• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

工程堆积体产流产沙及水沙效益对植被近地表特征的响应

李建明, 陈兰, 任洪玉, 孙蓓, 杨贺菲, 熊怡, 孙宝洋

李建明,陈兰,任洪玉,等. 工程堆积体产流产沙及水沙效益对植被近地表特征的响应[J]. 农业工程学报,2024,40(7):142-151. DOI: 10.11975/j.issn.1002-6819.202311124
引用本文: 李建明,陈兰,任洪玉,等. 工程堆积体产流产沙及水沙效益对植被近地表特征的响应[J]. 农业工程学报,2024,40(7):142-151. DOI: 10.11975/j.issn.1002-6819.202311124
LI Jianming, CHEN Lan, REN Hongyu, et al. Response of runoff and sediment production and sediment and water benefits of engineering spoil heaps to vegetation characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(7): 142-151. DOI: 10.11975/j.issn.1002-6819.202311124
Citation: LI Jianming, CHEN Lan, REN Hongyu, et al. Response of runoff and sediment production and sediment and water benefits of engineering spoil heaps to vegetation characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(7): 142-151. DOI: 10.11975/j.issn.1002-6819.202311124

工程堆积体产流产沙及水沙效益对植被近地表特征的响应

基金项目: 国家自然科学基金项目(41701316,42107352);武汉市自然科学基金曙光计划项目(2023020201020365);长江科学院中央级公益性科研院所基本科研业务费(CKSF2021447/TB,CKSF2019179/TB)
详细信息
    作者简介:

    李建明,博士,高级工程师,主要研究方向为土壤侵蚀与水土保持。Email:hahalijianming@126.com

    通讯作者:

    孙宝洋,博士,高级工程师,主要研究方向为土壤侵蚀。Email:sunbx@mail.crsri.cn

  • 中图分类号: S157.1

Response of runoff and sediment production and sediment and water benefits of engineering spoil heaps to vegetation characteristics

  • 摘要:

    针对陡坡工程堆积体水土流失严重的问题,通过野外模拟降雨试验开展植被不同近地表特征对堆积体产流产沙和蓄水减沙效益特征影响的定量研究。选择土石混合堆积体(10%砾石质量分数,坡度30°)作为工程侵蚀下垫面的典型代表,并以裸坡(bare slope, BS)为对照,定量分析了植被在3种近地表特征条件下(完整植株(intact grass,IG),不含叶(not leaf,NL),只含根系(only root,OR))对堆积体产流产沙特征和蓄水减沙效益影响。结果表明:1)植被在IG条件下延缓坡面径流发生使其较BS滞后,效益达50.74%~188.98%,但不完整植被(NL、OR)会加速径流发生使其较BS提前2.19%~70.12%;2)植被在NL和OR下的瞬时径流率比IG增大0.20%~185.58%,在降雨强度1.8 mm/min的瞬时径流率甚至比BS高1.20%~169.10%;植被在IG和NL条件下瞬时侵蚀速率比BS减少0.91%~98.71%,但在降雨强度达到1.8 mm/min时OR条件下甚至增大侵蚀使其比BS高6.76%~75.63%;3)随降雨强度增大,植被在NL和OR条件下的减沙效益由95.18%和68.31%分别递减至46.58%和-68.13%,但对IG下的减沙效益影响小(效益差异<2%),平均蓄水效益随降雨强度增大而减小。不同堆积体水沙呈显著线性相关(R2在0.40~0.88),且径流率达到4 L/min会显著改变植被对堆积体坡面防护效益。提出开展堆积体生态修复时选择冠层丰富的植被,同时要避免外部因素对植被造成损害。研究结果对于揭示植被防护扰动边坡侵蚀机制具有重要意义,可为堆积体植被修复提供实践指导。

    Abstract:

    Engineering spoil heaps as a severely eroded geomorphic unit in production and construction projects have generated widespread attention to soil erosion. Vegetation was the most direct and effective means for ecological restoration of engineering disturbed underlying surfaces. Conducting quantitative research on the effects of different near-surface characteristics of vegetation on the runoff and sediment production and water storage and sediment reduction benefits of spoil heaps under field simulated rainfall experiments was of great significance for deeply revealing the internal mechanism of vegetation protection disturbance slope erosion. This study selected mixed soil and rock spoil heaps (10% gravel mass fraction, slope 30°) as a typical representative of engineering erosion underlying surface, and used bare slope (BS) as a control. Four sets of eight engineering accumulation models were established in the field, with dimensions of 3.46 m×2.00 m×0.60 m (length), and the projected slope length was 3 m. Quantitative analysis was conducted on the characteristics of runoff and sediment production and the benefits of water storage and sediment reduction of the spoil heaps under three types of near-surface characteristics of vegetation (intact plant IG, no leaf NL, only root OR) through field rainfall experiments (set rainfall intensity as 0.8, 1.2 and 1.8 mm/min). The Cynodon dactylon (CD) as a grass species for vegetation restoration in the study area was a typical type of grass species with strong growth ability and belongs to the perennial grass species, which was also widely used in engineering construction. Further, it reveals the internal mechanism of vegetation regulation of spoil heaps erosion from the perspective of its impact on water and sediment relationships. The results showed the following: 1) The occurrence of runoff begin time on the gentle slope surface of intact plants (IG) resulted in a delayed benefit of 50.74%-188.98%, as compared to BS, while the lack of vegetation canopy (NL, OR) accelerated the occurrence of runoff begin time, causing it to occur 2.19%-70.12% earlier than BS. 2) The instantaneous runoff rate of vegetation under NL and OR treatments was 0.20%-185.58% higher than that under IG treatment, while the instantaneous runoff rate of OR and NL treatments under heavy rainfall conditions (1.8 mm/min) was 1.20%-169.10% higher than that of BS. The instantaneous soil loss rate of vegetation under IG and NL conditions decreased by 0.91%-98.71% compared to BS. They even increased erosion under OR conditions when the rainfall intensity reached 1.8 mm/min, making it 6.76%-75.63% higher than BS. 3) As the rainfall intensity increased, the sediment reduction benefits of vegetation under NL and OR treatments decreased from 95.18% and 68.31% to 46.58% and -68.13%, respectively. However, the impact on sediment reduction benefits under IG treatment was small (benefit difference<2%), and the average water storage benefits decreased with increasing rainfall intensity. There is a significant linear correlation between water and sediment in both BS and vegetated spoil heaps (R2 ranging from 0.40 to 0.88), and a runoff rate of 4 L/min significantly changed the protective effect of vegetation on the slope surface of the spoil heaps. The vegetation and its near-surface characteristics had significant impacts on the average runoff and sediment yield and per unit runoff sediment yielding (P<0.05). It is proposed to choose vegetation with a rich canopy when carrying out ecological restoration of spoil heaps, while avoiding external factors that may cause damage to vegetation. The research results are of great significance for revealing the erosion mechanism of vegetation protection disturbance slopes, and can provide practical guidance for the restoration of accumulated vegetation.

