• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

减氮配施生物炭对北疆小麦产量品质及固碳减排的影响

杨卫君, 杨梅, 郭颂, 宋世龙, 陈雨欣, 王森, 赵红梅

杨卫君,杨梅,郭颂,等. 减氮配施生物炭对北疆小麦产量品质及固碳减排的影响[J]. 农业工程学报,2024,40(4):104-111. DOI: 10.11975/j.issn.1002-6819.202307171
引用本文: 杨卫君,杨梅,郭颂,等. 减氮配施生物炭对北疆小麦产量品质及固碳减排的影响[J]. 农业工程学报,2024,40(4):104-111. DOI: 10.11975/j.issn.1002-6819.202307171
YANG Weijun, YANG Mei, GUO Song, et al. Effects of reducing nitrogen ferilizer combined with biochar on the yield and quality of wheat and carbon sequestration and emission reduction in Northern Xinjiang of China [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(4): 104-111. DOI: 10.11975/j.issn.1002-6819.202307171
Citation: YANG Weijun, YANG Mei, GUO Song, et al. Effects of reducing nitrogen ferilizer combined with biochar on the yield and quality of wheat and carbon sequestration and emission reduction in Northern Xinjiang of China [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(4): 104-111. DOI: 10.11975/j.issn.1002-6819.202307171

减氮配施生物炭对北疆小麦产量品质及固碳减排的影响

基金项目: 国家自然科学基金项目(32260326);中国沙漠气象科学研究基金项目(Sqj2021014);新疆现代农业产业(小麦)技术体系项目(XJARS-01)
详细信息
    作者简介:

    杨卫君,博士,副教授,研究方向为农田生态。Email:1984_ywj@163.com

    通讯作者:

    赵红梅,博士,副教授,研究方向为农田土壤培肥。Email:zhaohongmeidu@163.com

  • 中图分类号: S147.2

Effects of reducing nitrogen ferilizer combined with biochar on the yield and quality of wheat and carbon sequestration and emission reduction in Northern Xinjiang of China

  • 摘要:

    为研究生物炭在北疆灌区农田应用的稳产增产及固碳减排综合潜力,探索农田氮肥优化施用途径,该研究于2021年4月—2022年7月在新疆奇台设置常规施氮(N1:300 kg/hm2)、氮肥减量15%(N2:255 kg/hm2)、氮肥减量30%(N3:210 kg/hm2)、单施生物炭(B:20 t/hm2)、常规施氮+生物炭(N1B)、氮肥减量15%+生物炭(N2B)、氮肥减量30%+生物炭(N3B)7个处理,分析两季小麦(春小麦、冬小麦)种植期间不同处理下麦田土壤有机碳含量、土壤呼吸速率、小麦品质及产量变化。结果表明,与单施常规氮肥相比,施用生物炭后土壤总有机碳(soil total organic carbon,SOC)、活性有机碳(active organic carbon,AOC)、碳库管理指数(carbon pool management index,CPMI)和小麦产量、籽粒水分及蛋白(干基)含量均呈提高趋势。综合表现以氮肥减量15%配施生物炭(N2B)处理最优,较氮肥常规单施(N1)相比,AOC、SOC均有显著提高,2 a产量分别显著提高22.12%、36.17%(P<0.05)。与常规施氮相比,氮肥减量15%配施生物炭(N2B)处理下,2022年冬小麦蛋白(干基)、面筋(湿基)、Zeleny沉降值均有提高,而2021年各处理间差异不显著(P>0.05)。同时,除单施生物炭(B)处理(2021年)和除单施生物炭(B)及减氮15%(N2)处理外(2022年),其他处理下土壤CO2累积排放量较单施常规氮肥均有所升高。综上,氮肥减量15%(255 kg/hm2)配施20 t/hm2生物炭时其农田土壤固碳减排效果及小麦产量品质综合表现较好,建议作为北疆灌区麦田氮肥优化配施生物炭的理想施肥方案。

    Abstract:

    Numerous research endeavours have been conducted to explore the application of biochar as a means to enhance soil fertility and augment crop productivity in agricultural regions, but there is a lack of quantitative research and in-depth analysis on whether the application of biochar in farmland of irrigation area of Northern Xinjiang can increase production, sequester carbon and reduce emission. Hence, this study aimed to conduct a thorough assessment to ascertain the possible applicability of biochars in the ecosystems of agriculture irrigated in oasis regions. A field experiment was herein conducted in a spring and winter wheat rotation system from April 2021 to July 2022 with 7 treatments: the conventional application of nitrogen (N1: 300 kg/hm2), the reduction of nitrogen fertilizer by 15% (N2: 255 kg/hm2), the reduction of nitrogen fertilizer by 30% (N3: 210 kg/hm2), a single application of biochar (B: 20 t/hm2), the conventional application of nitrogen combined with biochar (N1B), the reduction of nitrogen fertilizer by 15% combined with biochar (N2B), and the reduction of nitrogen fertilizer by 30% combined with biochar (N3B). The effects of nitrogen fertilizer and biochar on soil organic carbon pool, soil respiration, wheat quality and yield were studied, with the aim to explore the potentiality of stable yield, carbon fixation and emission reduction of biochar application in the farmland of the Northern Xinjiang irrigation area. The results showed that compared with applying conventional nitrogen fertilizer alone (N1), the application of biochar resulted in an increase in soil total organic carbon (SOC), active organic carbon (AOC), carbon pool management index (CPMI), wheat yield, wheat quality as well. The soil AOC content was 1.44 g/kg in the treatment that 15% nitrogen fertilizer reduction combined with biochar(N2B), which was 30.91% higher than that in N1. Meanwhile, the SOC content was higher than that in N1. When it comes to the wheat yield, the spring wheat yield was 8 301.35 kg/hm2, and the winter wheat yield was 10 784.76 kg/hm2 in N2B, with an increase of 22.12% and 36.17%, respectively when compared with N1. As it for the wheat quality, the sedimentation value of protein (dry base) , gluten (wet base) and Zeleny increased under the treatment of 15% reduction of nitrogen fertilizer combined with biochar (N2B) in 2022, while there was no significant difference among the 2021 treatments. The cumulative soil CO2 emission under other treatments was higher, except for biochar treatment in 2021 and 2022, and nitrogen reduction by 15% (N2) treatment alone in 2022. In a word, the effect of carbon sequestration and emission reduction in farmland soil and the yield and quality of wheat were better, when applied with 255 kg/hm2 nitrogen fertilizer and 20 t/hm2 biochar, which could be suggested as an ideal fertilization scheme to optimize the combination of nitrogen fertilizer and biochar in the wheat field of irrigation area in the northern Xinjiang.

