• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

PATS结合山梨酸钾对枯草杆菌芽孢的灭活机理

李佳佳, 杨杰, 章中, 王旭娟, 武思睿

李佳佳,杨杰,章中,等. PATS结合山梨酸钾对枯草杆菌芽孢的灭活机理[J]. 农业工程学报,2023,39(22):287-295. DOI: 10.11975/j.issn.1002-6819.202307218
引用本文: 李佳佳,杨杰,章中,等. PATS结合山梨酸钾对枯草杆菌芽孢的灭活机理[J]. 农业工程学报,2023,39(22):287-295. DOI: 10.11975/j.issn.1002-6819.202307218
LI Jiajia, YANG Jie, ZHANG Zhong, et al. Inactivation of Bacillus subtilis spores by combined treatment of PATS and potassium sorbate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(22): 287-295. DOI: 10.11975/j.issn.1002-6819.202307218
Citation: LI Jiajia, YANG Jie, ZHANG Zhong, et al. Inactivation of Bacillus subtilis spores by combined treatment of PATS and potassium sorbate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(22): 287-295. DOI: 10.11975/j.issn.1002-6819.202307218

PATS结合山梨酸钾对枯草杆菌芽孢的灭活机理

基金项目: 宁夏自然科学基金项目(2023AAC03136);国家自然科学基金项目(31760474;32260633)
详细信息
    作者简介:

    李佳佳,研究方向为食品非致病微生物控制。Email:15009566102@163.com

    通讯作者:

    章中,博士,副教授,研究方向为新型食品杀菌技术、农产品加工及贮藏。Email: zhangzhong99@126.com

  • 中图分类号: TS201.3

Inactivation of Bacillus subtilis spores by combined treatment of PATS and potassium sorbate

  • 摘要:

    枯草杆菌芽孢是极难被杀灭的细菌之一,为探究山梨酸钾与压力辅助热杀菌(pressure assisted thermal sterilization,PATS)对枯草杆菌芽孢的联合作用效果,该研究以OD600值(optical density at 600 nm)、OD260值(optical density at 260 nm)、OD280值(optical density at 280 nm)、2, 6-吡啶二羧酸释放率表征芽孢内容物的释放情况,扫描电镜、流式细胞术、傅里叶红外光谱仪、激光粒度仪检测芽孢结构变化情况。结果表明,山梨酸钾强化了PATS的杀菌效果,200 MPa-75 ℃处理杀灭了2.63 lg CFU/mL芽孢,添加2 g/L山梨酸钾后,杀灭了3.24 lg CFU/mL芽孢。较单独PATS处理,添加山梨酸钾后,促进了芽孢内容物的释放,内膜通透性增加,芽孢粒径显著减小,内膜、细胞壁等结构受损程度加剧。同时,Na+ /K+-ATPase活力显著降低,膜电位平衡被破坏,基本生理代谢功能紊乱。总之,PATS结合山梨酸钾对枯草芽孢杆菌芽孢有协同杀菌作用,且随着山梨酸钾添加量或温度的升高而增强,有利于促进该技术在食品杀菌中的应用。

    Abstract:

    Bacterial spores are formed by cells of Clostridium, Bacillus and related genera as a response to a lack of one or more nutrients. These spores are dormant and resistant to inactivation treatments, including heat, radiation, preservatives, and high-pressure. Particularly, spores can germinate and develop in food products, resulting in the food spoilage or instances of foodborne illness. Bacillus subtilis spores are inactivated in food at high temperatures exceeding 100 ℃ during the traditional food processing. Nevertheless, high temperatures can pose a significant impact on food quality. This study aims to mitigate this temperature effect for the lower sterilization temperature. Potassium sorbate was integrated with PATS (pressure assisted thermal sterilization) into inactivate Bacillus subtilis spores. The release of important intraspore substances was established by spectrophotometry testing the OD600 (optical density at 600 nm) value, OD260 (optical density at 260 nm) value, OD280 (optical density at 280 nm) value, and DPA (2,6-pyridine dicarboxylic acid) levels. And the spore structure was examined via SEM (scanning electron microscopy), flow cytometry, FTIR (Fourier transform infrared spectroscopy), and PSD (particle size distribution analysis). The addition of potassium sorbate was improved the sporicidal effect of PATS. The surviving spores plate counting demonstrated that the initial viable spore concentration was approximately 1.5×108 CFU/mL. Treatment with 200 MPa-75 ℃ inactivated 2.63 lg CFU/mLspores, and the combined treatment of 200 MPa-75 ℃ and 2 g/L potassium sorbate inactivated 3.24 lg CFU/mLspores. The untreated spore suspensions displayed OD600, OD260, and OD280 values of 1, 0.053, and 0.046, respectively. Following a spore suspension treatment of 200 MPa-75 ℃-2 g/L potassium sorbate, the OD600 value declined by 0.413, while the OD260 and OD280 values increased to 0.401 and 0.290, respectively. It was indicated that the addition of potassium sorbate was enhanced the liberation of protein and nucleic acid in spores, leading to the reduced turbidity of spore suspensions. After treatment with 200 MPa-75 ℃, the DPA release increased by 51.31%, compared with the untreated spore suspensions. Additionally, the DPA release rate increased to 75.28% after treatment with 200 MPa-75 ℃-2 g/L potassium sorbate. This result further confirmed that the combination of PATS with potassium sorbate treatment was enhanced the permeability of the spore inner membrane, which was positively correlated with the addition of potassium sorbate and temperature. SEM images demonstrated that the addition of potassium sorbate to PATS caused significant spore damage and destruction of the cell wall, cortex and inner membrane, compared with the treatment with PATS alone. Further analysis through flow cytometry and PSD revealed that the damage on the inner membrane was worsened, while particle diameter significantly decreased, and specific surface area increased considerably after combined treatment. The FTIR disclosed the peak shift and change in intensity. The spore inner membrane phospholipids were transformed from a gel state to a liquid crystal state after PATS and potassium sorbate treatment, indicating the reduced the stability, compared with the untreated spores and PATS treatment alone. Simultaneously, the Na+ /K+-ATPase activity registered a significant decrease, when PATS was used in the combination with potassium sorbate. This activity was used to disturb the balance of the inner membrane potential, as well as the fundamental physiological and metabolic functions. The findings reveal that there was the synergistic bactericidal impact on Bacillus subtilis spores at lower temperatures, compared with the conventional inactivated spores, when PATS was combined with potassium sorbate. The synergistic bactericidal effect was also augmented with the increase of temperature and potassium sorbate concentration. The primary mechanism for the inactivation of Bacillus subtilis spores was attributed to the damage of the permeability and structural integrity of inner membrane. These findings have practical applications to promote the food sterilization, in order to reduce the adverse impact of high temperatures on food quality.

  • 图  1   山梨酸钾协同PATS处理对枯草杆菌芽孢灭活效果的影响

    注:不同字母表示不同处理条件下差异显著(P<0.05);CK(Control check )表示空白对照;200 MPa-25℃表示200 MPa结合25℃处理;200 MPa-25℃表示200 MPa结合65℃处理;200 MPa-75℃表示200 MPa结合75℃处理。

    Figure  1.   Effects of PATS combining with potassium sorbate treatment on the inactivation of Bacillus subtilis spores

    Note: Different letters indicate significant differences (P<0.05) under different treatment conditions; CK (Control check ) represent means untreated sample; 200 MPa-25 ℃ means 200 MPa combined with 25 ℃ treatments; 200 MPa-65 ℃ means 200 MPa combined with 65 ℃ treatments; 200 MPa-75 ℃ means 200 MPa combined with 75 ℃ treatments, the same below.

