Development of the spiral-inclined seed stirring equipment in high-speed air-assisted centralized metering for rice, wheat, and rapeseed
-
摘要:
针对稻麦油兼用气送式集排器高速作业时搅种装置易伤种、影响排种稳定性等问题,该研究设计了一种螺旋斜置式柔性搅种装置。基于Hertz接触理论分析确定了搅种装置影响种子破损的主要因素为搅种棒材质、顶端结构及搅种转速。通过EDEM仿真试验对比分析了梯形和圆弧形搅种棒与种群接触力随时间的变化趋势,明确了搅种棒安装方式对供种性能的影响,结果表明,圆弧形搅种棒与种群接触的切向力和法向力均小于梯形搅种棒,搅种棒倾斜角度为45°时供种稳定性较优。开展台架单因素试验确定了性能较优的搅种转速比范围,结果表明,水稻和小麦种子在搅种转速比范围1.0~2.0 内性能较优,油菜种子在搅种转速比范围0.5~1.5内性能较优。开展三因素三水平二次旋转正交组合试验,构建了稻麦油种子破损率、供种速率及其稳定性变异系数的回归模型,明确了作业速度在10~14 km/h范围内搅种转速的较优匹配关系并进行田间验证试验。田间验证试验结果表明,当作业速度为12 km/h,在较优参数组合下,稻麦油总排量稳定性变异系数分别为1.92%、1.27%和1.14%,1 m2内成苗总株数变异系数分别为15.47%、12.98%和17.93%,符合稻麦油兼用高速作业标准要求。研究结果可为稻麦油兼用型排种器实现高速低损播种作业的参数设置提供依据。
Abstract:Air-assisted centralized metering can be operated at high speed for rice, wheat, and rapeseed. However, the seed stirring device is prone to damage the seeds, leading to the low stability of discharge quantity. In this study, a spiral-inclined flexible seed-stirring device was designed for high-speed, air-assisted, and centralized metering. The influencing factors on the seed damage were determined using Hertz contact theory, including the material properties of the seed stirring rod, the top structure, and the stirring speed. A comparison was made on the variation in the top structure of the seed stirring rod and the contact force of the population over time using EDEM simulation. A systematic investigation was also implemented to clarify the impact of the seed stirring rod on the seed supply. The test results show that the tangential and normal forces of the arc-shaped seed stirring rod in contact with the population were smaller than the trapezoidal seed stirring rod. There was better stability of seed supply when the inclination angle of the seed stirring rod was 45°. A single-factor test was conducted on a bench to determine the optimal range of seed stirring speed ratio. The results showed that the rice and wheat seeds performed better within the range of 1-2 seed stirring speed ratios, while the rapeseed seeds were in the range of 0.5-1.5 seed stirring speed ratios. A three-factor, three-level, and quadratic rotation orthogonal experiment was carried out to optimize the influencing factors. A regression model was then established for the damage rate, seed supply rate, and stability coefficient of variation of rice, wheat, and rapeseed. There was an optimal matching relationship between the stirring speed and the operating speed within the range of 10-14 km/h. Field experiments were also conducted to verify the simulation. It was found that the stability coefficients of the variation in the total displacement of rice, wheat, and rapeseed were 1.92%, 1.27%, and 1.14%, respectively, under the optimal combination of parameters, when the operating speed was 12 km/h. The coefficients of variation in the total number of seedlings within 1 m2 were 15.47%, 12.98%, and 17.93%, respectively, which fully met the requirements of the standard for the high-speed seeding. The finding can provide a strong reference to achieve high-speed and low-loss seeding in the parameter selection of high-speed, air-assisted, and centralized metering devices for rice, wheat, and rapeseed.
-
-
图 2 供种装置结构示意图
1.种箱 2.外壳 3.动力源 4.同步带组 5.卸种手柄 6.搅种装置 7.供种机构 8.充种位置调节板 9.种层调节板
Figure 2. Schematic diagram of seed supply device
1.Seed box 2.Shell 3.Power source 4. Synchronous belt group 5.Seed unloading handle 6.Seed stirring device 7.Seed supply mechanism 8.Seed filling position adjusting plate 9.Seed layer adjusting plate
图 4 搅种棒与种子接触过程示意图
注:P为搅种棒与种子接触力,N;δ为种子形变量,mm;L为种子长度,mm;B为种子宽度,mm;H为种子高度,mm。
Figure 4. Schematic diagram of contact process between seed and seed stirring rod
Note: P is contact force between stirring rod and seed, N; δ is shape variable of seed, mm; L is seed length, mm; B is seed width, mm; H is seed height, mm.