  • 《中国水土保持公报》统计表明,全国2018、2019和2020年水土流失面积分别是273.69万、271.08万和269.27万km2,但其中生产建设项目涉及到的水土流失防治责任范围分别达到1.10万、2.08万、2.71万km2,即全国水土流失面积下降了0.95%~1.61%,但生产建设项目导致的水土流失面积反而增加了89.09%~146.36%。由此可知,在生态环境好转的大背景下由工程建设导致的水土流失却呈显著递增趋势,成为了新时期水土保持工作的重点[1]。2023年初印发的《关于加强新时代水土保持工作的意见》中提出全面加强水土流失预防保护,明确指出对于基础设施建设、矿产资源开发、城镇建设和公共服务设施建设等在实施过程中造成的水土流失需要提出预防和治理对策和措施。工程堆积体作为生产建设项目严重水土流失的典型,开展堆积体水土流失防治尤其是植被修复已成为研究重点[2]

    堆积体作为生产建设项目水土流失最严重的地貌单元,是在工程建设过程中土石方挖填后形成多余的土石混合介质倾倒形成的高陡边坡[3]。堆积体是短期内形成的重塑下垫面,为减少占地同时满足相关规范要求,采用分层堆置,但都达到甚至超过临界休止角,土石混合加之开挖后短期内回填,导致了堆积体土体缺乏土壤结构,遇降雨尤其是短历时高强度降雨易发生严重水土流失[4]。然而,随着生态文明建设的推行,工程建设过程中更加注重对环境的保护,因此,开展工程堆积体侵蚀内在机理及生态修复等相关研究已成为工程建设的重要内容[2-3]。另外,随着经济社会的高速发展,可利用土地资源愈加紧缺,荒废的工程堆积体通过生态修复达到一定年限可作为土地资源重新利用,实现可持续发展[5]。植被作为堆积体生态修复最直接也是最有效的手段,开展生产建设项目工程堆积体植被防护侵蚀研究已成为水土保持行业领域的重要方面,也可为工程建设实现生态文明提供科学指导[6]

    针对生产建设项目水土流失的研究始于20世纪中旬,其中矿山开采及森林资源砍伐导致的水土流失引发较大关注[7]。针对工程扰动边坡水土流失及其防护措施配置已有较多研究,并提出了对侵蚀强烈的人工再塑地貌需要采取生物+工程措施的综合防护模式能够有效防止侵蚀[8],对于不同植被类型[9]、配置模式[10]以及恢复年限[11]对矿区扰动边坡侵蚀的影响也取得系列成果。同时,已有研究提出影响生产建设项目堆积体及其他扰动边坡侵蚀的主要因素包括降雨[12]、汇水面积及强度[13]、地形(坡度、坡长、坡型等)[14]、下垫面物质组成(土质、砾石含量及类型等)[15]和堆积年限[11]等5个方面。

    针对植被地上冠层及地下根系调控坡面径流产沙已有相关研究,均表明植被能有效减少坡面侵蚀[16],但植被不同近地表特征对调控坡面水沙的影响有差异[17-18]。再者,现有相关研究以非扰动的原始下垫面为主,对于植被不同近地表特征是否能够有效调控工程堆积体这类在短期内重塑形成下垫面的径流产沙,同时对于生长周期较短的植被能否发挥较好的水土保持效益,以及植被地上或地下部分对调控堆积体径流产沙的效益贡献如何,目前仍缺乏定量研究。本研究基于前期工程实践调研基础上,选择研究区典型植被恢复草种狗牙根(Cynodon dactylon, CD)作为短期重塑工程堆积体恢复植被类型,重点开展植被在不同降雨条件下调控堆积体坡面径流产沙动态过程的影响,定量分析3种近地表特征植被(完整植株、不含叶、只含根系)对堆积体坡面水沙关系及减流减沙效益影响,研究成果可为后续开展工程堆积体生态修复提供理论指导。

    本试验在陕西长武农田生态系统国家野外科学观测研究站开展,试验小区位于试验站东南侧的沟谷平地上(35°14′24.2043″N,107°41′19.9237″E),属于温带大陆性季风气候,多年平均降水量为560 mm,多年平均气温为9.1℃。研究区年内降雨分布不均,集中在4—8月,且以短历时高强度降雨为主。土壤质地以黄土土质为主,是典型的黄土高原沟壑区,塬面和沟壑占比分别在35%和65%[3]

    基于前期大量的生产建设项目实地调查,明确了工程堆积体的主要特性包括土石混合、坡度陡峭、下垫面松散,缺乏土壤结构等。其中砾石含量一般在0~40%,且10%较为常见,因此,本研究堆积体砾石含量定为10%,砾石选用工程常用的机械碎石,尺寸在15~25 mm[15],坡度为30°,综合考虑野外模拟降雨试验可行性及已有相关研究,确定模拟堆积体模型的尺寸长×宽×深为3.46 m×2.00 m×0.60 m,投影坡长为3.00 m。将每个小区划分为2个1 m宽互为重复。堆积体的土壤来源于公路弃渣场,经人工过10 mm筛剔除杂质后与所选的砾石均匀混合。装填前在堆积体底部铺设5 cm细砂用于排水,剩余55 cm分4层装填,其中底部3层厚度均为15 cm,表层10 cm。根据小区面积、装填厚度、容重和含水率确定装填质量,其中底部3层和表层容重分别为1.35和1.30 g/cm3,含水率设置为8%。将称量好的土石混合介质分层装填达到试验设计容重和厚度要求,两层之间打毛防止出现整层滑动。采用钢板将试验小区与外界隔离,钢板埋入地下20 cm并预留15 cm露出地表。

    本研究选用狗牙根(CD)作为堆积体植被恢复的草种,是研究区典型的草种类型,具有较强的生长力且属于多年生草种,也是研究区植被恢复的主要代表类型[19],并广泛应用于工程建设中[20]。设置裸坡(BS)作为对照。试验小区于2019年春季(3月)建成同时播种狗牙根草籽(穴播,行间距15 cm×15 cm),至8月覆盖率达到70%开始试验。本试验研究植被不同近地表特征包括3种:完整植株(intact grass,IG)、不含叶(not leaf,NL)和只含根系(only root,OR)。首先进行IG下的模拟降雨试验,其次,在IG试验完成后人工剪去CD的叶片而保留根茎(NL),最后,剪去茎秆完成只保留根系(OR)的降雨试验。根据已有研究及试验过程观测,堆积体有植被防护条件下主要发生面蚀,未出现沟蚀,通过计算次降雨侵蚀量,在每场次降雨试验完成后补充相同质量的土壤均匀撒在堆积体坡面表层,并对堆积体表层进行微平,每次降雨试验间隔在3 d以上使试验小区的初始条件相近,减少试验前置条件误差[18,21]。试验开始前测定BS和CD的容重分别是1.33和1.25 g/cm3,初始含水率为19.92%和26.92%。试验设计见图1

    图  1  试验小区示意图及布设图
    注:BS,裸坡;CD-IG,狗牙根-完整植株;CD- NL,狗牙根-不含叶;CD-OR,狗牙根-只含根系。下同。
    Figure  1.  Schematic diagram of spoil heaps and diagram of experiment plot
    Note: BS, bare slope; CD-IG, Cynodon dactylon-intact grass; CD-NL,Cynodon dactylon-not leaf; CD- OR, Cynodon dactylon- only roots. Same as below.