    图  2   山梨酸钾协同PATS处理对枯草杆菌芽孢悬浮液OD600值的影响

    Figure  2.   Effects of PATS combining with potassium sorbate treatment on the OD600 value of Bacillus subtilis spore suspension

    图  3   山梨酸钾协同PATS处理对枯草杆菌芽孢DPA释放率的影响

    Figure  3.   Effects of PATS combining with potassium sorbate treatment on DPA release from Bacillus subtilis spores

    图  4   山梨酸钾协同PATS处理对枯草杆菌芽孢紫外吸收物质释放量的影响

    Figure  4.   Effects of PATS combining with potassium sorbate treatment on the release of UV-absorbing substances from Bacillus subtilis spores

    图  5   山梨酸钾协同PATS处理对枯草杆菌芽孢悬浮液粒径的影响

    Figure  5.   Effects of potassium sorbate combining with PATS treatment on the particle diameter of Bacillus subtilis spore suspension

    图  6   山梨酸钾辅助PATS处理后芽孢形态变化

    Figure  6.   Changes of spore morphology after potassium sorbate assisted PATS treatment

    图  7   山梨酸钾辅助PATS处理对芽孢内膜通透性的影响

    注:Count 表示发出荧光的细胞数量;M1表示荧光强度较低的阴性区域;M2表示荧光强度较高的阳性区域;FL2 表示在荧光通道2处所采集的荧光强度的对数值。

    Figure  7.   Effects of potassium sorbate assisted PATS treatment on the permeability of spore inner membrane

    Note: Count represents the number of fluorescent cell; M1 represents negative area with low fluorescence intensity; M2 represents positive area with high fluorescence intensity; FL2 represents the logarithm of fluorescence intensity collected at fluorescence channel 2.

    图  8   山梨酸钾协同PATS处理对芽孢内膜Na+/K+-ATPase活力的影响

    Figure  8.   Effects of PATS combining with potassium sorbate treatment on Na+/K+-ATPase activity of spore inner membrane

    图  9   山梨酸钾协同PATS处理前后枯草杆菌芽孢3 000~2 800 cm−1范围的红外光谱图

    Figure  9.   Infrared spectra of Bacillus subtilis spores in the range of 3 000 to 2 800 cm−1 before and after PATS combining with potassium sorbate treatment

    表  1   山梨酸钾协同PATS处理对枯草杆菌芽孢悬浮液粒径和比表面积的影响

    Table  1   Effects of PATS combining with potassium sorbate treatment on the particle diameter and specific surface area of Bacillus subtilis spores

    处理
    Treatment
    D90/μm 比表面积
    Specific surface area/(m2·kg−1)
    未处理CK 1.39±0.10a 5 570
    200 MPa-25 ℃ 2 g·L−1山梨酸钾
    200 MPa-25 ℃-2 g·L−1 potassium sorbate
    1.25±0.01b 5 951
    200 MPa-65 ℃ 2 g·L−1山梨酸钾
    200 MPa-65 ℃-2 g·L−1 potassium sorbate
    0.914±0.04c 7 833
    200 MPa-75 ℃ 0.818±0.01b 9 010
    200 MPa-75 ℃ 1 g·L−1山梨酸钾
    200 MPa-75 ℃-1 g·L−1 potassium sorbate
    0.816±0.06b 9 103
    200 MPa-75 ℃ 2 g·L−1山梨酸钾
    200 MPa-75 ℃-2 g·L−1 potassium sorbate
    0.804±0.02e 9 790
    下载: 导出CSV
  • [1] 田家齐,李苗云,朱瑶迪,等. 基于SERS技术的基底增强效应对比及食源性芽孢快速检测[J]. 农业工程学报,2022,38(20):257-265. doi: 10.11975/j.issn.1002-6819.2022.20.029

    TIAN Jiaqi, LI Miaoyun, ZHU Yaodi, et al. Enhanced performance comparison of substrate materials and rapid detection of foodborne bacterial spores based on SERS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(20): 257-265. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.20.029

