Processing math: 44%
    • EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

基于重量法的畜禽粪肥全盐量测定方法

宋建超, 王棱, 陶秀萍, 刘壮壮, 刘崇涛, 李洋洋

宋建超,王棱,陶秀萍,等. 基于重量法的畜禽粪肥全盐量测定方法[J]. 农业工程学报,2023,39(24):245-253. DOI: 10.11975/j.issn.1002-6819.202309093
引用本文: 宋建超,王棱,陶秀萍,等. 基于重量法的畜禽粪肥全盐量测定方法[J]. 农业工程学报,2023,39(24):245-253. DOI: 10.11975/j.issn.1002-6819.202309093
SONG Jianchao, WANG Ling, TAO Xiuping, et al. Determination of the total salt content of livestock and poultry manure using gravimetric method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(24): 245-253. DOI: 10.11975/j.issn.1002-6819.202309093
Citation: SONG Jianchao, WANG Ling, TAO Xiuping, et al. Determination of the total salt content of livestock and poultry manure using gravimetric method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(24): 245-253. DOI: 10.11975/j.issn.1002-6819.202309093

基于重量法的畜禽粪肥全盐量测定方法

基金项目: 现代农业产业技术体系资助项目(CARS-36);中央级公益性科研院所基本科研业务费专项(S2023004)
详细信息
    作者简介:

    宋建超,助理研究员,研究方向为农业废弃物处理与利用。Email:a18735431445@163.com

    通讯作者:

    陶秀萍,研究员,博士生导师,研究方向为畜禽养殖环境控制与废弃物处理。Email:taoxiuping@caas.cn

  • 中图分类号: X713

Determination of the total salt content of livestock and poultry manure using gravimetric method

  • 摘要:

    针对农用固体粪肥(畜禽粪肥)全盐量/水溶性盐总量的检测方法缺乏标准化、测定方法和步骤不统一的问题,开展了重量法测定畜禽粪肥中全盐量的试验研究并验证了该方法的可行性,旨在为农业生产提供更准确、可靠的畜禽粪肥质量评估手段。首先通过完全随机试验开展样水比例、振荡参数、浸提方式、浸出液吸取量的参数优化研究,其次对全盐量影响较大的参数(振荡频率、离心时间和浸出液吸取量)采用正交试验设计形成9个处理进一步优化粪肥浸出液提取条件,最后开展加标回收试验考察方法精密度和准确度。结果表明,以畜禽固体粪污为主要来源直接使用或发酵后供农业使用的畜禽粪肥中全盐量/水溶性盐总量为0~3%时,其测定的最佳参数条件是样水比为1:5、振荡参数为150 r/min和3 min、离心参数为4 000 r/min和8 min、浸出液吸取量为20~50 mL;采用重量法在该参数条件下测定6种不同类型的畜禽粪肥样品中全盐量,相对标准偏差在3.7%~13.8%、加标回收率在89.0%~106.1%,能够满足实验室分析质量控制要求。该方法试剂用量少、节约成本、准确度和精密度好,可大批量用于畜禽粪肥全盐量测试提高效率。

    Abstract:

    Livestock and poultry manure is often used as organic fertilizer in the farmland surrounding large-scale farms, which is an effective method for recycling manure in agricultural settings. However, the salt content of livestock and poultry manure has not received sufficient attention in terms of the risk of salinization of agricultural land. Before applying livestock and poultry manure to fields, it is crucial to determine its total salt content or water-soluble salt content for salt analysis and management of saline-alkaline land. Unfortunately, there is a lack of standards and methods for determining the total salt content of livestock manure both domestically and internationally. Given the absence of standardized detection methods, the non-uniformity of determination methods, and the loss of potential salt residue, we conducted experimental research by gravimetric method. This study aimed to determine the total salt content in livestock and poultry manure and validate the feasibility, with the goal of providing a more accurate and reliable means of assessing the quality of livestock and poultry manure for agricultural production. Firstly, we conducted a completely randomized trial to optimize the sample-to-water ratio, oscillation parameters, leaching method, and leachate uptake. Subsequently, an orthogonal experimental design was used to evaluate three key parameters, including oscillation frequency, centrifugation time, and leachate uptake. Nine treatment combinations were formed to optimize the conditions for manure leachate extraction. Finally, a spiked recovery test was performed to assess the precision and accuracy of the method. The results indicated that the optimal conditions for determining the total salt or water-soluble salt content in livestock manure, with solid manure as the primary source, were as follows: a ratio of 1:5 for sample-to-water, oscillation at 150 r/min for 3 minutes, centrifugation at 4 000 r/min for 8 minutes, and leachate uptake of 20-50 mL. Moreover, it has been demonstrated that centrifugation can effectively replace the existing air suction filtration method for obtaining leachate. There was a significant correlation observed between the turbidity of the leachate from livestock and poultry manure and the centrifugation parameters, as well as the results of total salt determination. Leachate uptake volume had the greatest influence on the total salt content in the leachate from livestock and poultry manure, oscillation frequency took the second place, and centrifugation time had the weakest effect. According to the gravimetric method, we determined the total salt content of six different livestock manure samples under these optimized parameter conditions. The measured results exhibited relative standard deviations (RSDs) ranging from 3.7% to 13.8% and recovery rates ranging from 89.0% to 106.1%, meeting the requirements of analytical quality control in the laboratory. The established gravimetric method for determining the total salt content in livestock manure offers advantages such as low reagent usage, cost savings, high accuracy and precision, and practicality. It can be applied on a large scale to test the total salt content in livestock manure, thereby improving efficiency. This study provides a scientific foundation for the research and development a technology of salt reduction, and contributes to the sustainable development of integrated crop-livestock agriculture.

  • 水稻钵体苗机械有序抛秧技术具有栽植根系损伤小、返青快、分蘖早、穗型整齐等优点[1-5],但市场上成熟稳定的水稻钵体苗有序抛秧装备仍然较为缺乏。水稻钵体苗取苗装置是有序抛秧机的核心部件之一,直接影响钵体苗机械有序抛秧作业质量。现有水稻钵体苗取苗装置主要有夹拔式、顶出式和气力式等3种取苗方式,为提升其工作性能,诸多专家学者开展了有益探索。

    YE等[6-10]基于不完全偏心齿轮、非圆齿轮行星轮系等设计了系列夹苗式和夹钵式取苗装置;刘欣等[11]基于柔性夹持输送带,开发了水稻钵体苗拔取式取苗装置;彭忠圣等[12]采用相似原理设计了一型绳夹式取苗装置;蔡金平等[13]基于苗夹回转运动和凸轮控制开合的思路,设计了一种水稻钵体苗滚筒凸轮式螺旋夹拔取苗装置;王术平等[14]基于相似原理设计了一种螺旋排列单辊夹式拔秧机构。唐艳芹等[15-17]采用压缩气流从苗盘底部将水稻钵体苗吹出;韩绿化等[18]采用气嘴排从苗盘底部逐排顶吹钵体,实现钵体松脱;包春江等[19]研制了水稻钵体苗空气整根气吸式取苗装置,一次完成4株钵体苗移栽。朱云峰等[20]开发的曲柄摇杆顶出式取苗装置,实现水稻钵体苗成排有序取出;张国凤等[21-23]设计的凸轮-杠杆顶出式水稻钵体苗取秧机构,凸轮借助杠杆放大顶杆行程,可提高取苗效率。但现有取苗方式仍存在一些不足,夹拔式取苗装置夹持取苗过程易损伤钵体苗茎秆、叶,顶出式取苗装置多采用间歇性取苗方式而难以适应高速作业,气力式取苗装置因不同钵体苗秧龄差异导致气力取苗成功率偏低。