  • 生物炭是一种环保的有机碳源肥料,由于其特殊的理化性质,在改善土壤质量和功能等方面的应用已备受关注[1]。生物炭的多孔性和较大比表面积可吸附土壤有机碳,将微生物及其胞外酶与这部分有机碳隔离,减缓有机碳分解[2];生物炭可加快土壤形成有机无机结合体,增强有机碳稳定性[3],虽然生物炭施用可能会形成土壤有机碳激发效应,但从长远来看,其在土壤有机碳中发挥着积极作用。持续多年使用生物炭,土壤有机碳含量高且作物产量和质量稳定[4],但作用效果存在一定的异质性[5-6]。多项整合分析结果表明,施炭后土壤有机碳的增幅为14.3%~101.6%,生物炭通过参与土壤中的生物地球化学循环,不仅具有“固碳”作用,更有“增加碳汇”和“稳定汇”的潜力[7]

    北疆灌区是绿洲农业的典型代表地,其较高的粮食生产力也伴随着土壤有机质含量降低,肥力不足以支撑产量的可持续增长等问题。因此,农田地力培肥及土壤有机碳固持相关研究受到学者们的普遍关注。关于不同肥料管理方式下有机物料还田对灌区农田生产力及土壤有机碳周转与稳定的相关研究相继展开。越来越多的证据表明,生物炭施于土壤后有利于土壤团聚体的形成并降低土壤容重[8],提高土壤养分及水分吸收[9];改善土壤微生物群落结构[10],增加N、P转化,促进作物对N、P的吸收[11],缓解作物土传病害发生[12];显著提高作物的产量及生物量[13]。本团队前期研究了氮肥(低量、常规)配施生物质炭(30 t/hm²)对小麦土壤养分、土壤团聚体稳定性及产量的影响,结果表明适当的减施氮肥(低量)配施生物炭有利于增加小麦土壤养分、提高土壤团聚体稳定性及产量[14]。尽管在提高灌溉绿洲农田的土壤肥力、增加小麦籽粒品质及产量方面生物炭已被广泛应用,但现有研究仍存在很多不足,如:尚不清楚生物炭施用所产生的固碳减排效应及其对农田土壤质量的作用,其在绿洲灌溉农田生态系统中的应用潜力有待客观综合评价。

    基于此,本研究进一步分析优化氮肥施用量并配施生物炭情况下麦田土壤有机碳库及小麦产量及品质的变化,旨在探明生物炭在北疆灌区农田促进化肥减施增效、固碳减排及作物稳产增产综合效应,以期为北疆灌区制定合理的化肥减量及生物炭施用措施,综合评价生物炭在灌区农田的应用价值提供参考。

    于2021年4月—2022年7月在新疆奇台麦类试验站(89°13'E~91°22'E,42°25'N~45°29'N,海拔895.00 m)开展试验。奇台属于温带大陆性气候,年平均气温5.5 ℃,7月平均气温22.6 ℃,极端最高气温39 ℃,1月平均气温−18.9 ℃,年平均相对湿度60%,无霜期年平均153 d(4月下旬—10月上旬),年平均降水量269.4 mm。试验地土壤为壤质灰漠土,pH值为8.3,有机质含量13.9 g/kg,全磷含量1.3 g/kg,全钾含量18.1 g/kg,碱解氮含量128.7 mg/kg,有效磷含量11.4 mg/kg,速效钾含量147.0 mg/kg。

    供试生物炭为玉米秸秆炭,由辽宁金和福农业科技股份有限公司提供,将玉米秸秆自然风干后碾碎,在450 ℃缺氧条件下炭化4 h,出炉后,将其制备成0.05~2.00 cm的颗粒,生物炭基本性质:pH 值为9.3,比表面积3.3 m2/g,固定碳含量68.7%,碳质量分数75.76%,挥发成分含量20.6%,灰分含量10.6%(质量分数)。

    供试氮肥为尿素(质量分数98.5%),施用量为纯氮量。供试两季作物分别为春小麦和冬小麦,其中2021年4月—2021年8月为春小麦(新春37号),2021年9月—2022年7月为冬小麦(新冬22号)。

    田间试验采用随机区组设计,设置7个处理:常规施氮(N1:300 kg/hm2)、氮肥减量15%(N2:255 kg/hm2)、氮肥减量30%(N3:210 kg/hm2)、单施生物炭(B:20 t/hm2)、常规施氮+生物炭(N1B)、氮肥减量15%+生物炭(N2B)、氮肥减量30%+生物炭(N3B)。氮肥与生物炭均作为底肥施入耕层30 cm,并以常规施氮为对照,每个处理设3次重复。

    小麦播种方式为0.2 m无覆膜等行距条播,播种量为4.5×106株/hm2,每个小区面积为9 m2(3 m×3 m)。灌溉方式为滴灌,每间隔40 cm一个滴灌带,管道口径为20 mm,滴头型号为¢16,流量为2.2~2.4 L/h,全生育期灌水8次,每次灌水量为562.5 m3/hm2(相当于56.25 mm)。所有试验处理的管理措施均参照当地高产田的管理模式执行。2021年春小麦各生育时期如下:拔节期(5月22日)、孕穗期(6月1日)、开花期(6月10日)、灌浆期(7月3日)、成熟期(7月30日),2022年冬小麦各生育时期如下:拔节期(5月2日)、孕穗期(5月15日)、开花期(5月24日)、灌浆期(6月4日)、成熟期(7月2日)。在小麦生育时期内试验地的气温和降水量情况如图1所示,2021年生育期降雨量为186.4 mm,2022年年生育期降雨量为168.6 mm,2 a平均气温为19.7 ℃,2 a均属于干旱年。

    图  1  2021—2022年小麦生育期气温和降水量变化
    注:Tmax为日最高气温;Tmin为日最低气温;Pr为逐日降水量。
    Figure  1.  Changes in temperature and precipitation during the wheat growth period from 2021 to 2022
    Note: Tmax is daily maximum temperature; Tmin is daily minimum temperature; Pr is daily precipitation.