    [2] 朱瑶迪,张佳烨,李苗云,等. 肽聚糖对肉制品中产气荚膜梭菌芽孢萌发率影响及预测[J]. 农业工程学报,2020,36(4):287-293. doi: 10.11975/j.issn.1002-6819.2020.04.034

    ZHU Yaodi, ZHANG Jiaye, LI Miaoyun, et al. Effect of different Peptidogly can on Clostridium perfringens spore germination and quantitative prediction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 287-293. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2020.04.034

    [3]

    REINEKE K, MATHYS A. Endospore Inactivation by Emerging Technologies: A Review of Target Structures and Inactivation Mechanisms[J]. Annual Review of Food Science and Technology, 2019, 11: 255-274.

    [4]

    ALDRETE-TAPIA J A, TORRES J A. Enhancing the Inactivation of bacterial spores during pressure-assisted thermal processing[J]. Food Engineering Reviews, 2020, 13(3): 431-441.

    [5]

    CHO W I, CHUNG M S. Bacillus spores: a review of their properties and inactivation processing technologies[J]. Food Science and Biotechnology, 2020, 29: 1447-1461. doi: 10.1007/s10068-020-00809-4

    [6]

    SETLOW P, CHRISTIE G. What’s new and notable in bacterial spore killing[J]. World Journal of Microbiology and Biotechnology, 2021, 37(8): 1-13.

    [7]

    SUN X D, KONG X X, LI C X, et al. Sporicidal mechanism of the combination of ortho-phthalaldehyde and benzyldimethyldodecylammonium chloride as a disinfectant against the Bacillus subtilis spores[J]. Brazilian Journal of Microbiology:[publication of the Brazilian Society for Microbiology], 2022, 53: 547-556. doi: 10.1007/s42770-022-00695-4

    [8]

    AOUADHI C, MÉJRI S, MAAROUFI A. Inhibitory effects of nisin and potassium sorbate alone or in combination on vegetative cells growth and spore germination of Bacillus sporothermodurans in milk[J]. Food Microbiology, 2015, 46: 40-45. doi: 10.1016/j.fm.2014.07.004

    [9]

    DAS S, LALITHA K V, JOSEPH G, et al. High-pressure destruction kinetics along with combined effect of potassium sorbate and high pressure against Listeria monocytogenes in Indian white prawn muscle[J]. Annals of Microbiology, 2016, 66(1): 245-251. doi: 10.1007/s13213-015-1100-7

    [10]

    LIU H B, LI P, SUN C, et al. Inhibitor-Assisted High-Pressure Inactivation of Bacteria in Skim Milk[J]. Journal of Food Science, 2017, 82(7): 1672-1681. doi: 10.1111/1750-3841.13737

    [11]

    LÓPEZ M, MAZAS M, GONZALEZ ALONSO I, et al. Heat resistance of Bacillus stearothermophilus spores in heating systems containing some approved food additives[J]. Letters in Applied Microbiology, 1996, 23: 187-191.

    [12] 陈静,任欣,娄阁,等. 热辅助超高压对复合甜面酱品质特性的影响[J]. 农业工程学报,2015,31(1):326-332. doi: 10.3969/j.issn.1002-6819.2015.01.043

    CHEN Jing, REN Xin, LOU Ge, et al. Effect of high-pressure thermal sterilization on quality of compound fermented wheat flour paste[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 326-332. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-6819.2015.01.043

    [13] 米瑞芳,刘俊梅,胡小松,等. 杀菌方式对即食胡萝卜片挥发性风味物质的影响[J]. 农业工程学报,2016,32(9):264-270. doi: 10.11975/j.issn.1002-6819.2016.09.037

    MI Ruifang, LIU Junmei, HU Xiaosong, et al. Effect of sterilization methods on volatile flavor compounds of instant carrot slices[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 264-270. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2016.09.037