    为此,本文针对水稻钵体苗取苗装置存在高速作业稳定性差、不同秧龄适应性差、取苗损伤率偏高等问题,拟基于割圆曲线凸轮-平行四杆强制顶出取苗的技术思路,首先,建立取苗顶杆回程段、升程段、回转段轨迹方程,确定取苗凸轮轮廓曲线;其次,建立取苗顶杆机构运动学模型,确定取苗顶杆与苗盘下拉的运动关系;然后,对钵体苗初始顶苗阶段顶出过程进行分析,确定取苗顶杆最大极限回转速度,进而设计水稻钵体苗凸轮渐进顶出式取苗装置,以期为水稻钵体苗高效低损有序抛秧机的研制提供支撑。

    取苗装置是水稻钵体苗有序抛秧机的核心部件之一。本文设计的取苗装置主要由取苗顶杆机构、取苗凸轮箱、驱动轴、底板、苗盘导向机构和苗盘导向隔板等组成,如图1所示。取苗凸轮箱作为主要支撑部件左右对称安装在底板上,取苗凸轮箱上设置有取苗凸轮;取苗顶杆机构左右两侧嵌套安装在取苗凸轮箱内;驱动轴安装在右侧取苗凸轮箱,驱动轴一侧安装有齿轮用以驱动取苗顶杆机构;苗盘导向机构位于取苗顶杆机构正前方,苗盘导向隔板两端分别与取苗凸轮箱和底板固接。

    图  1  取苗装置总体结构图
    1.顶杆机构 2.凸轮箱 3.驱动轴 4.底板 5.苗盘导向机构 6.苗盘导向隔板
    Figure  1.  General structural diagram of seedling-taking device
    1. Top-bar mechanism 2.Cam box 3.Driving shaft 4.Floor 5. Seedling tray guide mechanism 6.Seedling tray guide splitter

    其中,顶杆机构主要由12组顶杆、安装轴、主轴、支撑曲轴、连接曲轴、主动齿盘和从动轮盘等组成,如图2所示。主轴两端嵌合有一对主动齿盘,用卡簧进行限位,支撑曲轴通过轴承安装在主轴端部,主动齿盘可随主轴在支撑曲轴上进行周转;从动轮盘通过轴承安装在支撑曲轴另一端,从动轮盘和主动齿盘上设有3对均布的通孔,通过连接曲轴相连接;主动齿盘和从动轮盘上设有均布的12条滑槽,顶杆置于滑槽上,两侧通过卡簧限位,两端通过轴承嵌合在凸轮箱内;安装轴、连接曲轴和支撑曲轴的偏心距一致,三者形成平行四杆机构且顶杆安装轴可在滑槽上滑移。

    图  2  取苗顶杆机构示意图
    1.顶杆 2.安装轴 3.主轴 4.主动齿盘 5.从动轮盘 6.支撑曲轴7.连接曲轴
    Figure  2.  Schematic diagram of seedling-taking top-bar mechanism
    1.Top-bar 2.Installation shaft 3.Main shaft 4.Driving toothed disc 5.Follower wheel disc 6.Support crankshaft 7.Connectivity crankshaft

    图3所示,取苗装置工作时,外部动力通过驱动轴驱动取苗顶杆机构回转,带动各组取苗顶杆沿取苗凸轮箱上取苗凸轮轮廓曲线周转;苗盘导向机构通过左右两侧沟槽限制钵体苗盘左右偏移并引导苗盘向下运动,苗盘导向隔板限制苗盘向前变形弯曲并在完成取苗作业后引导苗盘退盘回收;当苗盘运动至取苗位置时,基于割圆曲线凸轮-平行四杆强制顶出取苗技术思路,顶杆安装轴上均布的数根取苗顶杆沿取苗凸轮轮廓曲线依序渐进顶入苗盘苗钵,将钵体苗从苗钵内顶出,完成取苗作业,之后顶杆依序退出苗钵,进入下一个作业循环。其中,苗盘依靠取苗顶杆向下的拉力及自身重力沿苗盘导向机构和苗盘导向隔板向下运动。

    图  3  水稻钵体苗顶出过程示意图
    1.取苗凸轮箱 2.取苗凸轮 3.顶杆安装轴 4.驱动轴 5.钵体苗盘 6.苗盘导向机构
    Figure  3.  Schematic diagram of rice-potted seedling ejection process
    1.Seedling-taking cam box 2.Seedling-taking cam 3.Top-bar installation shaft 4.Driving shaft 5.Potted seedlings tray 6.Seedling tray guide mechanism

    取苗顶杆运行轨迹取决于设置在取苗凸轮箱上的取苗凸轮轮廓曲线,主要由顶杆回程段、升程段、回转段凸轮轮廓曲线构成。

    在竖直方向上,由于钵体苗盘相邻两苗钵距离始终保持不变,为实现取苗顶杆连续依次水平顶出、回退及不干涉钵体苗盘输送运动,基于割圆曲线上任意两点与原点连线夹角一致时任意两点在某一方向上的投影距离亦保持不变的特性,本文以割圆曲线作为回程与升程段的轮廓曲线。当取苗凸轮轮廓(即割圆曲线)给定上下相邻两苗钵距离后,取苗顶杆机构在沿轮廓曲线周转的过程中,位于割圆曲线上的相邻两顶杆在竖直方向的距离与相邻两苗钵距离一致,即可实现同步运动。以取苗顶杆机构的旋转中心为原点O建立坐标系,如图4所示。

    图  4  顶杆回程-升程段凸轮运动轨迹
    注:l1为回程段凸轮轮廓曲线;l2为升程段凸轮轮廓曲线;l3为钵体苗盘竖直向下运动轨迹;v为钵体苗盘向下运动速度,mm·s−1ω为顶杆安装轴绕原点O的旋转角速度,rad·s−1AiBiA1B1A2B2为取苗顶杆位于l1时的投影线段,An-1Bn-1An-2Bn-2An-3Bn-3为顶杆位于l2时的投影线段;OAi为顶杆安装轴与原点O的连线;θOAiX轴的夹角,(°);θk为相邻两组取苗顶杆与原点O连线之间的夹角,(°);LH为相邻两组取苗顶杆在Y轴方向上的距离,mm;LPl3O的垂直距离,mm。
    Figure  4.  Cam motion trajectory in return-lifting section of top-bar
    Note: l1 is the cam profile curve of the return section; l2 is the cam profile curve of the lifting section; l3 is the vertical downward motion trajectory of the seedling tray; v is the downward movement speed of the seedling tray, mm·s−1; ω is the angular velocity of the top-bar installation shaft rotating around the origin O, rad·s−1; AiBi, A1B1, A2B2 are the projection segments of the top-bar locate in l1, An-1Bn-1, An-2Bn-2, An-3Bn-3 are the projection segments of the top-bar locate in l2, mm; OAi is the line connecting the top-bar installation shaft and the origin O; θ is the angle between OAi and the X-axis, (°); θk is the angle between the lines connecting two adjacent top-bars and the origin O, (°); LH is the distance between two adjacent top-bars in the Y-axis direction, mm; LP is the vertical distance between l3 and thee origin O, mm.