    土壤呼吸通量采用Li-8100土壤碳通量自动测量系统测定,自制直径为20 cm、高为10 cm的PVC环垂直插入土壤中,将其安装在行间裸地,其下部插入土壤5 cm,自苗期起,于晴朗无风的08:00―11:00之间,每7 d测定一次,每次观测前一天提前清理出PVC环内植物残体,检查底座是否紧实插入土壤中,以防止漏气影响测定结果,浇水雨天不进行观测。

    2021年和2022年在小麦成熟后进行土样的选取,采用“S”型5点取样法在各小区选择5个点,每个点用土钻取0~20 cm土样,将取得的土样剔除沙砾及可见植物残留,混合均匀带回实验室。

    采用常规法测定各指标,土壤总有机碳(soil total organic carbon,SOC)采用重铬酸钾- 浓硫酸外加热氧化法测定;土壤活性有机碳(soil active organic carbon,AOC)测定采用333 mmol/L KMnO4氧化法;土壤非活性有机碳含量(soil inactive organic carbon content,NAOC)为SOC与AOC的差值;容重采用环刀法测定。

    碳库指数(carbon stock index,CPI)为样品中全碳含量与参照土壤全碳含量的比值;碳库活度(carbon pool activity,CA)为活性与非活性碳含量的比值;碳库活性指数(carbon pool activity index,AI)为样品碳库活度与参考土壤碳库活度的比值;碳库管理指数(carbon pool management index,CPMI)为CPI与AI的乘积(%),碳库管理指数计算详见参考文献[9]。

    小麦品质包括水分、蛋白、面筋、Zeleny沉降值、淀粉等指标,采用瑞典 Perten IM 9500 型多功能谷物近红外分析仪测定,结果由系统软件自动分析。

    小麦成熟后,于每小区选取长势一致的1 m2(1 m×1 m)样区测定有效穗数,并于各小区选取10株代表性小麦进行考种,并实收测定千粒质量,折算产量。

    采用Microsoft Excel 2019、Origin 2021作图,SPSS26.0软件数据统计分析。

    表1可知,适量氮肥配施生物炭对提升土壤中活性有机碳含量具有显著促进作用(P<0.05),与单施相同氮肥(N1~N3)处理相比,施生物炭后,AOC分别提高了17.27%(N1B)、27.43%(N2B)、21.82%(N3B)。与常规施氮(N1)相比,单施生物炭(B)、氮肥减量处理(N2、N3)均未显著提高或降低土壤中活性有机碳含量(P>0.05),而氮肥配施生物炭后,AOC显著提高(P<0.05),以N2B处理土壤活性有机碳含量最高,达到1.44 g/kg,较常规施氮(N1)显著增加30.91%。

    表  1  2022年不同处理下土壤碳库指标
    Table  1.  Soil carbon pool indicators under different treatments in 2022
    处理
    Treatment
    土壤活性有机碳
    Soil active organic
    carbon(AOC)/(g·kg−1)
    碳库指数
    Carbon stock
    index(CPI)
    碳库活度
    Carbon pool
    activity(CA)
    碳库活性指数
    Carbon pool activity
    index(AI)
    碳库管理指数
    Carbon pool management
    index(CPMI)
    容重
    Bulk
    density/(g·cm−3)
    B 1.13c 1.29cd 0.05ab 0.91ab 117.15c 1.25 d
    N1 1.10c 1.17 d 0.06a 0.98a 114.79c 1.47ab
    N1B 1.29b 1.53a 0.05b 0.88b 134.27b 1.41bc
    N2 1.13c 1.39bc 0.05bc 0.85bc 117.68c 1.41bc
    N2B 1.44a 1.53a 0.06a 0.98a 150.17a 1.36c
    N3 1.10c 1.48ab 0.04c 0.76c 113.16c 1.49a
    N3B 1.34b 1.57a 0.05b 0.89b 139.81b 1.41bc
    注:N1:常规施氮;N2:氮肥减量15%;N3:氮肥减量30%;B:单施生物炭;N1B:N1+ B;N2B:N2+B;N3B:N2+B。不同小写字母表示处理之间差异显著(P<0.05),下同。
    Note: N1: Conventional nitrogen application; N2: 15% reduction in nitrogen fertilizer; N3: 30% reduction in nitrogen fertilizer, B: single application of biochar; N1B: N1+B; N2B: N2+B; N3B: N2+B. Different lowercase letters indicate significant differences between treatments (P<0.05), the same below.
    下载: 导出CSV 
    | 显示表格

    土壤碳库管理指数(CPMI)作为表征土壤碳库变化的重要指标,能够反映增施生物炭对土壤质量的影响效果,CPMI值大说明增施生物炭可以维持和提高土壤质量,其值减小则表明土壤肥力在下降。与常规施氮(N1)相比,单施生物炭(B)处理、氮肥减量处理(N2、N3)均未显著改变CPMI,而氮肥配施生物炭后,CPMI显著提升(P<0.05),且以氮肥减量15%配施生物炭处理(N2B)CPMI最高,较常规施氮(N1)提升约30.82%(P<0.05)。

    单施生物炭(B)处理土壤容重为1.25 g/cm3,显著低于其他处理(P<0.05);氮肥减量处理下土壤容重较与常规施氮(N1)相比处理间差异不显著,仅N2处理配施生物炭(N2B)后,土壤容重显著降低,说明减少15%的施氮量不影响土壤容重,但此时若施加生物炭则可有效降低土壤容重。

    氮肥配施生物炭对土壤有机碳的影响见图2,2021年土壤总有机碳含量明显高于2022年。大多数施肥措施能显著增加土壤总有机碳含量(P<0.05)。2021年,常规施氮(N1)与单施生物炭(B)差异不显著,但其SOC显著低于氮肥减量处理(N2、N3)。N1和N2处理配施生物炭后,土壤SOC含量较单施氮肥显著增加,分别提高30.01%、9.99%。2022年,与单施氮肥处理相比,单施生物炭及氮肥与生物炭配施均显著提高SOC含量(P<0.05),所有施生物炭处理均差异不显著,其中在N2B处理与N2处理相比,显著提高了23.07%。

    图  2  2021—2022年不同处理下土壤有机碳(SOC)含量
    Figure  2.  Soil organic carbon (SOC) content under different treatments in 2021 and 2022

    不同施肥处理下麦田土壤呼吸速率差异显著(图3),氮肥优化及生物炭的施用改变了土壤CO2累积排放量,整体上,2022年各处理下土壤CO2累积排放量低于2021年,2 a均在单施生物炭(B)处理下降低土壤CO2累积排放量,并且降低效果最大,说明生物炭施用能降低土壤CO2排放。2021年各处理下土壤CO2累积排放量均呈2个不同的增长阶段:小麦生育前期(0~48 d)土壤CO2排放量增长迅速,生育后期(48~77 d)土壤CO2排放量增长趋势缓慢。除单施生物炭(B)处理外,与常规单施氮肥相比,各处理土壤CO2累积排放量呈现增强趋势,其中常规施氮配施生物炭(N1B)及氮减量30%单施(N3)处理下增加排放最大,土壤CO2累积排放量显著高于对照常规单施氮肥处理(P<0.05)。与氮减量15%单施(N2)处理相比,氮减量15%配施生物炭降低了CO2累积排放量,有助于固碳减排。2022年各处理下土壤CO2累积排放量在小麦出苗的0~26 d土壤CO2排放量增长迅速,并且氮肥与生物炭配施处理下的土壤CO2累积排放量高于单施氮肥处理和单施生物炭处理。其中在氮肥减量15%和氮肥减量30%配施生物炭(N2B、N3B)处理下增加排放,且增加效果最大。