    模拟降雨试验装置选用中国科学院水利部水土保持研究所研发的SR型侧喷式降雨机,降雨强度通过调节流量计及喷头尺寸组合达到预定目标值,变化范围为0.5~3.0 mm/min,降雨均匀度在85%以上。根据对研究区降雨特征资料分析,确定降雨强度分别为0.8、1.2和1.8 mm/min,涵盖了研究区域从侵蚀性降雨至暴雨不同级别。为保证各堆积体下垫面初始含水率一致,在正式降雨试验前24 h采用0.5 mm/min降雨强度进行预降雨,预降雨历时是降雨开始至坡面发生产流为止。降雨试验开始前用遮雨布遮挡试验小区,通过调节降雨机完成降雨强度率定至误差在5%内。在坡面径流开始流出小区出口后至单次降雨结束的总历时为30 min。采用量筒在降雨全过程每隔1 min接取2个径流泥沙混合样,泥沙样通过烘箱在105℃条件下烘干24 h计算侵蚀速率及含沙量,通过含沙量计算降雨过程每分钟内的径流率。各指标均为2个小区的均值,若两个重复小区的数值差异较大,则放弃该场次降雨结果,重新试验。本文中产流起始时间、径流率、侵蚀速率、减流效益和减沙效益等参考已有研究计算[3,18]

    通过Excel 2016对数据进行处理和基础分析,采用SPSS16.0进行相关性和差异性统计分析,差异显著性检验采用LSD法确定(P<0.05,双尾),相关性基于Pearson方法分析,采用Origin 8.5、Excel 2016、PowerPoint 2016绘图。

    产流起始时间指开始降雨至坡面径流发生且流出小区时段所耗费时间,能够直观反映堆积体坡面初始径流与入渗的动态平衡状态[14,22]。对比分析BS和CD在3种近地表特征(IG、NL、OR)下的产流起始时间,可以阐明植被近地表特征对堆积体坡面入渗-产流动态变化过程的调控机制。不同堆积体下垫面产流起始时间见图2所示。结果表明,随降雨强度0.8 mm/min增大至1.2和1.8 mm/min时,BS的产流起始时间由6.86 min缩短至3.29和1.36 min。相比于BS,IG在不同降雨强度下能够延缓径流发生时间使其滞后0.69~12.96 min,但当植被处于不完整植株(NL、OR)时,总体均呈现出加速径流产生使其提前0.15~4.81 min(除了在降雨强度为1.8 mm/min植被处于NL条件下仍呈现出减缓径流发生时间为0.83 min)。植被在IG条件下延缓堆积体坡面径流发生使其滞后效益为50.74%~188.98%,但在NL和OR条件下会导致堆积体坡面径流发生时间提前2.19%~70.12%。即完整植株增加堆积体坡面降雨入渗,但在植被缺失地上冠层(茎叶)后减少入渗进而导致径流发生时间提前。相比于完整植株,不完整植株防护堆积体坡面径流发生时间提前了1.07~17.77 min。研究认为对于堆积时间较短的工程堆积体进行植被恢复时,注重对植被类型的选择,优选地上冠层丰富的类型,同时还需要加强管护,避免冠层死亡。植被冠层尤其是叶片能够增加降雨与堆积体坡面的接触时间,增加入渗进而达到减少径流的作用。

    图  2  不同堆积体下垫面产流起始时间随降雨强度变化
    Figure  2.  Variations of the runoff generation time with rainfall intensity for different spoil heaps

    BS和3种近地表特征下植被防护堆积体坡面瞬时径流率随产流历时的变化如图3所示。在降雨强度为0.8 mm/min时,IG和NL的瞬时径流率随产流历时波动变化不大,而BS和OR总体呈现为递增后趋于相对稳定变化;降雨强度增大至1.2和1.8 mm/min时IG的瞬时径流率总体稳定略有递增,而BS、NL、OR呈递增后在一定范围内波动变化。瞬时径流率随产流历时可划分为产流初期(0~10 min)和产流中后期(10~30 min)2个阶段,在产流初期由于降雨落到堆积体坡面后“入渗-径流”过程尚未达到动态平衡,堆积体下垫面逐渐趋于饱和,导致降雨入渗随产流历时逐步减小进而使得径流增大,待入渗和径流达到动态平衡后径流总体趋于相对稳定,但在强降雨条件下受下垫面微地形的变化,在堆积体表层形成不同的鱼鳞坑状跌坎,径流的汇集及突发性的爆发使得瞬时径流率发生波峰波谷变化。

    图  3  不同堆积体下垫面径流率随产流历时变化
    Figure  3.  Variations of runoff rate in spoil heaps with runoff time

    相比于BS,IG在降雨强度0.8、1.2和1.8 mm/min时不仅能够降低堆积体坡面瞬时径流率效益达到5.40%~67.81%、12.45%~54.55%和11.97%~55.16%,同时还能使瞬时径流率随降雨历时趋于平稳。但对于OR来说,在降雨强度为0.8和1.8 mm/min时的瞬时径流率总体均高于BS,增大幅度分别达到5.38%~81.33%和1.57%~169.10%,在降雨强度1.2 mm/min时产流15 min内植被在OR条件下仍呈现出低于BS减少瞬时径流率(3.04%~49.03%),但在15 min以后至降雨结束也呈现出增加瞬时径流率的效果(4.72%~90.42%)。当植被处于NL条件下,在降雨强度为0.8 mm/min时的瞬时径流率小于BS其削减效益为18.87%~64.85%,但在降雨强度为1.8 mm/min时的瞬时径流率总体高于BS且增幅为1.20%~96.17%,在降雨强度为1.2 mm/min时产流15 min内植被在NL条件下总体仍呈现削减瞬时径流作用,但在15 min以后呈增大径流效果。结果表明,3种降雨强度下植被在IG条件下总体起到削减径流作用,而植被在NL或OR条件下在降雨强度≥1.2 mm/min时均可能出现增大径流效果,3种降雨强度下NL和OR瞬时径流率分别比IG增大0.33%~123.89%和0.20%~185.58%。即植被越完整其径流越小,植被对堆积体坡面径流的调控效益越大;反之,植被缺失地上部分后导致径流增大甚至超过裸坡。

    裸坡和植被防护堆积体瞬时侵蚀速率随产流历时的变化如图4所示。BS和3种近地表特征植被防护堆积体侵蚀速率随产流历时的变化有较大差异,其中BS的瞬时侵蚀速率随产流历时呈现为波动递增后波动递减且随降雨强度增大瞬时侵蚀速率波动性增强,但植被防护堆积体的瞬时侵蚀速率总体呈现为波动增大变化且也出现降雨强度越大波动性越强。植被改变了堆积体坡面侵蚀动态变化进程。另外,3种降雨强度下BS的瞬时侵蚀速率的变化范围为4.06~99.71 g/(m2·min),变化幅度为2.30%~1061.44%,IG、NL、OR条件下的瞬时侵蚀速率的变化范围分别在0.85~6.03、0.29~24.50、1.63~91.81 g/(m2·min),变化幅度分别为2.76%~308.34%、7.84%~966.33%和40.73%~1017.93%。3种降雨强度条件下IG的瞬时侵蚀速率的变化幅度均小于BS,即植被在完整植株条件下不仅能够减小堆积体坡面侵蚀同时还能使侵蚀过程趋于稳定;但植被缺失地上冠层后,在降雨强度1.2 mm/min下的瞬时侵蚀速率小于BS,但其变化幅度却比BS更大,在0.8和1.8 mm/min雨强下的变化幅度仍小于BS,3种降雨强度下NL和OR的瞬时侵蚀速率变化幅度总体均大于IG。