    AiBi沿l1运动时,记此时OAi长度为ρ1,分析可知,ρ1θ关系如下:

    ρ1sinθ=vθω (1)
    θK=2πn (2)
    v=ωLHθK (3)

    式中n为取苗顶杆组数。

    联立式(1)~(3)可得回程段凸轮轮廓曲线的极坐标方程为

    ρ1=nLHθ2πsinθ (4)

    为保证多组取苗顶杆在顶出过程中不干涉苗盘运动,相邻两组取苗顶杆垂直距离LH应与相邻两苗钵行距相等,故取LH=19 mm。基于苗盘最大弯曲半径和机构工作的稳定性,设置12组取苗顶杆,以π/6为分度均布在l1上,故θk=π/6,n=12。

    将上述参数代入式(4)可得:

    ρ1=114θπsinθ (5)

    AiBi沿l2运动时,同理可得升程段凸轮轮廓曲线极坐标方程为

    ρ2=114θ2ππsinθ (6)

    回程段工作区间为[059π],升程段工作区间为[139π2π],回转段工作区间为(59π139π)

    取苗凸轮的结构应避免出现刚性冲击,故回程段、升程段与回转段相切连接,如图5所示。当AiBi沿l4运动时,以椭圆曲线为回转段凸轮轮廓曲线,建立极坐标方程为

    图  5  顶杆回转段凸轮运动轨迹
    注:l4为回转段凸轮轮廓曲线;A4B4为顶杆位于l1l4切点处的投影线段,A5B5A6B6为顶杆位于l4时的投影线段。
    Figure  5.  Cam motion trajectory in rotary working section of top-bar
    Note: l4 is the cam profile curve for the rotation section; A4B4 is the projection segment of the top-bar at the tangent point between l1 and l4; A5B5, A6B6 is the projection segments of the top-bar locate in l4.
    ρ3=b2ca2b4+a2b2(a2c2)tan2θb2cosθ+a2sinθtanθ (7)

    式中a为椭圆短半轴长度,mm;b为椭圆长半轴长度,mm;c为椭圆距离坐标原点距离,mm。

    l1l4相切连接,当θ=5π9ρ1=ρ3,化简可得:

    b2ca2b4+32.16a2b2(a2c2)0.17b25.59a2=570sin5π9 (8)

    为避免相邻两组取苗顶杆回转过程中产生干涉,应满足式(9)的约束条件之一。

    {|ρ3cos(θ+θk)ρ1cosθ| (9)

    式中R为顶杆安装轴半径,mm。

    D488P型钵体苗盘(图6)上整齐排列有448个苗钵,苗盘上苗钵结构参数直接影响顶杆结构设计,苗钵质心C位于苗钵底部上方14.43 mm处,与圆锥台体母线的垂直距离为6.68 mm。

    图  6  D488P型钵体苗盘与苗钵尺寸
    注:Db为苗钵上孔直径,Db=16 mm;db为苗钵下孔直径,db=10 mm;hb为苗钵高度,hb=25 mm;hc为苗钵质心C与苗钵底部的距离,hc=14.43 mm。
    Figure  6.  D488P potted seedlings tray and seedling pot size
    Note: Db is the diameter of the upper hole of the seedling pot, Db=16 mm; db is the diameter of the lower hole of the seedling pot, db=10 mm; hb is the height of the seedling pot, hb=25 mm; hc is the distance from the center of mass C of the seedling pot to its bottom, hc=14.43 mm.

    为保证钵体苗在顶出过程能够顺利从苗钵中脱离,顶杆顶入苗钵长度应超过钵体苗质心位置,并结合取苗顶杆组件安装空间尺寸要求,取顶杆长度LD =17 mm。根据前期试验,顶杆直径Dd=4 mm,顶杆安装轴半径R=6 mm时,顶出载荷较小,且顶出效果稳定。

    根据机构整体尺寸设计要求,在保证取苗顶杆机构能够顺利回转的前提下,设定回转段极径小于90 mm,将上述参数代入式(9)可得:

    \left\{ \begin{gathered} {\rho_3} \leqslant 90 \\ {\rho_1}\sin \frac{{5\pi }}{9} < b < \sqrt {{{90}^2} - {c^2}} \\ \end{gathered} \right. (10)

    联立式(8)、式(10)可得a=55,b=70,c=35,代入式(7),可得回转段凸轮轮廓曲线极坐标方程如下:

    {\rho _3} = \frac{{ - 35 - \sqrt {1111.22{{\tan }^2}\theta + 3025} }}{{\cos \theta + 0.62\sin \theta \tan \theta }} (11)

    联立ρ1ρ2ρ3可得,取苗凸轮轮廓曲线极坐标方程如下:

    \rho=\left\{ \begin{array}{*{20}{l}} \dfrac{{114 \cdot \theta }}{{\pi \sin \theta }},& 0\le \theta \le \dfrac{5\pi }{9} \\ \dfrac{{ - 35 - \sqrt {1111.22{{\tan }^2}\theta + 3025} }}{{\cos \theta + 0.62\sin \theta \tan \theta }},& \dfrac{5\pi }{9} < \theta < \dfrac{13\pi }{9} \\ \dfrac{{114\left( {\theta - 2\pi } \right)}}{{\pi \sin \theta }},& \dfrac{13\pi }{9}\le \theta \le 2\pi \end{array} \right. (12)

    基于上述极坐标方程,利用Matlab结合包络法设计取苗凸轮轮廓曲线,如图7所示。

    图  7  取苗凸轮轮廓曲线
    注:r0为凸轮基圆半径,r0=36.29 mm。
    Figure  7.  Seedling-taking cam profile curve
    Note:r0 is the radius of cam base-circle, r0=36.29 mm.

    在各组取苗顶杆有序沿取苗凸轮轮廓曲线运行的条件下,为保证顶杆始终保持水平状态,设支撑曲轴、连接曲轴和顶杆安装轴的偏心距离相同,则取苗顶杆机构可化简为连架杆长度可变的平行四杆机构。如图8a所示,已知主动齿盘及从动轮盘所设滑槽均匀分布,且各组取苗顶杆外部条件一致,因此各组取苗顶杆在取苗凸轮任意位置均可形成平行四杆机构,从而使各组取苗顶杆始终保持水平,图8b为取苗顶杆机构其中一组取苗顶杆所形成的平行四杆机构。

    图  8  连架杆长度可变的平行四杆机构简图
    注:L1为取苗凸轮轮廓曲线;L2为顶杆安装轴回转轮廓曲线;L3L4分别为从动轮盘、主动齿盘上的滑槽;AB为取苗顶杆在竖直平面上的投影线段;AC分别为顶杆安装轴、顶杆安装轴端部;OaOb分别为主动齿盘、从动轮盘的旋转中心;vA为顶杆安装轴的线速度,mm·s−1vAxvAy分别为顶杆安装轴在X轴、Y轴方向上的分速度,mm·s−1ωL为主动轮盘回转角速度,rad·s−1θL为滑槽与X轴之间的夹角,(°)。
    Figure  8.  Sketch of parallel four-bar mechanism with
    Note: L1 is the profile curve for seedling-taking cam; L2 is the rotation profile curve of the top-bar installation shaft; L3 and L4 are the slots on the follower wheel disc and the driving toothed disc; AB is the projection segment of the top-bar on the vertical plane; A and C are the top-bar installation shaft and the end of top-bar installation shaft; Oa and Ob are the rotation centers of the driving toothed disc and the follower toothed disc; vA is the linear velocity of the top-bar installation shaft, mm·s−1; vAx and vAy are the velocity components of the top-bar installation shaft in the X-axis and Y-axis directions, mm·s−1; ωL is the rotary angular velocity of the driving toothed disc, rad·s−1; θL is the angle between the slot and the X-axis, (°).