    图  3  2021—2022年不同处理下土壤CO2累积排放量
    Figure  3.  Cumulative soil CO2 emissions under different treatments in 2021 and 2022

    氮肥和生物炭施用对品质的影响如表2所示。在2021年,与单施生物炭(B)处理相比,单施氮肥处理均显著降低了春小麦籽粒水分含量(P<0.05),其中N1处理下降低4.66%。与单施氮肥相比,配施生物炭后小麦籽粒蛋白(干基)含量,2021年仅N1B处理提高2.81%,2022年N1B和N2B均显著提高7.60%、9.16%。单施氮肥处理下,2021年小麦面筋(湿基)含量表现为N1和N2显著高于N3,2022年N1、N2、N3无显著差异。与单施氮肥处理相比,小麦籽粒Zeleny沉降值在2021年仅N1B处理显著提高7.02%。2021年春小麦淀粉(湿基)含量随氮肥施用量的减少而下降,N1处理达62.19%。在氮肥减量30%(N3、N3B)处理显著降低淀粉(湿基)含量,较N1处理相比,降低了2.67%、2.28%,而2022年冬小麦淀粉(湿基)含量在N2B处理下较低,为61.83%,各处理差异不大。常规氮肥与生物炭配施较单施氮肥处理相比,降低了小麦籽粒硬度,小麦籽粒硬度在单施氮肥条件下,各处理均随氮肥施用量降低而升高。

    表  2  2021−2022不同处理对小麦籽粒品质及产量的影响
    Table  2.  Effects of different treatments on wheat grain quality and yield in 2021 and 2022
    年份
    Year
    处理
    Treatment
    水分
    Moisture
    content/%
    蛋白
    (干基)
    Protein
    (dry basis)/%
    面筋
    (湿基)
    Gluten
    (wet base)/%
    Zeleny
    沉降值
    Zeleny
    settlement
    value/mL
    淀粉
    (湿基)
    Starch
    (wet basis)/%
    硬度
    Hardness
    穗数
    Spike number
    /(×104穗·hm−2)
    穗粒数
    Grains
    per spike
    千粒质量
    1000-grain
    weight/g
    产量
    Yield/
    (kg·hm−2)
    2021B10.72a16.45ab30.88b46.45b61.96a64.45b500.00bc36.00ab41.83cd6 558.43bc
    N110.22bc16.39b30.91b46.42b62.19a64.59b521.00abc35.21ab42.35bc6 797.93bc
    N1B10.13c16.85a31.98a49.68a62.02a62.55c552.00ab36.96ab42.60b7 561.92ab
    N210.30bc16.35b30.88b46.38b61.99a65.32ab509.67bc30.38cd42.33bc5 693.01cd
    N2B10.27bc16.59ab31.31b46.95b62.12a63.79bc576.33a38.08a43.47a8 301.35a
    N310.37bc16.47ab29.60c45.72b60.53b66.63a489.67c29.00 d41.73 de5 192.69 d
    N3B10.47b16.70ab29.85c46.15b60.77b65.02ab523.00abc33.92bc43.27a6 682.55bc
    2022B8.97ab14.60b27.00 d35.22b62.67ab36.90 d601.33ab32.84bc41.56c7 138.27bc
    N18.87ab14.47b31.90bc39.72ab62.53ab38.30cd623.00ab34.96ab41.90bc7 920.12bc
    N1B9.03a15.57a33.33ab44.88a62.07bc37.53 d640.67ab37.60a44.06ab9 258.65ab
    N28.90ab14.63b31.20c37.75ab62.57ab39.30c617.00ab34.04b40.68c7 423.23bc
    N2B8.93ab15.97a34.30a42.70a61.83c39.63bc709.00a38.11a45.55a10 784.76a
    N38.83ab14.43b30.80c38.12ab62.77a41.47a551.00b30.31c40.66c5 932.67c
    N3B8.70b15.20ab31.93bc41.75ab62.53ab41.10ab561.33b32.33bc42.58bc6 747.72c
    下载: 导出CSV 
    | 显示表格

    与单施生物炭(B)相比,2021年氮肥减量15%配施生物炭(N2B)处理穗数和千粒质量显著提高15.27%、3.92%,2022年千粒质量显著提高9.60%。在2021年,N2和N3处理配施生物炭均显著提高了千粒质量。与常规施氮(N1)相比,氮肥减量30%(N3)处理下小麦产量显著降低23.61%(P<0.05),而减氮15%并未显著降低产量。在N2和N3基础上配施生物炭可显著提高小麦产量,其中,氮肥减量15%配施生物炭(N2B)春小麦产量达8 301.35 kg/hm2,较常规施肥(N1)显著增加22.12%(P<0.05)。较单施常规氮肥(N1)相比,N2B显著提高2022年冬小麦千粒质量和产量(P<0.05),分别提高8.71%、36.17%。2 a在N1B和N2B处理下穗粒数和产量均较高,且2个处理间差异不显著(P>0.05)。

    长期过量施用氮肥使中国土壤的氮素背景值较高,短期适量减少氮肥施用不会使作物减产[15]。生物炭施用可同时促进小麦产量提高小麦籽粒品质,其中蛋白质和淀粉含量是决定小麦籽粒品质好坏的关键因素[16]。本研究中,与常规施氮相比,氮肥减量15%均未显著降低小麦产量和品质指标,与单施氮肥处理相比,适量氮肥配施生物炭能提高小麦籽粒蛋白质含量。2021年常规施氮和2022年常规施氮和氮肥减量15%时,适合此规律。这可能是由于生物炭具有吸附性,能够有效吸附氮素转化为氨基酸,促进蛋白质的合成。适量减少氮肥可增加土壤速效养分含量,提高作物养分利用效率,增加作物产量[17]。尽管如此,氮肥的作用不可替代,过量控制氮肥输入会因氮素产投不平衡而使作物产量降低[18],本研究中,与常规施氮相比,氮肥减量30%时2021年小麦产量减产23.61%。可见,减氮对产量的影响与减少比例密切相关,适宜减氮比例才能保证产量不显著减低,关于优化氮肥输入的量与作物生产力及产量的关系还需进行长期综合评估。