    [14] 张凡,王永涛,廖小军. 超高压升/卸压过程对杀菌效果的影响研究进展[J]. 中国食品学报,2020,20(5):293-302. doi: 10.16429/j.1009-7848.2020.05.036

    ZHANG Fan, WANG Yongtao, LIAO Xiaojun. Research progress on the effect of pressurization and depressurization on high hydrostatic pressure sterilization[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(5): 293-302. doi: 10.16429/j.1009-7848.2020.05.036

    [15]

    MODUGNO C, PELTIER C, SIMONIN H, et al. Understanding the effects of high pressure on bacterial spores using synchrotron infrared spectroscopy[J]. Frontiers in Microbiology, 2019, 10: 3122.

    [16]

    LIU Y, ZHANG Z, CHEN L, et al. High-pressure thermal sterilization and ε-polylysine synergistically inactivates Bacillus subtilis spores by damaging its inner membrane[J]. Journal of Food Protection, 2021, 85(3): 390-397.

    [17] 中华人民共和国国家卫生和计划生育委员会. GB/T 2760-2014《食品安全国家标准食品添加剂使用标准》[S].北京:中国质检出版社、中国标准出版社,2014.
    [18]

    MENG J, GONG Y, QIAN P, et al. Combined effects of ultra-high hydrostatic pressure and mild heat on the inactivation of Bacillus subtilis[J]. LWT-Food Science and Technology, 2016, 68: 59-66.

    [19] 毕可. 热力场中化学物质对枯草杆菌芽孢杀灭作用的影响[D]. 银川:宁夏大学,2022.

    BI Ke. Effects of Chemical Substances in Thermal Field on Inactivating of Bacillus subtilis Spores[D]. Yinchuan: Ningxia University, 2022. (in Chinese with English abstract)

    [20]

    REDAN B W, MORRISSEY T R, ROLFE C A, et al. Rapid detection and quantitation of dipicolinic acid from Clostridium botulinum spores using mixed-mode liquid chromatography-tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2022, 414: 2767-2774. doi: 10.1007/s00216-022-03926-7

    [21]

    PANIGRAHI L L, SHASHANK S, BANISHREE S, et al. Adsorption of antimicrobial peptide onto chitosan-coated iron oxide nanoparticles fosters oxidative stress triggering bacterial cell death[J]. RSC Advances, 2023, 13: 25497-25507. doi: 10.1039/D3RA04070D

    [22] 何香凝,刘娜,安晓萍,等. 微生物发酵玉米芯提取木聚糖的工艺研究[J]. 饲料研究,2019,42(10):74-78. doi: 10.13557/j.cnki.issn1002-2813.2019.10.018

    HE Xiangning, LIU Na, AN Xiaoping, et al. Research progress of fermented corn cob in ruminants feeding[J]. Feed Research, 2019, 42(10): 74-78. (in Chinese with English abstract) doi: 10.13557/j.cnki.issn1002-2813.2019.10.018

    [23]

    FAN L H, HOU F R, MUHAMMAD A I, et al. Synergistic inactivation and mechanism of thermal and ultrasound treatments against Bacillus subtilis spores[J]. Food Research International, 2019, 116: 1094-1102. doi: 10.1016/j.foodres.2018.09.052

    [24]

    SHEN S Y , YANG K, LIN D H. Biomacromolecular and toxicity responses of bacteria upon the nano-bio interfacial interactions with Ti3C2Tx nanosheets[J]. Environmental Sscience and Technology, 2023, 57(35): 12991-13003. doi: 10.1021/acs.est.3c02397

    [25]

    MEANEY C A, CARTMAN S T, MCCLURE P, et al. Optimal spore germination in clostridium botulinum ATCC 3502 requires the presence of functional copies of SLEB and YPEB, but not CWIJ[J]. Anaerobe, 2015, 34: 86-93. doi: 10.1016/j.anaerobe.2015.04.015

    [26]