图 5 搅种棒结构及材质剖面示意图
注:l为搅种棒长度,mm;d为搅种棒直径,mm;H1为搅种棒顶端高度,mm;R为圆弧半径,mm;α为侧面与底面夹角,(°)。
Figure 5. Schematic diagram of structure and material profile of seed stirring rod
Note: l is length of seed stirring rod, mm; d is diameter of seed stirring rod, mm; H1 is height of stirring rod top, mm; R is radius of arc, mm; α is angle between side and bottom, (°)
图 6 搅种装置扰动范围示意图
1.单组搅种棒 2.垂直安装种子强制扰动层 3.垂直安装种子拖带层 4.斜置安装种子强制扰动层 5.斜置安装种子拖带层
Figure 6. Schematic diagram of disturbance range of seed stirring device
1. Single group of seed stirring rod 2. Seed forced disturbance layer of vertical installation 3. Seed drag layer of vertical installation 4. Seed forced disturbance layer of incline installation 5. Seed drag layer of incline installation
表 1 仿真颗粒与接触材料特性参数
Table 1 Characteristic parameters
项目
Items密度Density/
(kg·m−3)泊松比
Poisson’s ratio剪切模量
Shear modulus/Pa水稻Rice 1125 0.30 1.01×108 小麦Wheat 1350 0.42 5.1×107 铝合金
Alumunum alloy2700 0.3 2.7×1010 聚氨酯橡胶
Polyurethane1072 0.3 5.9×108 ABS 1060 0.394 8.96×108 表 2 仿真模型接触参数
Table 2 Contact parameters between seed particles and simulation model
参数Parameters 水稻Rice 小麦Wheat 种子-种子
Seed-seed碰撞恢复系数
静摩擦系数
动摩擦系数0.50
0.50
0.010.42
0.35
0.05种子-铝合金
Seed-alumunum alloy碰撞恢复系数
静摩擦系数
动摩擦系数0.58
0.43
0.010.5
0.4
0.05种子-ABS
Seed-ABS碰撞恢复系数
静摩擦系数
动摩擦系数0.45
0.57
0.010.6
0.4
0.05种子-橡胶
Seed-polyurethane碰撞恢复系数
静摩擦系数
动摩擦系数0.50 0.42 0.50 0.50 0.01 0.14 表 3 因素编码
Table 3 Factors and coding of experiment
作物
Crops水平
Levels型孔轮个数
Number of
type hole
wheels A供种转速
Rotational
speed B/
(r·min−1)转速比
Speed ratio C/
(r·min−1)水稻Rice −1 2 30 1.0 0 4 40 1.5 1 6 50 2.0 小麦Wheat −1 4 40 1.0 0 6 50 1.5 1 8 60 2.0 表 4 试验方案与结果
Table 4 Test design scheme and results
项目
Item试验编号
Test No.因素
Factor评价指标
Evaluating indicatorA B C mv/(g·min−1) CV/% PZ/% 水稻Rice 1 2 30 1.5 823.5 0.98 0.061 2 6 30 1.5 1949.5 0.89 0.034 3 2 50 1.5 1426.7 1.06 0.092 4 6 50 1.5 3464.5 0.95 0.236 5 2 40 1.0 956.8 0.45 0.011 6 6 40 1.0 2544.6 0.51 0.035 7 2 40 2.0 2201.6 1.14 0.163 8 6 40 2.0 3412.1 1.09 0.136 9 4 30 1.0 1179.7 0.53 0.012 10 4 50 1.0 1954.3 0.56 0.054 11 4 30 2.0 2340.2 1.26 0.121 12 4 50 2.0 4209.7 1.31 0.195 13 4 40 1.5 2144.6 0.71 0.067 14 4 40 1.5 1984.4 0.73 0.112 15 4 40 1.5 1876.2 0.69 0.014 16 4 40 1.5 1772.1 0.65 0.087 17 4 40 1.5 1920.8 0.78 0.135 小麦Wheat 1 4 40 1.5 3884.1 0.51 0.041 2 8 40 1.5 7475.3 0.56 0.064 3 4 60 1.5 6089.7 0.68 0.112 4 8 60 1.5 11137.2 0.63 0.172 5 4 50 1.0 4596.7 0.21 0.013 6 9 50 1.0 8011.3 0.27 0.024 7 4 50 2.0 6631.7 0.77 0.135 8 8 50 2.0 10609.7 0.79 0.097 9 6 40 1.0 5208.4 0.34 0.014 10 6 60 1.0 7296.3 0.37 0.033 11 6 40 2.0 6684.8 0.83 0.095 12 6 60 2.0 9333.6 0.87 0.186 13 6 50 1.5 7305.3 0.47 0.054 14 6 50 1.5 7590.7 0.41 0.092 15 6 50 1.5 7205.4 0.43 0.041 16 6 50 1.5 7140.2 0.38 0.073 17 6 50 1.5 7080.6 0.36 0.121 表 5 回归方程方差分析
