Abstract:
The BIOMASS-CCHP system has been one of the most promising key technologies in the field of renewable energy. Excellent development prospects can be integrated with biomass gasification, anaerobic fermentation, direct combustion, and energy utilization. Biomass resources are characterized by large reserves, wide distribution, low-pollution, renewable, transportable, and storable energy. The high efficiency of cooling, heating and electricity can also be achieved, compared with solar and wind energy. The stable output can be used to compensate for the inherent instability in time and space of other renewable energy. This article systematically reviewed the development, integration, operation mode, multi-dimensional evaluation, and optimization of the BIOMASS-CCHP system. Future research directions were also given from many aspects. First of all, the biomass resources were classified, according to the continuous maturity of advanced technologies in biomass gasification, anaerobic fermentation, and direct combustion. Reliable technical support was provided for the combined cooling, heating, and electrical fertilizer production. Secondly, the entire process management of biomass resources was emphasized for the system integration, including biomass collection, conversion, storage, and energy production. The system structure and process flow were designed for the efficient conversion and comprehensive utilization of energy, particularly for the better performance of the overall system. In operating mode, the biomass energy was converted into electrical, heat, and cold energy. The operating mode was optimized for the flexible allocation of energy output, meeting different energy needs, and the adaptability and economy of the system. The multi-dimensional evaluation was implemented to fully consider the system's economy, environmental friendliness, and social benefits. A better understanding was gained of the sustainable development and social benefits of the system. Finally, the system was optimized for long-term stable operation. Technological innovation and process optimization can greatly contribute to improving the efficiency of energy utilization. Pollution emissions can also be reduced to make the system more environmentally friendly, economical and sustainable. Future development directions included the efficient energy conversion of biomass, the application of intelligent control systems, and collaborative optimization with other renewable energy sources. Carbon capture and utilization can also be introduced to strengthen social participation and educational promotion, in order to promote international cooperation and standard setting for the economic feasibility of the system. The quantitative assessment of socio-economic benefits will further promote biomass energy coupled cooling, heating and electrical cogeneration worldwide. To sum up, the key issues were proposed in the development foundation, system integration, operating mode, multi-dimensional evaluation, and system optimization. At the same time, the future development direction can be required for the joint efforts of more scientific research institutions, enterprises, and society. Biomass energy coupling systems can greatly contribute to the sustainable development of renewable energy.