    图  4  不同堆积体下垫面侵蚀速率随产流历时变化
    Figure  4.  Variations of soil loss rate in spoil heaps with runoff time

    将不同堆积体下垫面瞬时侵蚀速率随产流历时的变化划分为产流前期(0~10 min)和产流中后期(10~30 min)2个阶段分析。结果表明BS在3种降雨强度条件下产流前期的平均侵蚀速率是中后期的1.36~1.89倍,而植被在IG、NL、OR条件下产流中后期的平均侵蚀速率比产流前期增大7.19%~28.25%、11.13%~59.71%和2.81%~107.20%。表明BS在降雨过程中产流前期的侵蚀较严重,但有植被防护条件下随产流历时持续侵蚀愈加严重。即植被会延迟堆积体坡面严重侵蚀发生时间。建议在进行堆积体植被防护措施设计时,需要考虑植被发挥效益的持久性。对比分析植被在3种近地表特征下对堆积体坡面瞬时侵蚀速率的调控作用,表明3种降雨强度下植被在IG和NL条件下比BS总体均呈现出较好的削减坡面侵蚀的作用,削减效益分别达到65.34%~96.38%和0.91%~98.71%。但对于OR来说,在降雨强度为0.8和1.2 mm/min时,总体仍呈现为减少堆积体坡面侵蚀,削减效益分别在6.21%~88.84%和5.92%~91.98%,但在降雨强度增大至1.8 mm/min时,OR条件下总体呈现出增大堆积体坡面侵蚀,增大幅度在1.15%~311.31%,同时在降雨强度为1.2 mm/min产流快结束阶段OR条件下的瞬时侵蚀速率比BS增大6.76%~75.63%。总体来看,在降雨强度≤1.2 mm/min时,植被在3种近地表特征下总体均呈现出较好的削减堆积体坡面侵蚀作用,但在强降雨条件下植被在仅含地下根系(OR)条件下甚至会加剧堆积体坡面侵蚀。植被在3种近地表特征条件下的瞬时侵蚀速率总体从大到小呈现为OR、NL、IG,即植被越完整其侵蚀越小。

    不同堆积体下垫面次降雨平均侵蚀速率、径流率及减流减沙效益见表1所示。随降雨强度由0.8 mm/min增大至1.2和1.8 mm/min时,BS的次降雨平均侵蚀速率分别是10.89 、19.50 和34.48 g/(m2·min),BS平均侵蚀速率随降雨强度增大1.50~2.25倍而增大1.79~3.17倍,植被在IG、NL、OR时平均侵蚀速率随降雨强度增大分别增大2.03~3.46倍、10.72~35.08倍和3.41~16.81倍。结果表明,降雨强度对不完整植株防护堆积体的侵蚀速率的影响显著大于BS和完整植株的影响。对于径流率而言,BS的次降雨平均径流率随降雨强度增大而增大1.68~2.61倍,植被在IG、NL、OR时平均径流率的增大倍数分别是1.99~3.04倍、2.73~5.75倍和1.38~2.67倍,降雨强度对植被防护堆积体径流的影响也大于BS,但降雨强度对径流率的影响程度小于对侵蚀速率的影响,即堆积体坡面侵蚀比产流对降雨强度的敏感性更显著。

    表  1  不同堆积体下垫面次降雨平均径流产沙特征及蓄水减沙效益
    Table  1.  Characteristics of average soil loss rate and runoff rate in different spoil heaps and the soil and water loss reduction benefits
    降雨强度
    Rainfall intensity/(mm·min−1)
    下垫面
    Underlying surface
    平均侵蚀速率
    Average soil loss rate /(g·m−2·min−1)
    平均径流率
    Average runoff rate /(L·min−1)
    减沙效益
    Sediment reduction benefits/%
    蓄水效益
    Water storage benefits/%
    0.8 BS 10.89±1.02a 1.33±0.06b / /
    CD-IG 1.16±0.04c 0.69±0.01c 89.32 47.92
    CD-NL 0.53±0.03c 0.70±0.02c 95.18 47.43
    CD-OR 3.45±0.08b 1.73±0.05a 68.31 -29.63
    1.2 BS 19.50±1.20a 2.24±0.07a / /
    CD-IG 2.36±0.13 d 1.38±0.03c 87.91 38.27
    CD-NL 5.63±0.52c 1.91±0.08b 71.14 14.74
    CD-OR 11.76±0.75b 2.38±0.13a 39.72 -6.33
    1.8 BS 34.48±3.30b 3.49±0.16c / /
    CD-IG 4.03±0.14 d 2.11±0.04 d 88.32 39.46
    CD-NL 18.42±0.53c 4.03±0.10b 46.58 -15.57
    CD-OR 57.98±2.60a 4.61±0.09a -68.13 -32.19
    注:表中小写字母表示相同降雨强度下4种下垫面同一种参数之间的差异性,其中不同字母代表差异显著(P<0.05),相同字母代表差异不显著(P>0.05)。
    Note: The lowercase letters in the table represent the differences between the four underlying surfaces and the same parameter under the same rainfall intensity, with different letters representing significant differences (P<0.05), the same letter represents no significant difference (P>0.05).
    下载: 导出CSV 
    | 显示表格

    3种降雨强度下植被在IG条件下均呈现显著的蓄水减沙效益,其中多场次降雨平均减沙效益(88.52%)是蓄水效益(41.88%)的2.11倍;当植被处于NL条件下时,多场次降雨平均减沙效益为70.97%,在降雨强度0.8和1.2 mm/min时植被仍呈现正向的蓄水效益(14.74%~47.43%),但降雨强度为1.8 mm/min时,会导致径流甚至比BS增大15.57%;当植被处于OR条件下,在强降雨条件下(1.8 mm/min)不仅不能减少侵蚀,甚至会导致侵蚀比BS增大68.13%,但在降雨强度≤1.2 mm/min时即使植被在缺失地上冠层防护而仅保留根系条件下仍呈现出正向减沙效益(39.72%~68.31%),但此时增大堆积体坡面径流,相比于BS径流量增大6.33%~32.19%。即随降雨强度增大,不完整植被的减沙效益和蓄水效益递减,强降雨条件下甚至会加剧堆积体坡面径流产沙。因此,对于堆积时间较短的堆积体进行植被防护时,需要注重植被类型的选择,尽可能选择地上冠层(茎叶)较丰富的物种,同时要加强对植被生长的管护,避免地上冠层因高温、缺水或者外物所破坏而导致其防护效益削弱甚至丧失。

    差异性分析结果表明,植被在3种近地表特征条件下平均侵蚀速率和径流率与BS均呈显著差异(P<0.05),进一步表明种植植被显著改变了堆积体坡面降雨过程中的径流产沙特性。另一方面,在降雨强度≥1.2 mm/min时,植被在IG、NL、OR条件下的平均侵蚀速率、平均径流率也互相呈显著差异;在降雨强度0.8 mm/min时OR与IG、OR与NL之间的侵蚀速率、径流率也呈显著差异,但IG与NL之间差异不显著。总体来看,堆积时间较短的堆积体在进行植被恢复后,降雨过程的径流产沙发生显著变化,植被在不同近地表特征条件下对调控堆积体坡面径流产沙也有显著差异,且在强降雨条件下愈加明显。