Table 5 Analysis of variance of regression equation
作物
Crops方差来源
Source of variancemv CV PZ 平方和
Sum of square自由度
FreedomF P 平方和
Sum of square自由度
FreedomF P 平方和
Sum of square自由度
FreedomF P 水稻
Rice模型Model 1.243E+07 9 28.43 0.0001 1.14 9 42.66 < 0.0001 0.0580 9 3.73 0.0482 A 4.443E+06 1 91.44 < 0.0001 0.0045 1 1.52 0.2571 0.0016 1 0.9406 0.3644 B 2.835E+06 1 58.34 0.0001 0.0060 1 2.04 0.1962 0.0152 1 8.82 0.0208 C 3.820E+06 1 78.61 < 0.0001 0.9453 1 318.82 < 0.0001 0.0316 1 18.31 0.0037 AB 2.078E+05 1 4.28 0.0774 0.0001 1 0.0337 0.8595 0.0073 1 4.23 0.0787 AC 35588.82 1 0.7324 0.4204 0.0030 1 1.02 0.3461 0.0007 1 0.3765 0.5589 BC 2.997E+05 1 6.17 0.0420 0.0001 1 0.0337 0.8595 0.0003 1 0.1482 0.7117 A2 28925.99 1 0.5953 0.4656 0.0208 1 7.01 0.0331 0.0002 1 0.1111 0.7487 B2 14813.77 1 0.3049 0.5980 0.1484 1 50.06 0.0002 0.0011 1 0.6241 0.4555 C2 7.500E+05 1 15.43 0.0057 0.0010 1 0.3303 0.5835 0.0001 1 0.0299 0.8677 残差Residual 3.402E+05 7 0.0208 7 0.0121 7 失拟Lack of fit 2.637E+05 3 4.60 0.0873 0.0115 3 1.65 0.3132 0.0035 3 0.5459 0.6768 误差Pure error 76461.29 4 0.0093 4 0.0086 4 总和Sum 1.277E+07 16 1.16 16 0.0701 16 小麦
Wheat模型Model 5.545E+07 9 64.22 < 0.0001 0.6619 9 40.14 < 0.0001 0.0380 9 4.69 0.0269 A 3.213E+07 1 334.90 < 0.0001 0.0008 1 0.4366 0.5299 0.0004 1 0.4358 0.5303 B 1.406E+07 1 146.53 < 0.0001 0.0120 1 6.56 0.0375 0.0104 1 11.61 0.0113 C 8.297E+06 1 86.49 < 0.0001 0.5356 1 292.34 < 0.0001 0.0230 1 25.58 0.0015 AB 5.302E+05 1 5.53 0.0510 0.0025 1 1.36 0.2810 0.0003 1 0.3805 0.5569 AC 79354.89 1 0.8272 0.3933 0.0004 1 0.2183 0.6545 0.0006 1 0.6673 0.4409 BC 78652.20 1 0.8199 0.3953 0.0000 1 0.0136 0.9103 0.0013 1 1.44 0.2691 A2 48075.75 1 0.5012 0.5019 0.0090 1 4.92 0.0621 0.0000 1 0.0464 0.8355 B2 2.126E+05 1 2.22 0.1801 0.0811 1 44.24 0.0003 0.0013 1 1.50 0.2603 C2 34909.53 1 0.3639 0.5654 0.0122 1 6.64 0.0366 0.0006 1 0.6853 0.4351 残差Residual 6.715E+05 7 0.0128 7 0.0063 7 失拟Lack of fit 5.107E+05 3 4.23 0.0986 0.0054 3 0.9775 0.4868 0.0023 3 0.7661 0.5696 误差Pure error 1.608E+05 4 0.0074 4 0.0040 4 总和Sum 5.612E+07 16 0.6747 16 0.0443 16 注:P<0.05表示影响显著,P<0.01表示影响极显著。
Note: P<0.05 indicates significant impact, P<0.01 indicates extremely significant impact.表 6 油菜双因素三水平试验结果
Table 6 Results of rapeseed double-factor three-level test
试验编号Test No. B C mv/(g·min−1) CV/% PZ/% 1 10 0.5 137.3 0.79 0.012 2 15 0.5 198.7 0.52 0.023 3 20 0.5 265.7 0.43 0.028 4 10 1.0 147.4 0.29 0.061 5 15 1.0 211.9 0.26 0.065 6 20 1.0 280.4 0.21 0.079 7 10 1.5 157.1 0.47 0.127 8 15 1.5 228.3 0.38 0.132 9 20 1.5 301.3 0.31 0.145 表 7 油菜双因素三水平试验方差分析结果
Table 7 Variance analysis of rapeseed double-factor three-level test
评价指标
