Coupling mechanism for rural multifunctional development and rural settlement evolution in mountainous areas of China
-
摘要:
探究山区乡村功能多元化与乡村聚落演变的耦合关系,对山区乡村振兴和乡村可持续发展具有重要意义。通过构建二者的耦合协调综合评价指标体系,利用耦合协调度模型和地理探测器等方法,以三峡库区腹地奉节县为研究区,定量探究了乡村功能多元化与乡村聚落演变的耦合关系及驱动机制,进而提出了相关建议。结果表明:1)研究区乡村功能多元化和乡村聚落演变综合指数呈上升趋势;两系统耦合协调度逐年增长,失调乡镇数量减少,在空间上呈现“西低东高,南低北高”的发展态势。2)乡村功能多元化与乡村聚落演变耦合协调度具有明显的空间集聚特征,高高集聚区域主要集中在永安街道等中心城镇的郊区。3)基于功能多元化综合指数与聚落演变综合指数的增减关系,该文将各乡镇归纳为活力型、衰退型、转型型和传统型4种耦合模式。4)人口密度、人均GDP、人类活动强度等社会经济因素是主要驱动因子,各因子间的交互作用大部分为非线性增强和双因子增强。该文的研究方法和研究结果可为其他地区进行相关研究以及制定差异化的村落振兴方案提供参考。
Abstract:Rural society, economy, culture and ecology have undergone some significant changes in the transition period from high-speed growth to high-quality development in China, particularly with the rapid industrialization and urbanization. Among them, the rural settlement is one of the indictors in the rural socioeconomic activities, including their multifunctionality. Furthermore, the number, scale and shape of rural settlement vary greatly in the background of the transformation and development of rural society. Therefore, it is very necessary to explore the coupling relationship between functional diversity and settlement evolution for the rural revitalization and sustainable development. In this study, a theoretical framework was firstly constructed for the functional diversity and rural settlement evolution in mountain areas. The study area was taken as the Fengjie County in the hinterland of the Three Gorges Reservoir Area. 21 indicators were selected from the three dimensions of production, living and ecological function. Four indices of landscape pattern were selected as the indicators from four dimensions of area, shape, density and aggregation. Secondly, the comprehensive evaluation model was used to calculate the composite index of rural functional diversity and rural settlement evolution. The coordination degree model, spatial autocorrelation model and elasticity coefficient model were combined to explore the coupling relationship between rural functional diversity and rural settlement evolution. Finally, the driving mechanism was determined using geo-detectors. The policy suggestions were also proposed, according to the regional conditions. The results show that: 1) The average composite indexes of rural functional diversity and rural settlement evolution increased from 0.222 to 0.281 and 0.184 to 0.262 during the study period, respectively, indicating a faster growth rate. The coupling coordination degree of the two systems increased year by year. The number of dysfunctional towns decreased with the patter of "low in the west and high in the east, low in the south and high in the north". 2) There was a positive correlation between rural functional diversity and the evolution of rural settlements at the township scale from 2000 to 2020. There were the outstanding spatial agglomeration. The high agglomeration areas were mainly concentrated in the outskirts of the central towns, such as Yong'an, Yu Fu and Kui Men Street. 3) According to the increase-decrease relationship of the composite index, the townships were categorized into four coupling modes: vibrant, declining, transforming and traditional type. 4) Socio-economic parameters (such as population density, per capita GDP, and intensity of human activity) were the main driving factors. Most of the interactions among the driving factors were nonlinearly and two-factor enhanced properties. The interactive driving factors with greater explanatory power were found in the land use degree/cultivated land area, number of rural employees/transportation convenience, human activity intensity/cultivated land area. Consequently, it is necessary to promote the positive interaction between rural functions and rural settlements in the process of rural revitalization. The adaptability of rural settlement transformation and development also need to improve for the sustainable and healthy rural development.