    径流不仅是侵蚀的驱动因素,同时也是侵蚀泥沙颗粒的载体,分析不同堆积体下垫面的水沙耦合关系,可以直观地反映出不同植被条件下降雨过程中堆积体坡面水沙动态平衡关系。将3种降雨强度下不同堆积体下垫面各90组侵蚀速率与径流率线性拟合(图5)。

    图  5  不同堆积体下垫面水沙耦合关系
    Figure  5.  Coupling relationship between water and sediment for different spoil heaps

    结果表明,BS和植被在3种近地表特征下的侵蚀速率与径流率呈显著线性关系,且植被防护条件下水沙线性耦合关系(决定系数R2在0.688~0.880)比BS(R2为0.400)更显著。从拟合结果来看,BS的线性拟合系数为9.157,远大于IG和NL条件下的1.845和4.183,但却小于OR条件下的10.083。进一步表明了堆积体侵蚀的大小主要受径流影响。总体来看,在径流率<3.0 L/min时,BS和植被防护堆积体的水沙耦合关系较集中,且表现为相同径流条件下植被防护堆积体的侵蚀速率小于BS,植被3种近地表特征下均能起到积极的减少侵蚀作用;但在径流率≥4.0 L/min时,OR和BS的水沙耦合关系分散性较强,且出现了OR条件下的侵蚀速率大于BS,也证实了植被在OR条件下会导致侵蚀增大甚至超过BS,而造成该现象的一个重要原因是OR条件下的径流大于BS,径流是导致侵蚀的直接因素,导致OR条件下的径流大于BS的原因可能是由于根系改变了堆积体表层孔隙状况,相较于BS植被在OR下表层孔隙减少使得入渗下降,进而增大径流。

    为进一步阐明侵蚀与径流的定量关系以及水沙耦合关系对植被不同近地表特征的响应,分析了不同下垫面单位径流产沙量,见图6所示。结果表明,BS在3种降雨强度下单位径流产沙量分别是9.55 、9.00 和10.02 g/(m2·L),即降雨强度对BS单位径流产沙量影响不显著。3种降雨强度时BS的单位径流产沙量分别是IG和NL的5.27~5.72倍和2.19~13.08倍;在降雨强度≤1.2 mm/min时,BS的单位径流产沙量是OR的1.88~4.70倍,但在降雨强度达到1.8 mm/min时,前者是后者的0.81倍。表明强降雨条件下如果植被缺失地上冠层,甚至会加剧堆积体水土流失,因此,开展堆积体植被修复时应注重对植被类型的筛选,优先选择植被地上冠层茂密的类型。

    图  6  不同试验条件下单位径流产沙量
    注:相同降雨强度下同一图中不同小写字母代表裸坡和3种植被处理之间差异显著(P<0.05)。不同大写字母代表3种植被处理之间差异显著(P<0.05)。相同字母代表差异不显著(P>0.05)。
    Figure  6.  Variations of soil loss amount by unit runoff volume under different conditions
    Note: There is a significant difference (P<0.05) between different lowercase letters representing bare slopes and three vegetation treatments in the same graph under the same rainfall intensity. Different capital letters represent significant differences (P<0.05) among the three vegetation treatments. The same letter represents no significant difference (P>0.05).

    差异性分析结果表明,3种降雨强度下BS与植被防护(IG、NL、OR)堆积体的单位径流产沙量均呈显著差异(P<0.05)。对植被在3种近地表特征下的单位径流产沙量的差异性分析结果也表明3种近地表特征之间相互间也呈极显著差异(P<0.05)。结果表明植被及其近地表特征对堆积体单位径流产沙量均具有显著影响。

    生产建设项目施工扰动严重破坏了原地表和植被,造成的水土流失已成为现阶段新增水土流失的重要来源[23]。针对生产建设项目水土流失防治已开展较多的实践研究并提出构建“工程措施+临时措施+植物措施”于一体的综合防护措施体系,可以有效减少因工程施工而造成的水土流失[24]。其中工程措施和临时措施均具有时效性,而植物措施可持续发挥水土保持效益而被广泛应用[3]。在本研究中,完整的狗牙根防护可以减少坡面侵蚀达到88.52%,减流效益达到41.88%。娄永才等[25]通过野外放水冲刷试验表明植被在陡坡堆积体坡面坡顶和带状两种分布模式下的平均减沙效益分别为58.09%和54.41%,减流效益分别是43.87%和30.55%。本试验得出采用全坡面植被防护堆积体坡面侵蚀效果较不完全防护模式效果更显著。同时,植物措施相较于工程措施在蓄水减沙方面也更加明显:牛耀彬等[26]研究表明工程措施(鱼鳞坑、水平阶)由于在后期出现损毁现象,不仅不能防护坡面甚至起到加速坡面侵蚀的效果(增大产流和产沙分别达到9%~175%和16%~60%);同时张乐涛等[27]通过野外放水冲刷试验研究了水平阶和水平沟2种工程措施对陡坡工程堆积体(36°)的径流和产沙调控效益,结果表明,工程措施调控堆积体坡面径流侵蚀过程是通过减流控沙作用实现的,其中水平阶类措施改变坡面水流流线,而水平沟类措施径流调控作用主要为径流拦蓄。张志华等[28]研究了临时拦挡、苫盖及拦挡+苫盖等不同组合措施对堆积体(20°、30°)的水沙调控表明,临时措施的减流效益比采用苜蓿措施低8.3~21.7倍,减沙效益低0.8~5.5倍,同时提出采用临时拦挡+苫盖50%即可取得较好水土保持效益。总体来看,相较于工程措施或者临时措施具有时效性,植物措施更加适宜用于工程扰动边坡防护,但无论是工程措施、植物措施或者是临时措施,均需要加强水土保持措施的管护,避免因为措施损坏进而导致其水土保持效益降低甚至丧失。在生产建设项目水土流失防治措施配置上,施工过程中要实施工程和临时措施,但更加需要注重后续植物措施的重要性。