Evaluating indicatorP B C BC B2 C2 mv < 0.0001 0.0001 0.0084 0.1248 0.1936 CV 0.0389 0.0424 0.2463 0.5852 0.0185 PZ 0.0054 < 0.0001 0.7550 0.4049 0.0194 表 8 搅种参数优化匹配及台架验证试验结果
Table 8 Optimization and matching of seed mixing parameters and bench validation test results
作物
Crops播种速度
Seeding speed/(km·h−1)供种速率
Seed feed rate m v/(g·min−1)型孔轮个数
Number of type hole wheels A供种转速
Rotational speed B /(r·min−1)转速比
Speed ratio C实际供种速率
Actual seed feed rate m v/(g·min−1)供种稳定性变异系数
Coefficient of variation C V/%种子破碎率
Seed damage rate P Z/%水稻
Rice10 1250 3 40.0 1.0 1257.1 0.41 0.016 12 1500 4 35.6 1.0 1546.3 0.45 0.014 14 1750 4 41.2 1.0 1769.2 0.39 0.027 小麦
Wheat10 5000 5 46.0 1.0 5018.1 0.22 0.011 12 6000 6 46.9 1.0 6022.5 0.21 0.013 14 7000 7 47.8 1.0 7031.6 0.23 0.019 油菜
Rapeseed10 200 1 14.5 0.8 201.8 0.32 0.049 12 240 1 17.5 0.7 241.5 0.27 0.051 14 280 1 20.0 1.0 280.4 0.21 0.079 -
[1] 雷小龙,廖宜涛,李兆东,等. 油麦兼用型气送式集排器供种装置设计与试验[J]. 农业工程学报,2015,31(20):10-18. LEI Xiaolong, LIAO Yitao, LI Zhaodong, et al. Design and experiment of seed feeding device in air-assisted centralized metering device for rapeseed and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(20): 10-18. (in Chinese with English abstract)
[2] 丛锦玲. 油菜小麦兼用型气力式精量排种系统及其机理研究[D]. 武汉:华中农业大学,2014. CONG Jinling. Study on Seeding System and Mechanism of Pneumatic Precision Metering Device for Wheat&Rapeseed[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese with English abstract)
[3] 罗锡文,廖娟,胡炼,等. 提高农业机械化水平促进农业可持续发展[J]. 农业工程学报,2016,32(1):1-11. LUO Xiwen, LIAO Juan, HU lian, et al. Improving agricultural mechanization level to promote sustainable agricultural development[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 1-11. (in Chinese with English abstract)
[4] 丛锦玲,余佳佳,曹秀英,等. 油菜小麦兼用型气力式精量排种器[J]. 农业机械学报,2014,45(1):46-52. CONG Jinling, YU Jiajia, CAO Xiuying, et al. Design of dual-purpose pneumatic precision metering device for rape and wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 46-52. (in Chinese with English abstract)
[5] 廖庆喜,雷小龙,廖宜涛,等. 油菜精量播种技术研究进展[J]. 农业机械学报,2017,48(9):1-16. LIAO Qingxi, LEI Xiaolong, LIAO Yitao, et al. Research progress of precision seeding for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 1-16. (in Chinese with English abstract)
[6] 祁兵,张文毅,余山山,等. 气力集排式水稻排种系统播量控制模型研究[J]. 农业机械学报,2018,49(s1):125-131. QI Bing, ZHANG Wenyi, YU Shanshan, et al. Establishment of seeding amount control model for centralized pneumatic metering system for rice[j]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(s1): 125-131. (in Chinese with English abstract)
[7] 戴亿政,罗锡文,王在满,等. 气力集排式水稻分种器设计与试验[J]. 农业工程学报,2016,32(24):36-42. DAI Yizheng, LUO Xiwen, WANG Zaiman, et al. Design and experiment of rice pneumatic centralized seed distributor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 36-42. (in Chinese with English abstract)
