李洪文,孙传祝,等. 振动与波浪二级分离马铃薯收获机改进[J]. 农业工程学报,2018,34(12):42-52.

    WEI Zhongcai, LI Hongwen, SUN Chuanzhu et al. Improvement of potato harvester with two segment of vibration and wave separation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 42-52. (in Chinese with English abstract)

    [26] 戴飞,郭笑欢,赵武云,等. 帆布带式马铃薯挖掘-残膜回收联合作业机设计与试验[J]. 农业机械学报,2018,49(3):104-113.

    DAI Fei, GUO Xiaohuan, ZHAO Wuyun, et al. Design and experiment of canvas belt combined operation machine for potato digging and plastic film collecting[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 104-113. (in Chinese with English abstract)

    [27] 杨然兵,杨红光,尚书旗,等. 马铃薯联合收获机立式环形分离输送装置设计与试验[J]. 农业工程学报,2018,34(3):10-18.

    YANG Ranbing, YANG Hongguang, SHANG Shuqi, et al. Design and experiment of vertical circular separating and conveying device for potato combine harvester[J]. Transactions of the Chinese Society of Agricultual Engineering (Transactions of the CSAE), 2018, 34(3): 10-18. (in Chinese with English abstract)

    [28] 冯斌,孙伟,孙步功,等. 收获期马铃薯块茎跌落冲击特性及损伤规律研究[J]. 振动与冲击,2019,38(24):267-274.

    FENG Bin, SUN Wei, SUN Bugong, et al. A study on dropping impact characteristics and damage regularity ofpotato tubers during harvest[J]. Journal of Vibration and Shock, 2019, 38(24): 267-274. (in Chinese with English abstract)

    [29] 陈志惠,段宏兵,蔡兴奎,等. 马铃薯跌落碰撞时的接触应力分布特性[J]. 华南农业大学学报,2020,41(5):99-108.

    CHEN Zhihui, DUAN Hongbing, CAI Xingkui, et al. Distribution characteristics of potato contact stress during the drop impact[J]. Journal of South China Agricultural University, 2020, 41(5): 99-108. (in Chinese with English abstract)

    [30] 魏忠彩,李洪文,孙传祝,等. 基于多段分离工艺的马铃薯联合收获机设计与试验[J]. 农业机械学报,2019,50(1):129-140,112.

    WEI Zhongcai, LI Hongwen, SUN Chuanzhu, et al. Design and experiment of potato combined harvester based on multi-stage separation technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 129-140, 112. (in Chinese with English abstract)

    [31] 曲永波,方志超,吴明亮,等. 振动和拨辊推送式藠头收获机研制[J]. 农业工程学报,2022,38(19):51-59. doi: 10.11975/j.issn.1002-6819.2022.19.006

    QYU Yongbo, FANG Zhichao, WU Mingliang, et al. Development of a vibrating and roller pushing type Allium chinense harvester[J]. Transactions of the Chinese Society of Agricultual Engineering (Transactions of the CSAE), 2022, 38(19): 51-59. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.19.006

    [32] 谢胜仕,王春光,邓伟刚. 马铃薯碰撞损伤试验与碰撞加速度特性分析[J]. 中国农业大学学报,2020,25(1):163-169.

    XIE Shengshi, WANG Chunguang, DENG Weigang. Collision damage text and acceleration characteristic analysis of potato[J]. Journal of China Agricultural University, 2020, 25 (1): 163-169. (in Chinese with English abstract)

    [33] 哈尔滨工业大学理论力学教研室. 理论力学I[M]. 北京:高等教育出版社,2016.
    [34] 刘兆龙,冯艳全,石宏霆. 大学物理(第一卷)力学与热学[M]. 北京:高等教育出版社,2017.
    [35]

    TVAN C, TIJSKENS E, RAMON H, et al. Characterisation of a potato-shaped instrumented device[J]. Biosystems Engineering, 2003, 86(3): 275-285. doi: 10.1016/j.biosystemseng.2003.08.003

    [36]

    CANNEYT T V, LANGENNAKENS J, TIJSKENS E, et al. Characterisation of a potato-shaped instrumented tool to predict mechanical damage to potatoes[J]. IFAC Proceedings Volumes, 2001, 34(28): 61-66. doi: 10.1016/S1474-6670(17)32825-2

图(16)  /  表(2)
计量
  • 文章访问数:  400
  • HTML全文浏览量:  46
  • PDF下载量:  215
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-09
  • 修回日期:  2023-07-08
  • 网络出版日期:  2023-08-10
  • 刊出日期:  2023-07-29

目录

/

返回文章
返回