    然而,植物措施作为坡面侵蚀,尤其是陡坡堆积体坡面的防护措施,其水土保持效益的发挥存在一定的滞后效益,即植被需要生长达到一定的周期才能有效发挥其水土保持效益[6]。已有研究表明,植被发挥水土保持效益是植被地上部分(茎和叶)与地下部分(根系)二者综合作用的体现,其中地上部分抵抗雨滴影响和地表径流侵蚀,增加渗透率和地表粗糙度,并通过拦截输移泥沙降低了侵蚀颗粒输移[17,29],而根系通过穿插缠绕固结土体,同时进一步改善土体结构实现增加抗冲刷能力,进而达到调控坡面侵蚀效果[30]。本研究表明植被在完整植株条件下能够有效减少坡面径流和侵蚀,然而,随着降雨强度增大,尤其是降雨强度达到1.8 mm/min时,狗牙根在只含根系条件下(OR)会导致蓄水效益和减沙效益分别为-32.19%和-68.13%,即出现了只含根系条件下的产流产沙超过了无植被防护坡面(BS)。导致该现象的原因可能包括以下几个方面:一是只含根系条件下加速坡面径流发生,使其产流时间比裸坡提前效益27.90%,在该试验条件下出现了OR条件下的瞬时径流率在降雨全过程均高于BS,即坡面径流显著增大(图3),径流提前发生且径流率显著增大二者最终导致了坡面侵蚀也更加严重(图4),也证实了堆积体坡面径流是侵蚀的主要驱动力,与已有研究结果相近[15];二是植被在缺失地上冠层后,在强降雨条件下使得雨滴直接击打在堆积体表层,同时,由于堆积体剖面靠近地表处仍存在根系,使得原本较稳固的堆积体结构体由于根系穿插而破坏,溅蚀击溅力增大以及地表堆积体物质更加松散,为侵蚀提供了更多的物质源,进而造成更加严重的侵蚀。VAN DIJK等[31]和KINNELL等[32]的研究认为在高强度降雨条件下会使得地表发生结皮和封闭,使得径流无法入渗进而形成更大径流,径流的动能和势能转化为剥蚀和搬运能,最终造成更多侵蚀。本研究表明在降雨强度达到1.8 mm/min时,达到了极端降雨条件,改变了堆积体侵蚀过程。通过对比分析发现含植被根系(OR)堆积体在降雨过程中出现了比BS更多的跌坎(图7),同时在根系部位出现了旋涡,可能是由于径流将堆积体表层的细小颗粒侵蚀后,植被连接根系的地下茎秆露出,径流在经过该区域时,受到茎秆的阻拦,在该小区域范围内旋转,加速了坡面径流流速,使得根系(茎秆)周围的土壤颗粒或者导致小粒径的砾石发生迁移,造成侵蚀[33];三是本项研究中植被生长仅有半年,植被根系并未完全起到稳固堆积体坡面的作用[34],即植被根系可能仅在堆积体坡面表层,并未深入到底部,本研究出现了只含根系条件下的侵蚀甚至高于裸坡的现象在黄土高原也较常见,含植被防护的坡面容易发生浅层滑坡。GUO等[35]等通过野外调查发现69%的浅层滑坡是发生在有牧草覆盖的坡面上,主要是由于根系增加了浅层土体的含水量,为优先流路径通道形成创造了条件,同时根系增加了土体孔隙率的进而导致侵蚀加剧。本研究结果表明,完整植株即使是仅有半年生长周期,对陡坡堆积体仍可起到显著的蓄水减沙效益,然而当植被冠层缺失后,不仅无法防护坡面侵蚀,甚至会导致堆积体坡面水土流失更加严重。因此,提出针对陡坡工程堆积体开展植被防护,要注重植被类型的选择,尽可能选择植被冠层丰富的种类,同时要避免因外部因素(外力破坏、缺水等)导致植被冠层死亡。本研究成果为工程开展扰动边坡生态修复提供科学和实践指导,对于植被生长周期或堆积体堆积恢复年限对陡坡工程堆积体水土流失的影响将是后续研究的重点内容。

    图  7  裸坡和植被只含根系条件下堆积体降雨后实景图
    Figure  7.  Pictures of spoil heaps under bare and vegetation with only root system conditions after rain event

    本文基于野外模拟降雨试验研究了植被在不同近地表特征条件下对堆积体坡面径流产沙及水沙关系的影响,得出以下主要结论:

    1)完整植株能够增加堆积体入渗进而有效抑制堆积体坡面径流产生使其比裸坡产流时间滞后0.69~12.96 min,但不完整植株会导致径流发生提前0.15~4.81 min;完整植株防护堆积体坡面瞬时径流率较裸坡降低5.40%~67.81%,在强降雨条件下不完整植株(不含叶、只含根系)导致瞬时径流率比裸坡增大1.20%~169.10%;植被在完整植株和不含叶条件下总体均能降低瞬时侵蚀速率达0.91%~98.71%,但强降雨条件下,只含根系下增大瞬时侵蚀速率达1.15%~311.31%。

    2)完整植株下植被平均减沙效益(88.52%)是蓄水效益(41.88%)的2.11倍;强降雨条件下植被只含根系时导致平均侵蚀速率和平均径流率分别比裸坡增大68.13%和32.19%;裸坡和植被防护堆积体均呈现良好的线性关系(R2为0.40~0.88),径流率<3.0 L/min时水沙关系集中且植被呈现显著的减沙效益;但在径流率≥4.0 L/min时,堆积体水沙耦合关系分散性较强,且出现了植被根系防护坡面侵蚀较裸坡更严重。

    3)差异性分析表明植被及其近地表特征对堆积体径流产沙具有显著影响(P<0.05),提出对于堆积时间较短的堆积体进行植被防护时,优选植被地上冠层丰富的类型同时要加强管护,避免因外部因素导致植被地上冠层死亡进而降低甚至丧失水土保持效益。

  • 图  1   试验小区示意图及布设图

    注:BS,裸坡;CD-IG,狗牙根-完整植株;CD- NL,狗牙根-不含叶;CD-OR,狗牙根-只含根系。下同。

    Figure  1.   Schematic diagram of spoil heaps and diagram of experiment plot

    Note: BS, bare slope; CD-IG, Cynodon dactylon-intact grass; CD-NL,Cynodon dactylon-not leaf; CD- OR, Cynodon dactylon- only roots. Same as below.

    图  2   不同堆积体下垫面产流起始时间随降雨强度变化

    Figure  2.   Variations of the runoff generation time with rainfall intensity for different spoil heaps

    图  3   不同堆积体下垫面径流率随产流历时变化

    Figure  3.   Variations of runoff rate in spoil heaps with runoff time

    图  4   不同堆积体下垫面侵蚀速率随产流历时变化

    Figure  4.   Variations of soil loss rate in spoil heaps with runoff time

    图  5   不同堆积体下垫面水沙耦合关系

    Figure  5.   Coupling relationship between water and sediment for different spoil heaps

    图  6   不同试验条件下单位径流产沙量

    注:相同降雨强度下同一图中不同小写字母代表裸坡和3种植被处理之间差异显著(P<0.05)。不同大写字母代表3种植被处理之间差异显著(P<0.05)。相同字母代表差异不显著(P>0.05)。

    Figure  6.   Variations of soil loss amount by unit runoff volume under different conditions

    Note: There is a significant difference (P<0.05) between different lowercase letters representing bare slopes and three vegetation treatments in the same graph under the same rainfall intensity. Different capital letters represent significant differences (P<0.05) among the three vegetation treatments. The same letter represents no significant difference (P>0.05).