    取苗作业时,AC可分别沿L4L3滑移,因此OaAObC可视为长度可变的连架杆,OaObOaAACObC构成连架杆长度可变的平行四杆机构,该平行四杆机构在回程段存在如下关系:

    v_{Ax}=\frac{\mathrm{d}}{\mathrm{d}t}\left[l_{O_{\text{a}}A}\cos(\Delta\theta_L)\right] (13)
    v_{Ay}=\frac{\mathrm{d}}{\mathrm{d}t}\left[l_{O_{\text{a}}A}\sin(\Delta\theta_L)\right] (14)
    {l_{{O_a}A}} = 114\frac{{\Delta {\theta _L}}}{{\pi \sin (\Delta {\theta _L})}} (15)

    式中l_{O_{\text{a}}A} 为连架杆OaA长度,mm;\Delta {\theta _L} 为时间t内连架杆回转的角度,\Delta {\theta _L} =ωLt,(°)。

    联立式(13)~(15)可得:

    {v_{Ax}} = \frac{{114{w_L}}}{\pi }\frac{{\tan ({w _L}t) - {w _L}t{{\sec }^2}{w _L}t}}{{{{\tan }^2}{w _L}t}} (16)
    {v_{Ay}} = \frac{{114{w_L}}}{\pi } (17)

    因为ABC三点均在取苗顶杆上,由平行四杆机构工作原理可得:取苗顶杆的水平速度为vAx,竖直速度为vAy。即在取苗过程中,取苗顶杆机构对钵体苗施加的分速度与ωL有关;当ωL确定时,取苗顶杆机构匀速竖直下拉苗盘。

    基于上述分析,钵体苗盘下拉速度与ωL呈正相关,即取苗顶杆机构转速影响苗盘进给快慢。因抛秧机具采用双人轮流送盘的作业方式,实际作业中取苗顶杆机构转速存在上限,根据前期试验知其范围为10~90 r/min。基于式(17),设置取苗顶杆机构转速为30 r/min,此时连架杆回转角速度ωL=3.14 rad/s,代入式(17)中并利用Matlab绘制顶杆分速度vAx在回程-升程段(0≤t≤1.11 s)的函数曲线,如图9所示,其中纵坐标正负仅代表顶杆水平运动方向。分析可知,取苗顶杆处于回程-升程段时在水平方向近似做匀减速-匀加速度运动,其水平分速度峰值出现在工作段首尾两端。若改变取苗顶杆机构转速即回转角速度ωL,则vAx在回程-升程段的作业时间t与峰值将发生相应变化。

    图  9  顶杆分速度vAx 曲线
    Figure  9.  Top-bar component velocity vAx curve

    t=0.134 s时,钵体苗盘运动至取苗位置,此时顶杆恰好处于初始顶苗阶段,如图10a所示,钵体苗钵体在这一阶段受力与苗钵壁之间产生微量位移从而分离,过程极短,钵体底部受力点Od受到顶杆顶出力Fd的作用后发生轻度形变,根据冲量定理可知,vAx越大,Fd越大。由于时间间隔极小,钵体在该时间段受到苗钵壁之间的阻力可视为恒定不变,根据惯性定理,钵体在极短时间内受力时与苗钵存在相对静止趋势。因vAx同回转角速度ωL成正比,当ωL增大至某一临界值时,钵体在保持相对静止趋势的同时将受到顶出力Fd的极大冲击,使得钵体被顶杆顶穿受损,出现严重变形,如图10b所示。

    图  10  初始顶苗阶段顶出过程分析
    注:Fd为顶杆对钵体苗钵体的顶出力,N;Od为钵体底部受力点;Ff1Ff2分别为上下苗钵壁对钵体的摩擦力,N;FN1FN2分别为上下苗钵壁对钵体的支持力,N;G为钵体重力,N;θa为钵体锥度,(°)。
    Figure  10.  Analysis of ejection at initial seedling-tanking stage
    Note:Fd is the ejecting force of the top-bar to the pot body, N; Od is force point at the bottom of the pot body; Ff1 and Ff2 are the friction force of the upper and lower seedling pot wall on the pot body, N; FN1 and FN2 are the supporting force of the upper and lower seedling pot wall on the pot body, N; G is gravity of pot body, N; θa is the taper of pot body, (°).

    为确定ωL的临界值以避免取苗装置在作业时超出该值造成钵体苗严重受损,本文依据顶杆机构转速范围对ωL从1.0~9.42 rad/s进行9个水平的划分并进行预试验。结果表明,当ωL≥8.37 rad/s时钵体苗顶出受损严重,由此可知,取苗装置作业时,应使ωL<8.37 rad/s。

    实际生产中,抛秧机具以栽植株距0.12~0.20 m,行距0.20~0.30 m为作业标准。机具作业速度同栽植株距、回转角速度之间存在如下关系:

    {v_j} = \frac{{6{\omega _L}{L_Z}}}{\pi } (18)

    式中vj为抛秧机具作业速度,m/s;LZ为钵体苗栽植株距,m。

    根据式(18),当ωL=8.37 rad/s时,满足栽植株距0.12~0.20 m的机具作业速度范围为1.92~3.20 m/s,故机具作业速度应小于1.92 m/s。本文所设计机具作业速度范围为0.80~1.00 m/s,符合作业要求。

    以野香优航1573、黄华占、甬优12江西区域主推品种为供试品种;供试秧盘为亿科农林生产的D448P复用型钵体苗育秧盘;供试育秧基质为湖南省湘晖农业技术开发有限公司生产的水稻机插育秧基质。2023年6月14日、6月19日和6月23日分别进行3个批次钵体苗育秧,3个品种秧龄分别为两叶一心、三叶、三叶一心。育秧和苗期管理依照水稻抛秧技术规程NY/T 1607-2008进行[24]

    试验装置主要由取苗装置、带式输送机、调速电机等组成,如图11所示。取苗装置通过螺栓固定安装在带式输送机一端,调速电机通过联轴器驱动取苗装置完成取苗,带式输送机承接取出的钵体苗并向前缓慢输送以便观测统计。改变调速电机转速可控制取苗装置达到试验所需的顶杆机构转速。

    图  11  试验装置
    1.取苗装置 2.带式输送机3.调速电机
    Figure  11.  Test equipment
    1.Seedling-taking device 2.Belt conveyor 3.Adjustable speed motor

    不同秧龄钵体苗盘根和茎叶形态有明显差异[25-27],是直接影响取苗装置工作性能的重要因素,结合生产实际需要,选取钵体苗秧龄两叶一心、三叶和三叶一心作为试验水平。

    钵体含水率直接影响根系与基质的粘结力、钵体与秧盘内壁的摩擦力与黏附力、钵体顶出力学特性等[28-30],从而影响取苗成功率。预试验结果表明,钵体含水率过高(大于70%),顶出取苗时钵体极易破碎;钵体含水率过低(小于20%),钵体苗易脱水干枯,影响栽植质量。同时,参照相关技术规程[31],借助DH-190自动水分测定仪测定钵体含水率,取钵体含水率40%、50%和60%作为试验水平。

    取苗频率对应取苗装置每秒的取苗量,是衡量取苗装置工作效率的关键技术参数。根据机具实际作业情况,取苗频率为机具作业速度和株距的比值,为使机具作业速度0.8~1.0 m/s时满足株距在0.12~0.2 m可调节,取苗频率需在4~8次/s范围内可调。为此,本文取苗频率水平设置为4、6和8次/s,对应每秒取苗量分别为4行(56株)、6行(84株)和8行(112株),可满足实际作业要求。

    以秧龄、钵体含水率和取苗频率为试验因素,取苗成功率和取苗损伤率为评价指标,开展取苗装置工作性能正交试验。每组试验取苗10行(140株),每个品种分别进行9组试验,重复3次。试验后对试验结果开展极差分析,以明确各因素对取苗装置工作性能的影响主次顺序,并获取各品种的最优取苗作业参数组合,试验因素与水平如表1所示。