[8] 王磊,席日晶,廖宜涛,等. 油麦兼用型气送式集排器匀种涡轮设计与试验[J]. 农业机械学报,2021,52(8):62-72,97. WANG Lei, XI Rijing, LIAO Yitao, et al. Design and test on even seeding turbine of air-assisted centralized metering device for rapeseed and wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 62-72,97. (in Chinese with English abstract)
[9] 张国忠,臧英,罗锡文,等. 水稻气力式排种器导向型搅种装置的设计与试验[J]. 农业工程学报,2013,29(12):1-8. ZHANG Guozhong, ZANG Ying, LUO Xiwen, et al. Design and experiment of oriented seed churning device on pneumatic seed metering device for rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 1-8. (in Chinese with English abstract)
[10] 张国忠,臧英,罗锡文,等. 粳稻穴播排种器直线型搅种装置设计及排种精度试验[J]. 农业工程学报,2014,30(17):1-9. ZHANG Guozhong, ZANG Ying, LUO Xiwen, et al. Line-churning tooth design and metering accuracy experiment of rice pneumatic precision hill-drop seed metering device on pregnant Japonica rice seed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(17): 1-9. (in Chinese with English abstract)
[11] 史嵩,张东兴,杨丽,等. 气压组合孔式玉米精量排种器设计与试验[J]. 农业工程学报,2014,30(5):10-18. SHI Song, ZHANG Dongxing, YANG Li, et al. Design and experiment of pneumatic maize precision seed-metering device with combined holes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 10-18. (in Chinese with English abstract)
[12] 丛锦玲,廖庆喜,曹秀英,等. 油菜小麦兼用排种盘的排种器充种性能[J]. 农业工程学报,2014,30(8):30-39. CONG Jinling, LIAO Qingxi, CAO Xiuying, et al. Seed filling performance of dual-purpose seed plate in metering device for both rapeseed & wheat seed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 30-39. (in Chinese with English abstract)
[13] HAN T, XU F D, GUAN T Y, et al. Design and test of a pneumatic type of high-speed maize precision seed metering device[J]. Computers and Electronics in Agriculture, 2023, 211(8): 107997.
[14] 雷小龙,廖宜涛,李兆东,等. 油菜小麦兼用气送式集排器搅种装置设计及充种性能试验[J]. 农业工程学报,2016,32(18):26-34. doi: 10.11975/j.issn.1002-6819.2016.18.004 LEI Xiaolong, LIAO Yitao, LI Zhaodong, et al. Design of seed churning device in air-assisted centralized metering device for rapeseed and wheat and experiment on seed filling performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 26-34. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2016.18.004
[15] 王宝龙,王在满,罗锡文,等. 杂交稻气力滚筒集排式排种器楔形搅种装置设计与试验[J]. 农业工程学报,2019,35(23):1-8. WANG Baolong, WANG Zaiman, LUO Xiwen, et al. Design and experiment of wedge churning device for pneumatic cylinder-type seed metering device for hybrid rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 1-8. (in Chinese with English abstract)
[16] Mclintock F A , Argon A S. Mechanical Behavior of Materials. Massachusetts: Addison-Wesley Publishing Company, 1966.