    图  7   裸坡和植被只含根系条件下堆积体降雨后实景图

    Figure  7.   Pictures of spoil heaps under bare and vegetation with only root system conditions after rain event

    表  1   不同堆积体下垫面次降雨平均径流产沙特征及蓄水减沙效益

    Table  1   Characteristics of average soil loss rate and runoff rate in different spoil heaps and the soil and water loss reduction benefits

    降雨强度
    Rainfall intensity/(mm·min−1)
    下垫面
    Underlying surface
    平均侵蚀速率
    Average soil loss rate /(g·m−2·min−1)
    平均径流率
    Average runoff rate /(L·min−1)
    减沙效益
    Sediment reduction benefits/%
    蓄水效益
    Water storage benefits/%
    0.8 BS 10.89±1.02a 1.33±0.06b / /
    CD-IG 1.16±0.04c 0.69±0.01c 89.32 47.92
    CD-NL 0.53±0.03c 0.70±0.02c 95.18 47.43
    CD-OR 3.45±0.08b 1.73±0.05a 68.31 -29.63
    1.2 BS 19.50±1.20a 2.24±0.07a / /
    CD-IG 2.36±0.13 d 1.38±0.03c 87.91 38.27
    CD-NL 5.63±0.52c 1.91±0.08b 71.14 14.74
    CD-OR 11.76±0.75b 2.38±0.13a 39.72 -6.33
    1.8 BS 34.48±3.30b 3.49±0.16c / /
    CD-IG 4.03±0.14 d 2.11±0.04 d 88.32 39.46
    CD-NL 18.42±0.53c 4.03±0.10b 46.58 -15.57
    CD-OR 57.98±2.60a 4.61±0.09a -68.13 -32.19
    注:表中小写字母表示相同降雨强度下4种下垫面同一种参数之间的差异性,其中不同字母代表差异显著(P<0.05),相同字母代表差异不显著(P>0.05)。
    Note: The lowercase letters in the table represent the differences between the four underlying surfaces and the same parameter under the same rainfall intensity, with different letters representing significant differences (P<0.05), the same letter represents no significant difference (P>0.05).
    下载: 导出CSV
  • [1] 王一峰,屈丽琴,李建明,等. 基于近20年《中国水土保持公报》的水土流失治理分析[J]. 长江科学院院报,2023,40(7):59-65. doi: 10.11988/ckyyb.20220681

    WANG Yifeng, QU Liqin, LI Jianming, et al. Analysis of soil erosion control based on China Soil and Water Conservation Bulletin in the past two decades[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(7): 59-65. (in Chinese with English abstract) doi: 10.11988/ckyyb.20220681

    [2] 周涛,苏正安,刘刚才,等. 工程堆积体典型生态修复措施对土壤侵蚀水动力过程的影响[J]. 农业工程学报,2022,38(9):91-100. doi: 10.11975/j.issn.1002-6819.2022.09.010

    ZHOU Tao, SU Zheng’an, LIU Gangcai, et al. Effects of typical ecological restoration measures for engineering accumulation on sediment yield and hydrodynamic process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(9): 91-100. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.09.010

    [3]

    LI J M, LI L, WANG Z G, et al. The contributions of the roots, stems, and leaves of three grass species to water erosion reduction on spoil heaps[J]. Journal of Hydrology, 2021, 603: 127003. doi: 10.1016/j.jhydrol.2021.127003

    [4] 李俊业,曾蓉. 降雨对工程弃土堆积体稳定性的影响分析[J]. 地质灾害与环境保护,2010,21(3):104-107. doi: 10.3969/j.issn.1006-4362.2010.03.021

    LI Junye, ZENG Rong. Analysis the effect of rainfall on engineering soil deposits stability[J]. Journal of Geological Hazards and Environment Preservation, 2010, 21(3): 104-107. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-4362.2010.03.021

    [5] 程琳琳,张宁凌,崔慧珍,等. 服务于产业转型的矿业废弃地再利用优化与调控[J]. 农业工程学报,2022,38(23):202-212.

    CHENG Linlin, ZHANG Ningling, CUI Huizhen, et al. Optimization and regulation of the abandoned mining land reuse for industrial transformation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(23): 202-212. (in Chinese with English abstract)

    [6] 徐慧,吕庆,杨雨荷,等. 边坡植被重建效果评价:研究进展与展望[J]. 生态学杂志,2022,41(3):589-596.

    XU Hui, LV Qing, YANG Yuhe, et al. Evaluation of slope re-vegetation effect: Research progress and prospect[J]. Chinese Journal of Ecology, 2022, 41(3): 589-596. (in Chinese with English abstract)

    [7]

    GARDNER R A M, GERRARD A J. Runoff and soil erosion on cultivated rainfed terraces in the Middle Hills of Nepal[J]. Applied Geography, 2003, 23(1): 23-45. doi: 10.1016/S0143-6228(02)00069-3

    [8] 郭建英,何京丽,李锦荣,等. 典型草原大型露天煤矿排土场边坡水蚀控制效果[J]. 农业工程学报,2015,31(3):296-303. doi: 10.3969/j.issn.1002-6819.2015.03.040

    GUO Jianying, HE Jingli, LI Jinrong, et al. Effects of different measures on water erosion control of dump slope at opencast coal mine in typical steppe[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 296-303. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-6819.2015.03.040

    [9] 韩煜,赵伟,张淇翔,等. 不同植被恢复模式下矿山废弃地的恢复效果研究[J]. 水土保持研究,2018,25(1):120-125.

    HAN Yu, ZHAO Wei, ZHANG Qixiang, et al. Effects of different vegetation patterns on ecological restoration in mining wasteland[J]. Research of Soil and Water Conservation, 2018, 25(1): 120-125. (in Chinese with English abstract)

    [10] 杨波,王文龙,郭明明,等. 矿区排土场边坡不同植被配置模式的控蚀效益研究[J]. 土壤学报,2019,56(6):1347-1358. doi: 10.11766/trxb201806260346

    YANG Bo, WANG Wenlong, GUO Mingming, et al. Erosion-controlling effects of revegetation on slope of refuse dump in mining area relative to vegetation pattern[J]. Acta Pedologica Sinica, 2019, 56(6): 1347-1358. (in Chinese with English abstract) doi: 10.11766/trxb201806260346

    [11] 史倩华,王文龙,刘瑞顺,等. 植被恢复措施对不同排土年限煤矿排土场边坡细沟侵蚀的影响[J]. 农业工程学报,2016,32(17):226-232. doi: 10.11975/j.issn.1002-6819.2016.17.030

    SHI Qianhua, WANG Wenlong, LIU Ruishun, et al. Effect of vegetation recovery measures on rill erosion of dump side slope in coal mine with different casting time[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 226-232. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2016.17.030

    [12]

    GUO M M, WANG W L, LI J M, et al. Runoff characteristics and soil erosion dynamic processes on four typical engineered landforms of coalfields: An in-situ simulated rainfall experimental study[J]. Geomorphology, 2020, 349: 106896. doi: 10.1016/j.geomorph.2019.106896

    [13] 李建明,牛俊,孙蓓,等. 两种驱动力作用下植被调控堆积体坡面减水减沙效益[J]. 农业工程学报,2021,37(11):76-84.