    RIBEIRO L R, CRISTIANINI M. Effect of high-pressure processing combined with temperature on the inactivation and germination of Alicyclobacillus acidoterrestris spores: influence of heat-shock on the counting of survivors[J]. LWT-Food Science and Technology, 2020, 118: 108781. doi: 10.1016/j.lwt.2019.108781

    [27]

    GEORGET E, KAPOOR S, WINTER R H, et al. In situ investigation of Geobacillus stearothermophilus spore germination and inactivation mechanisms under moderate high pressure[J]. Food Microbiology, 2014, 41: 8-18. doi: 10.1016/j.fm.2014.01.007

    [28]

    MOK J H, SUN Y X, PYATKOVSKYY T, et al. Mechanisms of Bacillus subtilis spore inactivation by single and multi-pulse high hydrostatic pressure (MP-HHP)[J]. Innovative Food Science and Emerging Technologies, 2022, 81: 1031-1047.

    [29]

    AKASAKA K, MAENO A, YAMAZAKI A. Direct high-pressure NMR observation of dipicolinic acid leaking from bacterial spore: A crucial step for thermal inactivation[J]. Biophysical Chemistry, 2017, 231: 10-14. doi: 10.1016/j.bpc.2017.04.008

    [30] 雷雨晴,郝静怡,吴傲,等. 超高压对仙人掌有孢汉逊酵母的损伤机理[J]. 农业工程学报,2021,37(2):297-303. doi: 10.11975/j.issn.1002-6819.2021.2.034

    LEI Yuqing, HAO Jingyi, WU Ao, et al. Damage mechanism of Hanseniaspora opuntiae by high hydrostatic pressure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(2): 297-303. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.2.034

    [31]

    RAO L, ZHAO F, WANG Y T, et al. Investigating the Inactivation Mechanism of Bacillus subtilis Spores by High Pressure CO2. Frontiers in Microbiology, 2016, 7: 1411-1423.

    [32] 陈乐,章中,郭家俊,等. 热结合Nisin处理对枯草杆菌芽孢的杀灭效果[J]. 农业工程学报,2020,36(20):320-325. doi: 10.11975/j.issn.1002-6819.2020.20.037

    CHEN Le, ZHANG Zhong, GUO Jiajun, et al. Effects of heat combining with Nisin treatment on the sterilization of Bacillus subtilis spores[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 320-325. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2020.20.037

    [33]

    ZATLOUKALOVÁ M, NAZARUK E, BILEWICZ R. Electrogenic transport of Na+/K+-ATPase incorporated in lipidic cubic phases as a model biomimetic membrane[J]. Electrochimica Acta, 2019, 310: 113-121. doi: 10.1016/j.electacta.2019.04.082

    [34] 许金娟,杨书珍,张美红,等. 碳酸铵对意大利青霉的作用机制及对不同柑橘果实品质的影响[J]. 农业工程学报,2021,37(15):299-307. doi: 10.11975/j.issn.1002-6819.2021.15.035

    XU Jinjuan, YANG Shuzhen, ZHANG Meihong, et al. Mechanism of ammonium carbonate on Penicillium italicum and its effect on the quality of different citrus fruits[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(15): 299-307. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.15.035

    [35]

    GIRARDEAU A, PASSOT S, MENEGHEL J, et al. Insights into lactic acid bacteria cryoresistance using FTIR microspectroscopy[J]. Analytical and Bioanalytical Chemistry, 2021, 414(3): 1425-1443.

    [36]

    CHRISTOPHE P, SEVASTI F, ISHA J, et al. Bacterial spores, from ecology to biotechnology[J]. Advances in Applied Microbiology, 2019, 106: 79-111.

图(9)  /  表(1)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  17
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-22
  • 修回日期:  2023-11-18
  • 录用日期:  2023-11-21
  • 网络出版日期:  2023-12-24
  • 刊出日期:  2023-11-29

目录

    /

    返回文章
    返回