[17] JOHNSON K L. 接触力学[M]. 徐秉业,罗学富译. 北京:高等教育出版社,1992:9-223. [18] 徐立章,李耀明,丁林峰. 水稻谷粒与脱粒元件碰撞过程的接触力学分析[J]. 农业工程学报,2008,24(6):146-149. XU Lizhang, LI Yaoming, DING Linfeng. Contacting mechanics analysis during impact process between rice and threshing component[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(6): 146-149. (in Chinese with English abstract)
[19] 耿端阳,谭德蕾,于兴瑞,等. 玉米柔性脱粒滚筒脱粒元件设计与试验[J]. 吉林大学学报(工学版),2020,50(5):1923-1933. GENG Duanyang, TAN Delei, YU Xingrui, et al. Design and test of corn flexible threshing cylinder elemen[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5): 1923-1933. (in Chinese with English abstract)
[20] 李晓冉,廖庆喜,王磊,等. 稻麦油兼用高速气送式集排器型孔轮设计与试验[J]. 农业工程学报,2023,39(14):35-48. LI Xiaoran, LIAO Qingxi, WANG Lei, et al. Design and experiments of the type-hole wheel with high-speed air-assisted centralized metering device for rice, wheat and rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(14): 35-48. (in Chinese with English abstract)
[21] 苏媛,刘浩,徐杨,等. 轴流式玉米脱粒装置钉齿元件优化与试验[J]. 农业机械学报,2018,49(s1):258-265. SU Yuan, LIU Hao, XU Yang, et al. Optimization and experiment of spike-tooth elements of axial flow corn threshing device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(s1): 258-265. (in Chinese with English abstract)
[22] 王磊,廖庆喜,廖宜涛,等. 气送式排肥系统分配装置结构型式对排肥性能的影响[J]. 农业工程学报,2021,37(7):24-34. WANG Lei, LIAO Qingxi, LIAO Yitao,et al. Effects of distributor types on fertilizing performance in an air-assisted applicator[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 24-34. (in Chinese with English abstract)
[23] 张波屏. 播种机械设计原理[M]. 北京:机械工业出版社,1982:67-313. [24] 孙延新,王明旭,张超. 小麦与输送机皮带接触参数的试验标定[J]. 河南工业大学学报(自然科学版),2021,42(6):113-120. SUN Yanxin, WANG Mingxu, ZHANG Chao. Experiment calibration of contact parameters between wheat and conveyor belt[J]. Journal of Henan University of Technology(Natural Science Edition), 2021, 42(6): 113-120. (in Chinese with English abstract)
[25] 雷小龙,廖宜涛,张闻宇,等. 油麦兼用气送式集排器输种管道气固两相流仿真与试验[J]. 农业机械学报,2017,48(3):57-68. LEI Xiaolong, LIAO Yitao, ZHANG Wenyu, et al. Simulation and experiment of gas-solid flow in seed conveying tube forrapeseed and wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 57-68. (in Chinese with English abstract)
[26] WU Z, LI M, LEI X, et al. Simulation and parameter optimisation of a centrifugal rice seeding spreader for a UAV[J]. Biosystems Engineering, 2020, 192: 275-293. doi: 10.1016/j.biosystemseng.2020.02.004
[27] CHEN P, JIA F G, LIU H R, et al. Effects of feeding direction on the hulling of paddy grain in a rubber roll huller[J]. Biosystems Engineering, 2019, 183: 196-208. doi: 10.1016/j.biosystemseng.2019.05.001
[28] KOLLER A, WAN Y, MILLER E, et al. Test method for precision seed singulation systems[J]. Transactions of the ASABE, 2014, 57(5): 1283-1290.
[29] 辛涛. 回归分析与实验设计[M]. 北京:北京师范大学出版社,2010. [30] 陈美舟,刁培松,张银平,等. 大豆窄行密植播种机单盘双行气吸式排种器设计[J]. 农业工程学报,2018,34(21):8-16. CHEN Meizhou, DIAO Peisong, ZHANG Yinping, et al. Design of pneumatic seed-metering device with single seed-metering plate for double-row in soybean narrow-row-dense-planting seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 8-16. (in Chinese with English abstract)
[31] 廖宜涛,郑娟,廖庆喜,等. 正负气压组合管针式西洋参集排器设计与试验[J]. 农业机械学报,2019,50(3):46-57. LIAO Yitao, ZHENG Juan, LIAO Qingxi, et al. Design and experiment of positive and negative pressure combined tube-needle centralized seeding device for american ginseng[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(3): 46-57. (in Chinese with English abstract)
[32] 陈海涛,李桐辉,王洪飞,等. 气吸滚筒式垄上三行大豆密植排种器设计与参数优化[J]. 农业工程学报,2018,34(17):16-24. CHEN Haitao, LI Tonghui, WANG Hongfei, et al. Design and parameter optimization of pneumatic cylinder ridge three-row close-planting seed-metering device for soybean[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 16-24. (in Chinese with English abstract)