    土壤呼吸是土壤中有机体和植物的地下部分产生CO2的过程,包括地下部分植物呼吸(根呼吸)和异养呼吸(微生物呼吸)[19],本研究所测呼吸为二者之和。关于生物炭对土壤CO2排放影响研究存在争议,多数研究认为生物炭可以将大气中CO2固定到土壤中,同时还可以减少CO2的排放[20],也有研究指出施用生物炭可通过改善土壤理化性质和生物学性质,促进土壤CO2排放[21]。本研究中,不同量氮肥与生物炭配施土壤呼吸速率不同,除单施生物炭处理外,与常规单施氮肥处理相比均有所上升。土壤活性有机碳含量直接影响着土壤CO2排放量[22-23]。生物炭施用提高了土壤孔隙度及土壤含水量[24-25],使得易矿化可溶性有机质含量增加[26],促进矿化从而提高土壤CO2排放量。团队前期研究发现,适量生物炭输入能够提高土壤团聚体稳定性[27],对土壤有机碳形成物理隔离[28],减少微生物和酶对有机碳的分解,而当生物炭用量较高时,其巨大的比表面积以及良好的吸附性能为微生物提供更疏松的环境,提高微生物活性[29],将促进土壤微生物呼吸。在本团队同期研究中,土壤CO2累积排放量随生物炭添加量增加呈先下降后上升趋势,进一步说明生物炭添加对土壤呼吸的影响存在阈值。有研究发现,减少氮肥施用量可以降低土壤呼吸速率[30],本研究2022年结果与此相反,这可能是由于较少的氮肥投入促使微生物与植物对氮素的竞争,进而使土壤呼吸速率提高。单施生物炭条件下土壤呼吸速率最低,因生物炭具有较大的比表面积和一定含量的钙铁离子,对CO2有较强的物理、化学固定作用,使生物炭与土壤和有机质形成较为稳定的有机-无机复合体,减少了土壤CO2排放[31]。另外,生物炭含有较多高度稳定性的碳组分,一定程度上阻止微生物对其分解,使得生物炭中的原有的碳得以保存,增加土壤有机碳的同时降低土壤碳矿化[32],或未能引起土壤碳矿化,对土壤呼吸无影响[33],因而具有固碳效应。

    生物炭富含碳源,施入农田土壤后可快速提高土壤有机碳含量,与氮肥配施后增加土壤微生物的活性和功能,加速有机碳的周转[34]。本研究中,适量氮肥配施生物炭处理(N1B、N2B、N3B)均提高了土壤SOC含量,这与罗梅等[35]的研究结果相似。活性有机碳含量与土壤SOC含量变化规律一致,且土壤SOC含量与活性有机碳含量呈显著正相关[36]。土壤碳库管理指数表征土壤养分及碳素动态变化,比土壤有机碳更具有敏感性,反映有机碳被微生物和植物利用的难易程度,其值越大表示碳库活度和质量也越高[37]。本试验中,在施氮量相同时配施生物炭可显著提高土壤活性有机碳含量,生物炭施入土壤后能够增加土壤的孔隙度和含氧量,为真菌以及微生物的生长繁殖提供良好环境,进而增加土壤活性有机碳含量。

    此外,土壤有机碳含量与容重密切相关,表层土壤容重小时,水气交换条件良好,土壤有机碳富集在表层转化分解较快,相应的土壤活性有机碳含量及碳库活度也较高,为小麦生长提供更多的养分[38]。生物炭疏松多孔的性质能显著增加土壤孔隙度,降低土壤容重。其多孔结构,使得土壤水分和降水等更多地被其吸附而存留在耕层土壤中,提高了土壤含水量[39],促进作物养分水分吸收,有利于作物产量形成。

    为明确氮肥配施生物炭在北疆灌区农田促进化肥减施增效、固碳减排及作物稳产增产提质的综合效应,开展试验研究,结论如下:

    1) 适量氮肥配施生物炭后,与常规施氮相比,土壤总有机碳含量提高。单施生物炭能降低土壤CO2排放量,且减排效果最好。

    2) 与常规施氮(300 kg/hm2)相比,2021年减氮30%降低淀粉(湿基)含量,2022年减氮15%配施生物炭显著提高小麦籽粒的蛋白(干基)和面筋(湿基)含量(P<0.05)。

    3)与常规施氮相比,2 a减氮15%时配施生物炭均显著提高产量,而减氮30%时降低产量(P<0.05)。

    综上,在本试验条件下,氮肥减量15%配施20 t/hm2生物炭,可有效提高麦田土壤SOC含量,促进小麦产量品质提升,与氮减量15%相比,具备固碳减排效应,为本试验区麦田土壤固碳减排及化肥减施增效的较好选择。

  • 图  1   2021—2022年小麦生育期气温和降水量变化

    注:Tmax为日最高气温;Tmin为日最低气温;Pr为逐日降水量。

    Figure  1.   Changes in temperature and precipitation during the wheat growth period from 2021 to 2022

    Note: Tmax is daily maximum temperature; Tmin is daily minimum temperature; Pr is daily precipitation.

    图  2   2021—2022年不同处理下土壤有机碳(SOC)含量

    Figure  2.   Soil organic carbon (SOC) content under different treatments in 2021 and 2022

    图  3   2021—2022年不同处理下土壤CO2累积排放量

    Figure  3.   Cumulative soil CO2 emissions under different treatments in 2021 and 2022

    表  1   2022年不同处理下土壤碳库指标

    Table  1   Soil carbon pool indicators under different treatments in 2022

    处理
    Treatment
    土壤活性有机碳
    Soil active organic
    carbon(AOC)/(g·kg−1)
    碳库指数
    Carbon stock
    index(CPI)
    碳库活度
    Carbon pool
    activity(CA)
    碳库活性指数
    Carbon pool activity
    index(AI)
    碳库管理指数
    Carbon pool management
    index(CPMI)
    容重
    Bulk
    density/(g·cm−3)
    B 1.13c 1.29cd 0.05ab 0.91ab 117.15c 1.25 d
    N1 1.10c 1.17 d 0.06a 0.98a 114.79c 1.47ab
    N1B 1.29b 1.53a 0.05b 0.88b 134.27b 1.41bc
    N2 1.13c 1.39bc 0.05bc 0.85bc 117.68c 1.41bc
    N2B 1.44a 1.53a 0.06a 0.98a 150.17a 1.36c
    N3 1.10c 1.48ab 0.04c 0.76c 113.16c 1.49a
    N3B 1.34b 1.57a 0.05b 0.89b 139.81b 1.41bc
    注:N1:常规施氮;N2:氮肥减量15%;N3:氮肥减量30%;B:单施生物炭;N1B:N1+ B;N2B:N2+B;N3B:N2+B。不同小写字母表示处理之间差异显著(P<0.05),下同。
    Note: N1: Conventional nitrogen application; N2: 15% reduction in nitrogen fertilizer; N3: 30% reduction in nitrogen fertilizer, B: single application of biochar; N1B: N1+B; N2B: N2+B; N3B: N2+B. Different lowercase letters indicate significant differences between treatments (P<0.05), the same below.
    下载: 导出CSV

    表  2   2021−2022不同处理对小麦籽粒品质及产量的影响

    Table  2   Effects of different treatments on wheat grain quality and yield in 2021 and 2022