    LI Jianming, NIU Jun, SUN Bei, et al. Benefits of soil and water reduction on spoil heaps by vegetation under two driving forces[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(11): 76-84. (in Chinesewith English abstract)

    [14]

    LUO H, RONG Y B, LV J R, et al. Runoff erosion processes on artificially constructed conically-shaped overburdened stockpiles with different gravel contents: Laboratory experiments with simulated rainfall[J]. Catena, 2019, 175: 93-100. doi: 10.1016/j.catena.2018.12.010

    [15]

    LI J M, WANG W L, GUO M M, et al. Effects of soil texture and gravel content on the infiltration and soil loss of spoil heaps under simulated rainfall[J]. Journal of Soils and Sediments, 2020, 20: 3896-3908. doi: 10.1007/s11368-020-02729-6

    [16]

    RAHMA A E, WARRINGTON D N, LEI T W. Efficiency of wheat straw mulching in reducing soil and water losses from three typical soils of the Loess Plateau, China[J]. International Soil and Water Conservation Research, 2019, 7(4): 335-345. doi: 10.1016/j.iswcr.2019.08.003

    [17] 丁琳,许海超,秦伟,等. 不同坡面草被格局下的侵蚀产沙量及其连通性指数表征[J]. 农业工程学报,2022,38(9):119-128. doi: 10.11975/j.issn.1002-6819.2022.09.013

    DING Lin, XU Haichao, QIN Wei, et al. Erosion and sediment yield under different grass cover patterns and its characterization of connectivity index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(9): 119-128. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.09.013

    [18]

    LI C J, PAN C Z. The relative importance of different grass components in controlling runoff and erosion on a hillslope under simulated rainfall[J]. Journal of Hydrology, 2018, 558: 90-103. doi: 10.1016/j.jhydrol.2018.01.007

    [19]

    ZHAO X N, HUANG J, WU P T, et al. The dynamic effects of pastures and crop on runoff and sediments reduction at loess slopes under simulated rainfall conditions[J]. Catena, 2014, 119: 1-7. doi: 10.1016/j.catena.2014.03.001

    [20] 徐国钢,程睿,赖庆旺,等. 中国南方基础工程建设中土壤生态修复技术体系与实践[J]. 土壤学报,2015,52(2):381-389.

    XU Guogang, CHEN Rui, LAI Qingwang, et al. Soil ecology remediation technical system and its practice in infrastructure construction in south china[J]. Acta Pedologica Sinica, 2015, 52(2): 381-389. (in Chinese with English abstract)

    [21]

    ZHAO C H, GAO J E, HUANG Y F, et al. The contribution of Astragalus Adsurgens root and canopy to water erosion control in the water-wind crisscrossed erosion region of the loess plateau, China[J]. Land Degradation and Development, 2017, 28(1): 265-273. doi: 10.1002/ldr.2508

    [22]

    WILSON G V, DABNEY S M, MCGREGOR K C, et al. Tillage and residue effects on runoff and erosion dynamics[J]. Transactions of the American Society of Agricultural Engineers, 2004, 47(1): 119-128. doi: 10.13031/2013.15878

    [23] 李建明,王志刚,张长伟,等. 生产建设项目弃土弃渣特性及资源化利用潜力评价[J]. 水土保持学报,2020,34(2):1-8.

    LI Jianming, WANG Zhigang, ZHANG Changwei, et al. Evaluation of characteristics and resource utilization potential of residues in production and construction projects[J]. Journal of Soil and Water Conservation, 2020, 34(2): 1-8. (in Chinese with English abstract)

    [24] 吕钊,王冬梅,徐志友,等. 生产建设项目弃渣(土)场水土流失特征与防治措施[J]. 中国水土保持科学,2013,11(3):118-126. doi: 10.3969/j.issn.1672-3007.2013.03.020

    LV Zhao, WANG Dongmei, XU Zhiyou, et al. Soil erosion characteristic and prevention measures in abandoned dreg (soil) field of production and construction[J]. Science of Soil and Water Conservation, 2013, 11(3): 118-126. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-3007.2013.03.020

    [25] 娄永才,高照良,李永红,等. 不同上方来水模式下工程堆积体坡面的植被调控[J]. 农业工程学报,2019,35(24):144-153. doi: 10.11975/j.issn.1002-6819.2019.24.018

    LOU Yongcai, GAO Zhaoliang, LI Yonghong, et al. Vegetation regulation on slopes of engineering accumulation under different upslope runoff patterns[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 144-153. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2019.24.018

    [26] 牛耀彬,高照良,刘子壮,等. 工程堆积体坡面工程措施减流减沙效应的试验研究[J]. 南水北调与水利科技,2015,13(5):862-866,904.

    NIU Yaobin, GAO Zhaoliang, LIU Zizhuang, et al. Experimental study on the effects of slope surface of engineering accumulation on overland flow and sediment reduction[J]. South-to-North Water Transfers and Water Science &. Technology, 2015, 13(5): 862-866, 904. (in Chinese with English abstract)

    [27] 张乐涛,董俊武,袁琳,等. 黄土区工程堆积体陡坡坡面径流调控工程措施的减沙效应[J]. 农业工程学报,2019,35(15):101-109. doi: 10.11975/j.issn.1002-6819.2019.15.014

    ZHANG Letao, DONG Junwu, YUAN Lin, et al. Sediment-reducing benefits by runoff regulation under engineering measures in steep slope of abandoned soil deposits in Chinese loessial region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(15): 101-109. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2019.15.014

    [28] 张志华,聂文婷,许文盛,等. 不同水土保持临时措施下工程堆积体坡面减流减沙效应[J]. 农业工程学报,2022,38(1):141-150. doi: 10.11975/j.issn.1002-6819.2022.01.016

    ZHANG Zhihua, NIE Wenting, XU Wensheng, et al. Effects of runoff and sediment reduction on engineering accumulation slopes under different soil and water conservation temporary measures[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(1): 141-150. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.01.016

    [29]

    VANNOPPEN W, VANMAERCKE M, DE BAETS S, et al. A review of the mechanical effects of plant roots on concentrated flow erosion rates[J]. Earth-Science Reviews, 2015, 150: 666-678. doi: 10.1016/j.earscirev.2015.08.011

    [30] 马金龙,王兵. 1962-2022年土壤抗冲性研究进展[J]. 农业工程学报,2023,39(17):19-28. doi: 10.11975/j.issn.1002-6819.202302090

    MA Jinlong, WANG Bing. Research progress of soil anti-scourability from 1962 to 2022[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(17): 19-28. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202302090

    [31]

    VAN DIJK A I J M, BRUIJNZEEL L A, EISMA E H. A methodology to study rain splash and wash processes under natural rainfall[J]. Hydrological Processes, 2003, 17(1): 153-167. doi: 10.1002/hyp.1154

    [32]

    KINNELL P I A. Raindrop impact induced erosion processes and prediction: A review[J]. Hydrological Processes, 2005, 19(14): 2815-2844. doi: 10.1002/hyp.5788

    [33] 郑腾辉,周旺,刘涛,等. 连续模拟降雨下岩溶区含砾石堆积体坡面径流产沙特征[J]. 水土保持学报,2020,34(3):55-60.

    ZHENG Tenghui, ZHOU Wang, LIU Tao, et al. Characteristics sediment yield and runoff on the slope surface of gravel accumulation in karst area under continuous simulated rainfall[J]. Journal of Soil and Water Conservation, 2020, 34(3): 55-60. (in Chinese with English abstract)

    [34]

    GYSSELS G, POESEN J. The important of plant root characteristics in controlling concentrated flow erosion rates[J]. Earth Surface Processes and Landforms, 2003, 28(4): 371-384. doi: 10.1002/esp.447

    [35]

    GUO W Z, KANG H L, WANG W L, et al. Erosion-reducing effects of revegetation and fish-scale pits on steep spoil heaps under concentrated runoff on the Chinese Loess Plateau[J]. Land Degradation and Development, 2020, 31(18): 2846-2857. doi: 10.1002/ldr.3643

图(7)  /  表(1)
计量
  • 文章访问数:  80
  • HTML全文浏览量:  12
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-16
  • 修回日期:  2024-03-17
  • 网络出版日期:  2024-05-27
  • 刊出日期:  2024-04-14

目录

/

返回文章
返回