    表  1  试验因素与水平
    Table  1.  Factor and levels of experiment
    水平
    Levels
    秧龄
    Seedling age A
    钵体含水率
    Moisture content of
    pot body B/%
    取苗频率
    Seedlings-taking
    frequency C/(次·s−1)
    1 两叶一心 40 4
    2 三叶 50 6
    3 三叶一心 60 8
    下载: 导出CSV 
    | 显示表格

    取苗成功率Hq:每次试验中,从钵体苗盘中被完全顶出并脱离的钵体苗记为取苗成功,成功取出钵体苗数量占钵体苗总数的百分比为取苗成功率,计算如下:

    {H_q} = \frac{{{N_q}}}{{{N_z}}} \times 100\text{%} (19)

    式中Hq为取苗成功率,%;Nq为成功取出钵体苗数量;Nz为钵体苗总数。

    取苗损伤率Hs:在顶出过程中出现钵体破碎、根系受损的钵体苗记为受损钵体苗,记录成功取出的钵体苗中受损钵体苗数量,受损钵体苗数量占成功取出钵体苗数量的百分比为取苗损伤率,计算如下:

    {H_s} = \frac{{{N_s}}}{{{N_q}}} \times 100\text{%} (20)

    式中Hs为取苗损伤率,%;Ns为受损钵体苗数量。

    采用Microsoft Excel统计数据,计算取苗成功率和取苗损伤率,并进行极差分析确定各因素对评价指标的影响主次顺序。

    表2表4可知,就3个供试品种而言,取苗成功率最小值为95.68%,最大值为100%,平均值为98.25%,其中野香优航1573取苗成功率为95.68%~99.78%,黄华占取苗成功率为95.90%~100%,甬优12取苗成功率为96.59%~100%,且取苗成功率随秧龄增大而增大,随钵体含水率增大呈先增大后减小趋势,随取苗频率加快而减小。

    表  2  野香优航1573试验方案及结果
    Table  2.  Experiment scheme and results of Yexiangyouhang 1573
    试验号
    Test No.
    A B C 空列
    Empty
    取苗成功率
    Success rate
    of seedling
    taking Hq/%
    取苗损伤率
    Damage rate
    of seedling
    taking Hs/%
    1 1 1 1 1 97.51 3.03
    2 1 2 2 2 97.97 2.79
    3 1 3 3 3 95.68 3.80
    4 2 1 2 3 97.49 1.86
    5 2 2 3 1 98.19 2.09
    6 2 3 1 2 98.40 1.84
    7 3 1 3 2 99.56 0.69
    8 3 2 1 3 99.78 0.45
    9 3 3 2 1 99.56 0.69
    Hq k1 97.05 98.19 98.56 98.42
    k2 98.03 98.65 98.34 98.64
    k3 99.63 97.88 97.81 97.65
    R 2.58 0.77 0.75 0.99
    Hs k1 3.21 1.86 1.77 1.94
    k2 1.93 1.78 1.78 1.77
    k3 0.61 2.11 2.19 2.04
    R 2.60 0.33 0.42 0.26
    下载: 导出CSV 
    | 显示表格
    表  3  黄华占试验方案及结果
    Table  3.  Experiment scheme and results of Huanghuazhan
    试验号
    Test No.
    A B C 空列
    Empty
    Hq/% Hs/%
    1 1 1 2 1 95.90 3.08
    2 1 2 3 2 96.37 2.83
    3 1 3 1 3 96.83 3.29
    4 2 1 3 3 96.83 1.88
    5 2 2 1 1 99.10 1.83
    6 2 3 2 2 97.97 2.09
    7 3 1 1 2 99.78 0.70
    8 3 2 2 3 100.00 0.68
    9 3 3 3 1 100.00 1.14
    Hq k1 96.37 97.50 98.57 98.33
    k2 97.97 98.49 97.96 98.04
    k3 99.93 98.27 97.73 97.89
    R 3.56 0.99 0.84 0.45
    Hs k1 3.07 1.89 1.94 2.02
    k2 1.93 1.78 1.95 1.87
    k3 0.84 2.17 1.95 1.95
    R 2.23 0.39 0.01 0.14
    下载: 导出CSV 
    | 显示表格
    表  4  甬优12试验方案及结果
    Table  4.  Experiment scheme and results of Yongyou 12
    试验号
    Test No.
    A B C 空列
    Empty
    Hq/% Hs/%
    1 1 1 3 1 96.83 3.05
    2 1 2 1 2 97.51 2.34
    3 1 3 2 3 96.59 3.29
    4 2 1 1 3 98.87 2.07
    5 2 2 2 1 98.86 1.83
    6 2 3 3 2 97.29 2.56
    7 3 1 2 2 100.00 0.67
    8 3 2 3 3 100.00 0.68
    9 3 3 1 1 100.00 0.68
    Hq k1 96.98 98.57 98.79 98.56
    k2 98.34 98.79 98.48 98.27
    k3 100.00 97.96 98.04 98.49
    R 3.02 0.83 0.75 0.30
    Hs k1 2.89 1.93 1.70 1.85
    k2 2.15 1.62 1.93 1.86
    k3 0.68 2.18 2.10 2.01
    R 2.22 0.56 0.40 0.16
    下载: 导出CSV 
    | 显示表格

    表2表4还可知,就3个供试品种而言,通过分析极差值大小,影响取苗成功率的主次顺序均为秧龄、钵体含水率、取苗频率;分析各因素下的k值,取苗成功率较优水平组合均为A3B2C1,符合各因素对取苗成功率影响趋势。

    表2表4可知,就3个供试品种而言,取苗损伤率最小值为0.45%,最大值为3.80%,平均值为2.09%,其中野香优航1573取苗损伤率为0.45%~3.80%,黄华占取苗损伤率为0.68%~3.29%,甬优12取苗损伤率为0.67%~3.29%,且取苗损伤率随秧龄增大而减小,随钵体含水率增大先减小后增大趋势,随取苗频率加快而增大。取苗损伤率与取苗成功率呈负相关趋势,取苗成功率越高,取苗损伤率越低。

    表2表4还可知,影响野香优航1573和黄华占取苗损伤率的主次顺序均为秧龄、取苗频率、钵体含水率,影响甬优12取苗损伤率的主次顺序为秧龄、钵体含水率、取苗频率。分析各因素下的k值,取苗损伤率较优水平组合均为A3B2C1,符合各因素对取苗损伤率影响趋势。

    综上,就3个供试品种而言,在秧龄(两叶一心、三叶、三叶一心)、钵体含水率(40%、50%、60%)和取苗频率(4、6、8次/s)条件下,秧龄对取苗成功率、取苗损伤率影响最大,钵体含水率、取苗频率影响相对较小,取苗损伤率与取苗成功率呈负相关趋势。该结果表明,本文设计的取苗装置对于钵体苗秧龄存在一定的要求,但对不同钵体含水率、取苗频率具有较好的适应性。

    为验证较优水平组合A3B2C1(秧龄为三叶一心、钵体苗含水率为50%和取苗频率为4次/s)对取苗成功率、取苗损伤率的准确性,以甬优12开展验证试验,单次取苗10行(140株),重复3次,结果如表5所示。

    表  5  重复验证试验结果
    Table  5.  Repeat verification experiment results
    试验号
    Test No.
    取苗成功率
    Success rate of
    seedling-taking Hq/%
    取苗损伤率
    Damage rate of
    seedling-taking Hs/%
    1100.000
    2100.000.66
    399.330
    平均值99.780.22
    下载: 导出CSV 
    | 显示表格

    表5可知,优选组合重复验证试验取苗成功率均值为99.78%,取苗损伤率均值为0.22%,表明优选方案能够满足水稻钵体苗抛秧作业要求,可为后续整机装备的研制提供技术支撑。