    年份
    Year
    处理
    Treatment
    水分
    Moisture
    content/%
    蛋白
    (干基)
    Protein
    (dry basis)/%
    面筋
    (湿基)
    Gluten
    (wet base)/%
    Zeleny
    沉降值
    Zeleny
    settlement
    value/mL
    淀粉
    (湿基)
    Starch
    (wet basis)/%
    硬度
    Hardness
    穗数
    Spike number
    /(×104穗·hm−2)
    穗粒数
    Grains
    per spike
    千粒质量
    1000-grain
    weight/g
    产量
    Yield/
    (kg·hm−2)
    2021B10.72a16.45ab30.88b46.45b61.96a64.45b500.00bc36.00ab41.83cd6 558.43bc
    N110.22bc16.39b30.91b46.42b62.19a64.59b521.00abc35.21ab42.35bc6 797.93bc
    N1B10.13c16.85a31.98a49.68a62.02a62.55c552.00ab36.96ab42.60b7 561.92ab
    N210.30bc16.35b30.88b46.38b61.99a65.32ab509.67bc30.38cd42.33bc5 693.01cd
    N2B10.27bc16.59ab31.31b46.95b62.12a63.79bc576.33a38.08a43.47a8 301.35a
    N310.37bc16.47ab29.60c45.72b60.53b66.63a489.67c29.00 d41.73 de5 192.69 d
    N3B10.47b16.70ab29.85c46.15b60.77b65.02ab523.00abc33.92bc43.27a6 682.55bc
    2022B8.97ab14.60b27.00 d35.22b62.67ab36.90 d601.33ab32.84bc41.56c7 138.27bc
    N18.87ab14.47b31.90bc39.72ab62.53ab38.30cd623.00ab34.96ab41.90bc7 920.12bc
    N1B9.03a15.57a33.33ab44.88a62.07bc37.53 d640.67ab37.60a44.06ab9 258.65ab
    N28.90ab14.63b31.20c37.75ab62.57ab39.30c617.00ab34.04b40.68c7 423.23bc
    N2B8.93ab15.97a34.30a42.70a61.83c39.63bc709.00a38.11a45.55a10 784.76a
    N38.83ab14.43b30.80c38.12ab62.77a41.47a551.00b30.31c40.66c5 932.67c
    N3B8.70b15.20ab31.93bc41.75ab62.53ab41.10ab561.33b32.33bc42.58bc6 747.72c
    下载: 导出CSV
  • [1] 程福龙,聂凡贵,赵嫦欣,等. 生物炭Mg/Al-LDHs复合材料对磷的吸附特性及机理[J]. 农业工程学报,2021,37(2):226-234. doi: 10.11975/j.issn.1002-6819.2021.2.026

    CHENG Fulong, NIE Fangui, ZHAO Changxin, et al. Phosphorus adsorption characteristics and mechanism of biochar loaded Mg/Al-LDHs composites[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(2): 226-234. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.2.026

    [2] 张婷,王旭东,逄萌雯,等. 生物质炭和秸秆配合施用对土壤有机碳转化的影响[J]. 环境科学,2016,37(6):2298-2303.

    ZHANG Ting, WANG Xudong, PANG Mengwen, et al. Impacts of biochar and straw application on soil organic carbon transformation[J]. Environmental Science, 2016, 37(6): 2298-2303. (in Chinese with English abstract)

    [3] 袁晶晶,同延安,卢绍辉,等. 生物炭与氮肥配施改善土壤团聚体结构提高红枣产量[J]. 农业工程学报,2018,34(3):159-165.

    YUAN Jingjing, TONG Yan’an, LU Shaohui, et al. Biochar and nitrogen amendments improving soil aggregate structure and jujube yields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 159-165. (in Chinese with English abstract)

    [4] 刘欣萌,姜涵,魏文良,等. 秸秆与秸秆生物炭还田对石灰性潮土有机碳固定的影响[J]. 土壤通报,2023,54(6):1316-1325.

    LIU Xinmeng, JIANG Han, WEI Wenliang, et al. Effects of straw and straw biochar returning on soil organic carbon sequestration in calcareous fluvo-aquic soil[J]. Chinese Journal of Soil Science, 2023, 54(6): 1316-1325. (in Chinese with English abstract)

    [5] 邹春娇,张勇勇,张一鸣,等. 生物炭对设施连作黄瓜根域基质酶活性和微生物的调节[J]. 应用生态学报,2015,26(6):1772-1778.

    ZOU Chunjiao, ZHANG Yongyong, ZHANG Yiming, et al. Regulation of biochar on matrix enzyme activities and microorganisms around cucumber roots under continuous cropping[J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1772-1778. (in Chinese with English abstract)

    [6] 顾美英,徐万里,唐光木,等. 生物炭对灰漠土和风沙土土壤微生物多样性及与氮素相关微生物功能的影响[J]. 新疆农业科学,2014,51(5):926-934.

    GU Meiying, XU Wanli, TANG Guangmu, et al. Effects of biochar on soil microbial diversity and function related with N transformation in grey desert soil and aeolian sandy soil in Xinjiang[J]. Xinjiang Agricultural Sciences, 2014, 51(5): 926-934. (in Chinese with English abstract)

    [7] 张卫红,李玉娥,秦晓波,等. 长期定位双季稻田施用生物炭的温室气体减排生命周期评估[J]. 农业工程学报,2018,34(20):132-140. doi: 10.11975/j.issn.1002-6819.2018.20.017

    ZHANG Weihong, LI Yu’e, QIN Xiaobo, et al. Estimation on GHG emission reduction in double cropping rice paddy with application of biochar in long-term period using LCA method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 132-140. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2018.20.017

    [8] 李文杰,左翔之,王建,等. 生物炭施用土壤的固碳减排效应及机制[J]. 中国环境科学,2023,43(11):5913-5923. doi: 10.3969/j.issn.1000-6923.2023.11.029

    LI Wenjie, ZUO Xiangzhi, WANG Jian, et al. Effect and mechanism of biochar application on soil carbon sequestration and mitigation[J]. China Environmental Science, 2023, 43(11): 5913-5923. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2023.11.029

    [9]

    NEGAR T, WANG J, LEWIS G, et al. Agronomic and environmental performance of biochar amendment in alluvial soils under subtropical sugarcane production[J]. Agrosystems, Geosciences & Environment, 2021, 4(3): 1-14.