-
0. 引 言
随着农业装备不断向现代化、智能化和规模化发展[1],工业机器人的应用范围扩展至农业装备领域是必然趋势。旋转矢量(rotate vector,RV)减速器具有体积小、传动比范围大、质量轻、精度保持稳定、效率高等特点,农业机械经常需要大比例减速的情况,常选用RV减速器[2]。RV减速器作为农业机器人及农业机械的核心传动部件,其健康状况直接决定了传动精度、可靠性、生产效率和农机寿命。然而,由于RV减速器结构复杂,且在实际工作中工况多变,作业环境恶劣,随时发生故障[3]。RV减速器故障严重时会导致生产停滞,造成巨大的经济损失。因此,研究农业机器人RV减速器的故障诊断方法,及早发现并处理故障,缩短维护时间,对保障机器人安全运行、提高企业生产效率和经济效益具有重大意义。
振动信号能够有效反映部件的健康状态,在故障诊断中得到广泛应用[4]。近年来,许多学者对此开展了研究,提出了神经网络[5]、深度学习[6]、时频分析[7]、盲反卷积[8]等方法。汪久根等[9]采用残差网络提高了RV减速器不同故障的分类准确率。YIN等[10]开发了一种基于知识和数据双驱动的传输网络用于RV减速器故障诊断。彭鹏等[11]提出了一种抗干扰的 RV 减速器故障识别卷积神经网络模型。韩特等[12]在深度特征嵌入空间下构建特征图,通过标签传播算法生成伪标签,利用信息熵评估健康状态概率的分布。上述关于RV减速器的故障诊断精度较高,主要采用神经网络、深度学习、机械学习等算法,但是此类算法的实现需要大量不同类型的数据支撑。而基于时域、频域或时频域的分析方法能够在少量数据的支撑下完成故障诊断。XIE等[13]提出了一种基于电流信号的瞬时频率趋势图与参数自适应变分模态分解算法相结合的RV减速器故障诊断方法,实现了RV减速器太阳轮故障特征提取。GUO等[14]将计算阶跟踪和同步平均相结合识别了RV减速器行星齿轮齿根裂纹故障。雷亚国等[15]利用脊线提取完成RV减速器振动信号的平稳数据截取,有效提取了RV减速器行星轮的故障信息。由于RV减速器因润滑、制造误差和不合理受力会引起各种机械故障,使得实际运行中裂纹、点蚀等故障往往同时或先后出现,传感器采集的信号往往是多个故障源相互耦合的结果,使故障诊断变得非常困难。文献[13-15]提出的故障诊断方法适于单一故障诊断,对RV减速器复合故障检测能力下降甚至失效。因此,如何在复合故障相互耦合以及往复运动、时变转速工况下,精确分离提取耦合故障特征是RV减速器故障诊断领域亟待攻克的难题。盲源分离(blind source separation,BSS)技术可以在传输通道未知的情况下,从混合信号中把多个信号源分离出来。独立成分分析(independent component analysis,ICA) [16]和稀疏分量分析(sparse component analysis,SCA) [17] 是常用的以信号处理技术求解BSS问题。ICA算法的前提是源信号是统计独立的,且每个独立分量必须符合非高斯分布。而现代机械设备难以满足统计独立性的假设,但SCA方法的稀疏性假设相对容易满足。
SCA算法中,聚类方法是混合矩阵估计的首选。WANG等[18]提出了一种两阶段的聚类算法,从而提高了混合矩阵的估计精度。NORSALINA等[19]引入自适应时频阈值提高混合矩阵估计的精度。DING等[20]利用同步压缩S变换估计含谐波传输阻抗的混合矩阵。密度峰值聚类算法(density peak clustering,DPC)考虑局部密度和相对距离绘制决策图,快速识别簇中心并完成聚类。 DPC具有唯一输入参数,无需先验知识和迭代[21]。在解决振动源数目估计方面有一定的潜力。SCA算法还包括了源信号的恢复,主流方法有两类:一是通过优化逼近L0范数的函数恢复源信号。BU等[22]使用光滑的连续函数来近似L0范数。ZHANG等[23]用复三角函数逼近L0范数。但是上述方法具有源信号射入方向越近恢复精度越低。二是压缩感知(compressed sensing,CS)重构算法[24],该方法使用L1范数优化取代L0范数优化恢复源信号,避免了L0范数优化的NP-Hard问题。正交匹配追踪算法(orthogonal matching pursuit,OMP)克服匹配追踪算法的缺陷,在算法迭代过程中,残差能够与已经选择的原子正交,保证相同索引不会被重复选择,迭代过程在有限的次数内收敛[25],在重构信号算法的研究中发挥了重要作用。
结合上述分析,本文提出一种基于时频图像脊线提取与改进稀疏分量分析相结合的RV减速器复合故障盲提取方法,旨在实现往复运动、时变转速、故障源数目未知工况下的RV减速器复合故障诊断。首先使用时频图像脊线提取(ridge extraction from time-frequency images,RETF)从时频图中提取脊线,完成对平稳信号的同步截取,然后利用sinC函数改进形态滤波(sinC-morphological filtering,SMF)、DPC和OPM相结合的盲源分离方法(SMF-DPC-OMP)实现平稳信号复合故障的分离提取,采用SMF对观测信号进行滤波降噪处理,在提高信噪比的同时突出信号的冲击分量,并对滤波后的信号进行密度峰值聚类处理,得到聚类中心,构建传感矩阵;接着将滤波后的信号转换到频域以满足SCA的稀疏性要求;最后利用OMP算法在频域重构源信号,在提高计算速度和适应性的同时,实现复合故障特征的提取。
1. 盲分离的数学模型
盲源分离是指在源信号和信号传输通道均未知的情况下,仅依赖传感器拾取的观测信号恢复和估计源信号的技术[26]。含噪声SCA的数学模型为