    1)设计了一种水稻钵体苗凸轮渐进顶出式取苗装置,建立取苗顶杆回程段、升程段、回转段轨迹方程,确定了取苗凸轮轮廓曲线;建立取苗顶杆机构运动学模型,确定了取苗顶杆与苗盘下拉的运动关系;分析钵体苗初始顶苗阶段顶出过程,确定了取苗顶杆最大极限回转速度。

    2)就野香优航1573、黄华占、甬优12三个水稻品种而言,在秧龄(两叶一心、三叶、三叶一心)、钵体含水率(40%、50%、60%)和取苗频率(4、6、8次/s)条件下,秧龄对取苗成功率、取苗损伤率影响最大,钵体含水率、取苗频率影响相对较小,取苗损伤率与取苗成功率呈负相关趋势。

    3)优选水平为秧龄三叶一心、钵体含水率50%、取苗频率4次/s,该条件下供试品种甬优12取苗成功率均值为99.78%,取苗损伤率均值为0.22%。

  • 图  1   振荡参数对牛粪全盐量测定结果的影响

    注:不同小写字母表示差异显著(P<0.05),下同。

    Figure  1.   Effect of oscillation parameters on results of total salt in cattle manure

    Note: Different lowercase letters indicate significant differences (P<0.05), the same below.

    图  2   不同离心参数下浸出液浊度变化

    Figure  2.   Changes in turbidity of leachate under different centrifugation parameters

    图  3   离心参数对牛粪全盐量测定结果的影响

    Figure  3.   Effect of centrifugation parameters on results of total salt in cattle manure

    表  1   主要仪器设备及其参数

    Table  1   Main instrumentation and its parameters

    仪器设备Instrumentations 型号Model 厂商Manufacturer 测试范围Test range 检测精度Accuracy
    恒温电动振荡器
    Electric constant-temperature oscillator
    HZQ-X300 一恒科学仪器 振荡频率:40~300 (r·min−1)
    温度:5~65 ℃
    振荡频率:±1 (r·min−1)
    温度:±0.2 ℃
    多功能台式高速冷冻离心机
    Versatile desktop high-speed refrigerated centrifuge
    Velocity 18R Dynamica,CH 转速:300~18 000 (r·min−1)
    温度:−20~40 ℃
    转速:±20 (r·min−1)
    温度:±2℃
    电子天平Electronic balance ME204E/02 Mettler-Toledo,CH 0~220 g 0.1 mg和0.1 g
    电热鼓风恒温干燥箱
    Electrothermal constant temperature blast drying oven
    101-1 苏珀仪器 室温~300℃ ±2℃
    数显恒温水浴锅
    Digital constant temperature water bath pot
    HH-6 力辰邦西仪器 室温~99.9 ℃ ±0.5℃
    微孔滤膜过滤器
    Millipore filtration membranes filter
    F-3100 德滤科技 0.45 μm
    下载: 导出CSV

    表  2   正交试验设计

    Table  2   Orthogonal test design

    处理组
    Treated group
    振荡频率
    Oscillation frequency/(r·min−1)
    离心时间
    Centrifugation time/min
    浸出液吸取量Leachate
    uptake amount/mL
    1100610
    2100830
    31001020
    4150630
    5150820
    61501010
    7200620
    8200810
    92001030
    下载: 导出CSV

    表  3   不同样水比下的粪肥样品加标回收试验

    Table  3   Spiked recovery tests on manure samples at different sample-to-water ratios

    样品Samples 1:2.5 1:5 1:10
    全盐量Total salt/% RSD/% 回收率
    Recovery/%
    全盐量Total salt/% RSD/% 回收率Recovery/% 全盐量Total salt/% RSD/% 回收率Recovery/%
    1 样品快速吸取水分,无浸出液 1.27±0.06 4.9 105.2±12.1 1.29±0.11 8.7 72.2±12.8
    2 0.40±0.02 5.0 55.0±4.7 0.48±0.03 5.6 83.2±5.3 0.79±0.12 15.0 36.3±13.6
    3 1.31±0.04 2.8 69.4±7.4 1.16±0.09 8.1 115.8±4.4 1.21±0.13 10.3 137.3±30.4
    4 样品快速吸取水分,无浸出液 0.52±0.05 10.0 84.3±2.7 0.43±0.09 20.2 68.2±15.0
    注:样品1、2分别为规模化猪场的固液分离粪样和沼渣,样品3、4分别为规模化奶牛场的粪便和发酵粪样;RSD为对应样水比下全盐量的相对标准偏差。
    Note: Samples 1 and 2 were solid-liquid separation manure and digestate from a large-scale pig farm, and samples 3 and 4 were fresh manure, and fermented manure from a large-scale dairy farm, respectively. RSD was the relative standard deviation of total salt at the corresponding sample-to-water ratio.
    下载: 导出CSV

    表  4   不同浸出液吸取量的全盐量测定结果

    Table  4   Determination of total salt in different leachate uptake amounts

    指标Index 浸出液吸取量
    Leachate uptake amounts/mL
    样品Samples
    1 2 3 4
    不同浸出液吸取量的全盐量
    Total salt of different leachate uptake amount/%
    10 0.99±0.18 a 1.10±0.15 a 1.03±0.11 a 1.80±0.06 a
    20 0.62±0.09 b 0.52±0.01 b 0.76±0.07 b 1.67±0.02 b
    30 0.39±0.06 c 0.50±0.01 b 0.78±0.02 b 1.63±0.02 b
    40 0.37±0.06 c 0.52±0.05 b 0.77±0.07 b 1.65±0.02 b
    50 0.37±0.03 c 0.52±0.06 b 0.78±0.06 b 1.67±0.07 b
    不同浸出液吸取量中盐分质量
    Mass of salt of different leachate uptake amount/mg
    10 - - - -
    20 - 21.0±0.4 30.4±2.8 66.9±0.9
    30 23.5±3.6 30.0±0.5 47.0±1.1 97.8±1.0
    40 29.8±4.9 41.9±3.8 61.7±5.7 131.8±1.7
    50 36.8±3.0 51.5±5.8 77.5±6.2 167.0±7.3
    不同浸出液吸取量的相对标准偏差
    Relative standard deviation (RSD) of different
    leachate uptake amount/%
    10 18.0 14.0 10.9 3.4
    20 14.4 2.1 9.3 1.3
    30 15.1 1.8 2.3 1.0
    40 16.4 9.0 9.2 1.3
    50 8.2 11.3 8.0 4.3
    注:不同字母表示差异显著(P<0.05);样品1~3分别为规模化猪场的沼渣1、沼渣2和固液分离粪样,样品4为规模化奶牛场粪便。
    Note: Different letters indicate significant differences (P<0.05). Samples 1 to 3 were digestate 1, digestate 2 and solid-liquid separation manure from a large-scale pig farm, and sample 4 was fresh manure from a large-scale dairy farm.
    下载: 导出CSV

    表  5   正交试验极差和方差分析结果

    Table  5   ANOVA and range results of orthogonal test

    序号
    Serial
    振荡频率Oscillation frequency/(r·min−1) 离心时间Centrifugation time/min 浸出液吸取量Leachate uptake amount/mL 全盐量Total salt/%
    1 100 6 10 1.66±0.05
    2 100 8 30 2.02±0.01
    3 100 10 20 2.00±0.01
    4 150 6 30 2.01±0.02
    5 150 8 20 2.16±0.02
    6 150 10 10 2.02±0.03
    7 200 6 20 2.04±0.10
    8 200 8 10 1.95±0.04
    9 200 10 30 2.15±0.05
    K1 1.90 1.91 1.88
    K2 2.06 2.04 2.07
    K3 2.05 2.06 2.06
    极差Range 0.16 0.15 0.19
    F 4.91 3.64 7.79
    P 0.02 0.04 <0.01
    下载: 导出CSV