    [10]

    LIU Y X, LU H H, YANG S M, et al. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons[J]. Field Crops Research, 2016, 191: 161-167. doi: 10.1016/j.fcr.2016.03.003

    [11] 谢迎新,刘宇娟,张伟纳,等. 潮土长期施用生物炭提高小麦产量及氮素利用率[J]. 农业工程学报,2018,34(14):115-123. doi: 10.11975/j.issn.1002-6819.2018.14.015

    XIE Yingxin, LIU Yujuan, ZHANG Weina, et al. Long-term application of biochar in fluvio-aguatic soil improving wheat yield and nitrogen utilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 115-123. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2018.14.015

    [12] 王思宇,刘赛男,黄玉威,等. 生物炭对植物土传病害的影响与作用机制研究进展[J]. 沈阳农业大学学报,2022,53(5):611-619. doi: 10.3969/j.issn.1000-1700.2022.05.011

    WANG Siyu, LIU Sainan, HUANG Yuwei, et al. Research progress on the influence and mechanism of biochar on soil-borne diseases of plants[J]. Journal of Shenyang Agricultural University, 2022, 53(5): 611-619. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1700.2022.05.011

    [13] 丁乐,杨弋,倪辉,等. 生物炭配施对芳樟精油产量及品质的影响[J]. 中南林业科技大学学报,2022,42(5):91-100.

    DING Le, YANG Yi, NI Hui, et al. Effects of biochar application on the yield and quality of Cinnamomum camphora essential oil[J]. Journal of Central South University of Forestry and Technology, 2022, 42(5): 91-100. (in Chinese with English abstract)

    [14]

    YANG W J, WANG Z L, GUO S, et al. Evaluation of soil fertility quality under biochar combined with nitrogen in an irrigated wheat field in northern Xinjiang, China[J]. Agronomy, 2023, 13: 2518. doi: 10.3390/agronomy13102518

    [15] 谷晓博,宋慧,白东萍,等. 优化缓释氮肥与尿素配施比例提高冬小麦产量和氮肥利用效率[J]. 农业工程学报,2023,39(11):56-65. doi: 10.11975/j.issn.1002-6819.202212136

    GU Xiaobo, SONG Hui, BAI Dongping, et al. Combined the application of slow-release N fertilizer and urea to improve the yield and N use efficiency of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(11): 56-65. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202212136

    [16]

    DAI Z M, LI Y, ZHANG H, et al. Effects of irrigation schemes on the characteristics of starch and protein in wheat (Triticum aestivum L. )[J]. Starch-Stärke, 2016, 68(5/6): 454-461.

    [17] 李梦月,胡田田,崔晓路,等. 不同释放期控释肥和水氮用量对冬小麦产量的综合影响[J]. 农业工程学报,2020,36(23):153-161. doi: 10.11975/j.issn.1002-6819.2020.23.018

    LI Mengyue, HU Tiantian, CUI Xiaolu, et al. Comprehensive effects of irrigation water and nitrogen levels for controlled release fertilizer with different release periods on winter wheat yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 153-161. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2020.23.018

    [18] 李恩尧,邱亚群,彭佩钦,等. 洞庭湖红壤坡地减氮控磷对玉米产量和径流氮磷的影响[J]. 水土保持学报,2011,25(4):32-35.

    LI Enyao, QIU Yaqun, PENG Peiqin, et al. Effects of reduction and control nitrogen and phosphorous on maize yield and surface runoff in red soil slopes of Dongting Lake[J]. Journal of Soil and Water Conservation, 2011, 25(4): 32-35. (in Chinese with English abstract)

    [19] 张语馨,孙涛,马雯琪,等. 干湿交替下生物炭添加对灰漠土CO2排放的影响[J]. 环境科学学报,2023,43(4):478-486.

    ZHANG Yuxin, SUN Tao, MA Wenqi, et al. Addition of different types and particle sizes of biochar altered CO2 emissions in gray desert soil under dry-wet alternation[J]. Acta Scientiae Circumstantiae, 2023, 43(4): 478-486. (in Chinese with English abstract)

    [20] 吕梦凡,马向成,蔡铁,等. 生物炭施用对冬麦田土壤水热环境及土壤呼吸的影响[J]. 干旱地区农业研究,2022,40(3):197-206. doi: 10.7606/j.issn.1000-7601.2022.03.24

    LV Mengfan, MA Xiangcheng, CAI Tie, et al. Effects of biochar application on soil hydrothermal environment and soil respiration in winter wheat field[J]. Agricultural Research in the Arid Areas, 2022, 40(3): 197-206. (in Chinese with English abstract) doi: 10.7606/j.issn.1000-7601.2022.03.24

    [21]

    QIAN L B, ZHANG W Y, YAN J C, et al. Effective removal of heavy metal by biochar colloids under different pyrolysis temperatures[J]. Bioresource Technology, 2016, 206: 217-224. doi: 10.1016/j.biortech.2016.01.065

    [22]

    ROGOVSKA N, LAIRD D A, KARLEN D L. Corn and soil response to biochar application and stover harvest[J]. Field Crops Research, 2016, 187: 96-106.

    [23]

    CHEN S, XU C M, YAN J X, et al. The influence of the type of crop residue on soil organic carbon fractions: An 11-year field study of rice-based cropping systems in southeast China[J]. Agriculture, Ecosystems and Environment, 2016, 223: 261-269.

    [24] 王忠江,刘卓,曹振,等. 生物炭对东北黑土持水特性的影响[J]. 农业工程学报,2019,35(17):147-153. doi: 10.11975/j.issn.1002-6819.2019.17.018

    WANG Zhongjiang, LIU Zhuo, CAO Zhen, et al. Effect of biochars on water retention properties of northeast region black soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 147-153. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2019.17.018

    [25]

    EL-MOHAMED M, EL-NAGGAR A H, USMAN A R, et al. Dynamics of CO2 emission and biochemical properties of a sandy calcareous soil amended with conocarpus waste and biochar[J]. Pedosphere, 2015, 25(1): 46-56. doi: 10.1016/S1002-0160(14)60075-8

    [26]

    LIANG B Q, LEHMANN J, SOHI S P, et al. Black carbon affects the cycling of non-black carbon in soil[J]. Organic Geochemistry, 2009, 41(2): 206-213.

    [27] 惠超,杨卫君,宋世龙,等. 生物炭施用对麦田土壤团聚体机械稳定性及春小麦产量的影响[J]. 土壤通报,2022,53(2):349-355.

    HUI Chao, YANG Weijun, SONG Shilong, et al. Effects of biochar application on mechanical stability of soil aggregates and yield of spring wheat[J]. Chinese Journal of Soil Science, 2022, 53(2): 349-355. (in Chinese with English abstract)

    [28] 杨卫君,惠超,陈雨欣,等. 连作年限对棉田土壤团聚体有机碳分布的影响[J]. 中国农学通报,2022,38(13):104-108. doi: 10.11924/j.issn.1000-6850.casb2021-0566

    YANG Weijun, HUI Chao, CHEN Yuxin, et al. Effects of continuous cropping years on organic carbon distribution in soil aggregates in cotton fields[J]. Chinese Agricultural Science Bulletin, 2022, 38(13): 104-108. (in Chinese with English abstract) doi: 10.11924/j.issn.1000-6850.casb2021-0566

    [29] 张磊,王甲辰,王学霞,等. 控释氮肥及减氮对设施番茄产量及土壤呼吸的影响[J]. 北方园艺,2021(11):90-96.