    表  6   不同样品的加标回收试验结果

    Table  6   Results of spiked recovery test for different samples

    样品Samples 本底全盐量
    Background total salt/%
    RSD/% 加标量
    Spiked amounts/g
    回收率Recovery/%
    1 0.57±0.08 13.8 0.2 98.2±9.7
    2 0.78±0.08 9.9 1.0 104.8±5.2
    3 0.30±0.03 8.8 0.2 89.0±4.4
    4 1.46±0.10 6.8 1.0 106.1± 4.3
    5 0.98±0.04 3.7 0.5 104.4±7.0
    6 1.09±0.07 6.6 0.5 102.5±7.4
    注:样品1~3分别为规模化猪场的粪便、固液分离粪样和沼渣,样品4~6分别为规模化奶牛场的粪便、固液分离粪样和发酵粪样;RSD为对应样品中全盐量的相对标准偏差,下同。
    Note: Samples 1 to 3 were fresh manure, solid-liquid separated manure and digestate from a large-scale pig farm, and samples 4 to 6 were fresh manure, solid-liquid separated and fermented manure from a large-scale dairy farm, respectively. RSD was the relative standard deviation of total salt in the corresponding sample, the same below.
    下载: 导出CSV

    表  7   不同验证实验室测定的全盐量

    Table  7   Total salt in different validation labs

    样品Samples 不同实验室测定全盐量
    Total salt determined by different labs/%
    RSD/%
    1 2 3
    1 1.86±0.09 1.83±0.04 1.79±0.02 2.0
    2 0.96±0.09 1.09±0.08 1.01±0.04 6.2
    3 0.81±0.06 0.81±0.01 0.80±0.06 0.9
    4 2.03±0.05 2.12±0.02 2.05±0.02 2.1
    5 0.98±0.04 0.86±0.04 0.98±0.07 7.6
    6 1.09±0.07 1.07±0.02 1.13±0.05 2.7
    下载: 导出CSV
  • [1] 刘淼,王志春,杨福,等. 生物炭在盐碱地改良中的应用进展[J]. 水土保持学报,2021,35(3):1-8.

    LIU Miao, WANG Zhichun, YANG Fu, et al. Application progress of biochar in amelioration of saline-alkaline soil[J]. Journal of Soil and Water Conservation, 2021, 35(3): 1-8. (in Chinese with English abstract)

    [2]

    AMINI S, GHADIRI H, CHEN C, et al. Salt-affected soils, reclamation, carbon dynamics, and biochar: A review[J]. Journal of Soils and Sediments, 2015, 16(3): 939-953.

    [3] 冯艳琼,何彤慧,陈向全,等. 盐生草甸群落的植物多样性与土壤质地、盐分关系的研究[J]. 草地学报,2020,28(6):1682-1689.

    FENG Yanqiong, HE Tonghui, CHEN Xiangquan, et al. Study on the relationship between plant diversity and soil texture and salinity of saline meadow community[J]. Acta Agrestia Sinica, 2020, 28(6): 1682-1689. (in Chinese with English abstract)

    [4] 廖海,栗现文,陈俊英,等. 原状盐渍土不同盐分含量对土壤水分特征曲线的影响[J]. 节水灌溉,2021(1):7-13. doi: 10.3969/j.issn.1007-4929.2021.01.002

    LIAO Hai, LI Xianwen, CHEN Junying, et al. Effects of different salt contents of undisturbed saline soil on soil moisture characteristic curves[J]. Water Saving Irrigation, 2021(1): 7-13. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-4929.2021.01.002

    [5]

    JIN J, RAN S, LIU T. Impact of irrigation methods on soil salt content and their differences in whole cotton growing season in arid area of northwest China[J]. Journal of Resources and Ecology, 2016, 7(6): 453-463. doi: 10.5814/j.issn.1674-764x.2016.06.005

    [6]

    XU Y, MA T, YUAN Z, et al. Spatial patterns in pollution discharges from livestock and poultry farm and the linkage between manure nutrients load and the carrying capacity of croplands in China[J]. Science of the Total Environment, 2023, 901: 166006. doi: 10.1016/j.scitotenv.2023.166006

    [7]

    DING S, WANG B, FENG Y, et al. Livestock manure-derived hydrochar improved rice paddy soil nutrients as a cleaner soil conditioner in contrast to raw material[J]. Journal of Cleaner Production, 2022, 372: 133798. doi: 10.1016/j.jclepro.2022.133798

    [8] 董心怡,李晶,巩细民,等. 湖北省秸秆和畜禽粪污还田化肥替减潜力与环境承载力分析[J]. 农业工程学报,2022,38(15):277-286.

    DONG Xinyi, LI Jing, GONG Ximin, et al. Reduction potential and environmental carrying capacity of straw and livestock manure returning to fields in Hubei Province of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 277-286. (in Chinese with English abstract)

    [9] 郭薇仪,崔建宇,张望,等. 泛种养结合视角下北京市养殖业土地承载力评估[J]. 农业工程学报,2021,37(17):242-250.

    GUO Weiyi, CUI Jianyu, ZHANG Wang, et al. Assessment of land carrying capacity of animal production in Beijing from a wider perspective of combination of planting and animal breeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(17): 242-250. (in Chinese with English abstract)

    [10] 周海宾,丁京涛,孟海波,等. 中国畜禽粪污资源化利用技术应用调研与发展分析[J]. 农业工程学报,2022,38(9):237-246.

    ZHOU Haibin, DING Jingtao, MENG Haibo, et al. Survey and development analysis of resource utilization technology of livestock and poultry wastes in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(9): 237-246. (in Chinese with English abstract)

    [11] 鲍士旦. 土壤农化分析(第三版) [M]. 北京:中国农业出版社,2000.
    [12] 徐荣,严瑾,王保勤,等. 电热板蒸发–重量法测定水中全盐量[J]. 化学分析计量,2016,25(5):24-27.

    XU Rong, YAN Jin, WANG Baoqin, et al. Determination of total salt content in water by gravimetric method with heating plate evaporation[J]. Chemical Analysis and Meterage, 2016, 25(5): 24-27. (in Chinese with English abstract)

    [13] 芦远闯,许华森,王晨宇,等. 基于质量法的土壤水溶性盐总量测定方法改进[J]. 土壤通报,2022,53(4):815-820.

    LU Yuanchuang, XU Huasen, WANG Chenyu, et al. Improvement of the determination method for total amount of soil water-soluble salts based on gravimetric method[J]. Chinese Journal of Soil Science, 2022, 53(4): 815-820 (in Chinese with English abstract)

    [14] 王辉,董元华,张绪美,等. 江苏省集约化养殖畜禽粪便盐分含量及分布特征分析[J]. 农业工程学报,2007,23(11):229-233.

    WANG Hui, DONG Yuanhua, ZHANG Xumei, et al. Salinity contents and distribution of dry animal manures on intensified farms in Jiangsu Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007,23(11): 229-233. (in Chinese with English abstract)

    [15] 黄绍文,唐继伟,李春花. 我国商品有机肥和有机废弃物中重金属、养分和盐分状况[J]. 植物营养与肥料学报,2017,23(1):162-173. doi: 10.11674/zwyf.16191

    HUANG Shaowen, TANG Jiwei, LI Chunhua. Status of heavy metals, nutrients, and total salts in commercial organic fertilizers and organic wastes in China[J]. Journal of Plant Nutrition and Fertilizers, 2017, 23(1): 162-173. (in Chinese with English abstract) doi: 10.11674/zwyf.16191

    [16] 罗毅,胡顺军,王兴繁,等. 一种电导率指标测可溶性盐分含量新方法[J]. 土壤学报,2012,49(6):1257-1261. doi: 10.11766/trxb201112310512

    LUO Yi, HU Shunjun, WANG Xingfan, et al. A new method to determine soil soluble salt using electrical conductivity index[J]. Acta Pedologica Sinica, 2012, 49(6): 1257-1261. (in Chinese with English abstract) doi: 10.11766/trxb201112310512

    [17] 倪治华,孙万春,林辉,等. 浙江省畜禽粪源有机肥质量安全风险与控制对策[J]. 浙江农业学报,2020,32(2):299-307.

    NI Zhihua, SUN Wanchun, LIN Hui, et al. Quality risk assessment and management of manure based organic fertilizers in Zhejiang[J]. Acta Agriculturae Zhejiangensis, 2020, 32(2): 299-307. (in Chinese with English abstract)

    [18] 中华人民共和国农业部. 土壤检测 第16部分:土壤水溶性盐总量的测定:NY/T 1121.16-2006 [S]. 北京:中国农业出版社,2006-10.
    [19] 国家市场监督管理总局,国家标准化管理委员会. 畜禽粪便监测技术规范:GB/T 25169-2022 [S]. 北京:中国标准出版社,2022-12.
    [20]

    LI B, JEON M K, LI X, et al. Differential impacts of salinity on antibiotic resistance genes during cattle manure stockpiling are linked to mobility potentials revealed by metagenomic sequencing[J]. Journal of Hazardous Materials, 2023, 445: 130590. doi: 10.1016/j.jhazmat.2022.130590

    [21] 侯化刚,王丹阳,马斯琦,等. 黄河三角洲不同盐渍度土壤有机质含量的高光谱预测研究[J]. 中国农业科学,2023,56(10):1905-1919. doi: 10.3864/j.issn.0578-1752.2023.10.008

    HOU Huagang, WANG Danyang, MA Siqi, et al. Hyperspectral prediction of organic matter in soils of different salinity levels in the yellow river delta[J]. Scientia Agricultura Sinica, 2023, 56(10): 1905-1919. (in Chinese with English abstract) doi: 10.3864/j.issn.0578-1752.2023.10.008

    [22] 韩雨航,马玉涛,苑佰飞,等. 粪肥对苏打盐碱地土壤有机碳组分特征的影响[J]. 福建农业学报,2022,37(3):390-397.

    HAN Yuhang, MA Yutao, YUAN Baifei, et al. Effect of manure fertilization on soda saline-alkali soil in western Jilin province[J]. Fujian Journal of Agricultural Sciences, 2022, 37(3): 390-397. (in Chinese with English abstract)

    [23] 曹云,常志州,黄红英,等. 畜禽粪便堆肥前期理化及微生物性状研究[J]. 农业环境科学学报,2015,34(11):2198-2207.

    CAO Yun, CHANG Zhizhou, HUANG Hongying, et al. Chemical and biological changes during early stage of composting of different animal wastes[J]. Journal of Agro-Environment Science, 2015, 34(11): 2198-2207. (in Chinese with English abstract)

    [24] 刘玉婷. 禽粪好氧堆肥过程中氮素转化与菌群互作规律的研究 [D]. 大连:大连理工大学,2018.

    LIU Yuting. The Interaction Mechanism of Nitrogen Transformation and Bacterial Dynamics During Aerobic Composting of Poultry Manure [D]. Dalian: Dalian University of Technology, 2018. (in Chinese with English abstract)

    [25] 李明源,王继莲,周茜,等. 南疆四种盐生植物根际土壤真菌群落结构特征[J]. 生态学报,2021,41(21):8484-8495.

    LI Mingyuan, WANG Jilian, ZHOU Qian, et al. Analysis on the rhizosphere fungal community structure of four halophytes in Southern Xinjiang[J]. Acta Ecologica Sinica, 2021, 41(21): 8484-8495. (in Chinese with English abstract)

    [26] 郭新送,宋付朋,鞠正山. 不同土水比土壤浸提液与饱和泥浆电导率的比较研究[J]. 土壤,2015,47(4):812-818.

    GUO Xinsong, SONG Fupeng, JU Zhengshan. Comparative study on electrical conductivity between saturated soil paste and saturated soil solutions under different soil/water ratios[J]. Soils, 2015, 47(4): 812-818. (in Chinese with English abstract)

    [27] 国家林业局. 森林土壤水溶性盐分分析:LY/T 1251-1999 [S]. 北京:中国林业出版社,1999-11.
    [28]

    KONG Y, WANG G, CHEN W, et al. Phytotoxicity of farm livestock manures in facultative heap composting using the seed germination index as indicator[J]. Ecotoxicology and Environmental Safety, 2022, 247: 114251. doi: 10.1016/j.ecoenv.2022.114251

    [29] 刘丽丽,马会芳,占国艳,等. 重量法测定土壤水溶性盐总量的优化[J]. 中国无机分析化学,2023,13(6):661-670.

    LIU Lili, MA Huifang, ZHAN Guoyan, et al. Optimization of water-soluble salt in soil by gravimetric method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(6): 661-670. (in Chinese with English abstract)

    [30] 杨春霞,张艳,李彩虹,等. 宁夏设施土壤盐分离子组成及含量变化特点[J]. 西北农业学报,2014,23(1):201-206.

    YANG Chunxia, ZHANG Yan, LI Caihong, et al. Ion composition and content changes of greenhouse soil in Ningxia[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2014, 23(1): 201-206. (in Chinese with English abstract)

    [31]

    HJORTH M, CHRISTENSEN K V, CHRISTENSEN M L, et al. Solid-liquid separation of animal slurry in theory and practice: A review[J]. Agronomy for Sustainable Development, 2010, 30(1): 153-180. doi: 10.1051/agro/2009010

    [32]

    LIU Z, CARROLL Z S, LONG S C, et al. Centrifuge separation effect on bacterial indicator reduction in dairy manure[J]. Journal of Environmental Management, 2017, 191: 268-274.

    [33] 张继成,陈娟,栾辉,等. 电导率结合质量法测定沿海地区盐渍化土壤水溶性盐含量的可行性研究—以东营市为例[J]. 河北农业科学,2023,27(2):104-108.

    ZHANG Jicheng, CHEN Juan, LUAN Hui, et al. Feasibility study on the determination of water-soluble salt content in saline soil in coastal areas using conductivity combined with mass method—a case study of Dongying City[J]. Journal of Hebei Agricultural Sciences, 2023, 27(2): 104-108. (in Chinese with English abstract)

    [34] 王辉,董元华,张绪美,等. 集约化养殖畜禽粪便农用对土壤次生盐渍化的影响评估[J]. 环境科学,2008,29(1):183-188.

    WANG Hui, DONG Yuanhua, ZHANG Xumei, et al. Risk of soil salinisation by application of concentrated animal manures[J]. Environmental Science, 2008,29(1): 183-188. (in Chinese with English abstract)

    [35] 张树清,张夫道,刘秀梅,等. 规模化养殖畜禽粪主要有害成分测定分析研究[J]. 植物营养与肥料学报,2005,11(6):822-829.

    ZHANG Shuqing, ZHANG Fudao, LIU Xiumei, et al. Determination and analysis on main harmful composition in excrement of scale livestock and poultry feedlots[J]. Journal of Plant Nutrition and Fertilizers, 2005,11(6): 822-829. (in Chinese with English abstract)

图(3)  /  表(7)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  10
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-11
  • 修回日期:  2023-12-19
  • 网络出版日期:  2024-02-19
  • 刊出日期:  2023-12-30

目录

/

返回文章
返回