    ZHANG Lei, WANG Jiachen, WANG Xuexia, et al. Effects of controlled release nitrogen fertilizer and nitrogen reduction on greenhouse tomato yield and soil respiration[J]. Northern Horticulture, 2021(11): 90-96. (in Chinese with English abstract)

    [30] 何甜甜,王静,符云鹏,等. 等碳量添加秸秆和生物炭对土壤呼吸及微生物生物量碳氮的影响[J]. 环境科学,2021,42(1):450-458.

    HE Tiantian, WANG Jing, FU Yunpeng, et al. Effects of adding straw and biochar with equal carbon content on soil respiration and microbial biomass carbon and nitrogen[J]. Environmental Science, 2021, 42(1): 450-458. (in Chinese with English abstract)

    [31] 徐敏,伍钧,张小洪,等. 生物炭施用的固碳减排潜力及农田效应[J]. 生态学报,2018,38(2):393-404.

    XU Min, WU Jun, ZHANG Xiaohong, et al. lmpact of biochar application on carbon sequestration, soil fertility and crop productivity[J]. Acta Ecologica Sinica, 2018, 38(2): 393-404. (in Chinese with English abstract)

    [32]

    PLAZA C, GIANNETTA B, FERNANDEZ J M, et al. Response of different soil organic matter pools to biochar and organic fertilizers[J]. Agriculture, Ecosystems and Environment, 2016, 225: 150-159.

    [33] 史登林,王小利,段建军,等. 氮肥减量配施生物炭对黄壤稻田土壤有机碳活性组分和矿化的影响[J]. 应用生态学报,2020,31(12):4117-4124.

    SHI Denglin, WANG Xiaoli, DUAN Jianjun, et al. Effects of chemical N fertilizer reduction combined with biochar application on soil organic carbon active components and mineralization in paddy fields of yellow soil[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4117-4124. (in Chinese with English abstract)

    [34] 杨卫君,惠超,邓天池,等. 生物炭对砂壤土团聚体及其碳、氮分布的影响[J]. 中国土壤与肥料,2022(12):1-9.

    YANG Weijun, HUI Chao, DENG Tianchi, et al. Effects of biochar on aggregate and distribution of carbon and nitrogen in sandy loam[J]. Soil and Fertilizer Sciences in China, 2022(12): 1-9. (in Chinese with English abstract)

    [35] 罗梅,田冬,高明,等. 紫色土壤有机碳活性组分对生物炭施用量的响应[J]. 环境科学,2018,39(9):4327-4337.

    LUO Mei, TIAN Dong, GAO Ming, et al. Response of organic carbon active components in purple soil to biochar application rate[J]. Environmental Science, 2018, 39(9): 4327-4337. (in Chinese with English abstract)

    [36] 关一凡,孟会生,王帅兵,等. 有机肥配施菌剂对复垦土壤有机碳和碳库管理指数的响应[J]. 天津农业科学,2023,29(12):62-68.

    GUAN Yifan, MENG Huisheng, WANG Shuaibing, et al. Effects of combined application of microbial agent and organic fertilizer on organic and carbon pool management index of reclaimed soil[J]. Tianjin Agricultural Sciences, 2023, 29(12): 62-68. (in Chinese with English abstract)

    [37] 张云龙,郜春花,刘靓,等. 矿区复垦土壤碳组分对外源碳输入的响应特征[J]. 中国生态农业学报(中英文),2020,28(8):1219-1229.

    ZHANG Yunlong, GAO Chunhua, LIU Liang, et al. Response of soil organic carbon fractions to exogenous carbon input in mine reclamation[J]. Chinese Journal of Eco-Agriculture, 2020, 28(8): 1219-1229. (in Chinese with English abstract)

    [38] 高文翠,杨卫君,史春玲,等. 膜下滴灌连作棉田土壤有机碳及其活性变化分析[J]. 新疆农业科学,2021,58(9):1603-1609.

    GAO Wencui, YANG Weijun, SHI Chunling, et al. Study on soil organic carbon and its change of activity in continuous cropping cotton field under mulched drip irrigation[J]. Xinjiang Agricultural Sciences, 2021, 58(9): 1603-1609. (in Chinese with English abstract)

    [39] 付玉荣,张衍福,刘凯,等. 生物炭对冬小麦土壤理化性质和产量的影响[J]. 济南大学学报(自然科学版),2022,36(1):38-44,55.

    FU Yurong, ZHANG Yanfu, LIU Kai, et al. Effects of biochar on soil physicochemical properties and yield of winter wheat[J]. Journal of University of Jinan(Science and Technology), 2022, 36(1): 38-44,55. (in Chinese with English abstract)

  • 期刊类型引用(7)

    1. 冯中洲,叶泽杰,翟文露,上官莉莎,侯登科,张冉,谢迎新,马耕,段剑钊,马冬云,王晨阳. 长期施用生物炭对潮土理化特性和小麦产量的影响. 河南农业大学学报. 2025(01): 49-56 . 百度学术
    2. 缪寿荣. 不同施氮量对小麦产量和品质的影响. 农业技术与装备. 2025(01): 153-155 . 百度学术
    3. 林洲源,胡斌,江建锋,杨海峻,李子川,柴彦君,吴嘉俊,王玉林,王卓哲,童文彬. 不同类型生物质炭施用对旱地黄红壤肥力的影响. 农业工程学报. 2025(03): 106-116 . 本站查看
    4. 祝志一. 生物炭对CO_2气体吸收排放影响的研究进展. 内蒙古石油化工. 2024(05): 10-15 . 百度学术
    5. 校亮,吴静华,李文瀚,李悦诗,袁国栋. 铁铝土泥浆包覆与淬灭强化荔枝木炭化物的碳固存率. 农业工程学报. 2024(13): 214-221 . 本站查看
    6. 闫双堆,郭探文,韩莹,刘宇,江慧姝,张延慧,闫秋艳. 生物炭辅配硫酸铵对土壤氮素淋溶的影响. 农业工程学报. 2024(16): 94-102 . 本站查看
    7. 张晶晶. 施加生物炭对理化性质、固碳能力和耕地质量的影响. 农村经济与科技. 2024(17): 60-61+252 . 百度学术

    其他类型引用(8)

图(3)  /  表(2)
计量
  • 文章访问数:  227
  • HTML全文浏览量:  21
  • PDF下载量:  93
  • 被引次数: 15
出版历程
  • 收稿日期:  2023-07-17
  • 修回日期:  2023-08-30
  • 网络出版日期:  2024-05-21
  • 刊出日期:  2024-02-28

目录

/

返回文章
返回