{{\boldsymbol{X}}_{m \times t}} = {{\boldsymbol{A}}_{m \times n}}{{\boldsymbol{S}}_{n \times t}} + {{\boldsymbol{V}}_{m \times t}} (1) 式中 {\boldsymbol{X}} 为观测矩阵,即采集到的振动信号; {\boldsymbol{A}} 为混合矩阵; {\boldsymbol{S}} 是具有稀疏性的未知源信号; {\boldsymbol{V}} 为噪声或其他随机干扰成分; m 为传感器数量; n 为源信号数量; t 为观测时间,s。
2. 基于时频图像的脊线提取
短时傅里叶变换(short-time fourier transform,STFT)是有效捕获时变频率的方法之一,其定义为[27]
Q\left( {t,f} \right) = \int\limits_R {x\left( \tau \right){h_\sigma }\left( {\tau - t} \right){{\text{e}}^{ - {j}_0 2{\text{π }}f\tau }}{\text{d}}\tau } (2) 式中x\left( \tau \right) 为多分量信号;Q\left( {t,f} \right)是信号的时频表达(time frequency representation,TFR);{h_\sigma }\left( {\tau - t} \right)是长度为\tau 的高斯窗;R为实数集;t为时间;f为频率;j表示复数。
从TFR中提取时频脊线估计瞬时频率(instantaneous frequency,IF)是完全非参数的,并且能适应不同的情况。有效的脊线提取方法是寻找TFR的最大位置[27],其定义如下:
\overline {{D}} (t) = \mathop {\arg \max }\limits_{f \in J} \left| {Q(t,f)} \right|,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} t = {t_0}, \ldots ,{t_{N - 1}} (3) 式中 \overline {{D}} (t) 表示得到的脊线,是理论 {{D}}(t) 的估计, J 是频率的集合,N 为信号截止时间。RETF算法的具体实现步骤如下:
1)初始化参数,并创建一个预存矩阵{{\boldsymbol{K}}_i};
2)对时域信号x\left( t \right)进行STFT变换,得到其时频分布Q\left( {t,f} \right);
3)寻找并标记最大能量点\left[ \begin{gathered} {t_0} \\ {f_0} \\ \end{gathered} \right],将该点存储为{\boldsymbol{K}}矩阵的第一列;
4)使Q\left( {{t_0},f} \right)在最大值点{t_0}附近时刻归0,即Q\left( {{t_0},f} \right) = 0,f \in \left[ {{f_0} - \Delta f,{f_0} + \Delta f} \right],其中\Delta f为滤波带宽惩罚参数,控制滤波带宽;
5)在Q\left( {{t_0},f} \right)的邻域内寻找下一个最大能量点 \left[ \begin{gathered} t_{0}' \\ f_{0}' \\ \end{gathered} \right] = \ {\mathrm{\max}} _{\left( {{t_\alpha },{f_\alpha }} \right)}Q\left( {t,f} \right) 。 {t_\alpha } \in \left[ {{t_0} - 1,{t_0} + 1} \right] ,{f_\alpha } \in \left[ {f_0} -F,{f_0} + F \right],H为选定的窗参数,控制迭代中 \overline {{D}} (t) 增量的平滑程度,H越小, \overline {{D}} (t) 增量越平滑;
6)将 \left[ \begin{gathered} t_0' \\ f_0' \\ \end{gathered} \right] 存储为{\boldsymbol{K}}矩阵的下一列;
7)使Q\left( {t_0',f} \right)在最大值点t_0'附近时刻归0,即Q\left( {t_0',f} \right) = 0,f \in \left[ {{f_0} - \Delta f,{f_0} + \Delta f} \right];
8)如果时间指标{t_\alpha }和频率指标{f_\alpha }未达到TFR矩阵的边界,返回步骤5);否则返回步骤1),并创建一个新的预存矩阵{{\boldsymbol{K}}_{i + 1}};
9)当剩余TFR能量小于阈值\varepsilon 时停止算法(每一个预存矩阵,即是一条时频脊线)。
3. 基于SMF-DPC-OMP的盲源分离
3.1 基于\sin C函数的改进形态滤波降噪
3.1.1 构建\sin C结构元素
\sin C函数又称辛格函数,定义如下:
\sin C\left( x \right) = \frac{{\sin \left( {{\text{π}}x} \right)}}{{{\text{π}}x}} (4) 本文选取 \sin C 函数作为结构元素时主要定义长度L和主瓣比p。长度是指整个图像的长度,主瓣比是指从中间截取整个图像的百分比。图1为L = 20、 p = 50\text{%} 的 {\mathrm{sin}} C 结构元素。
3.1.2 构建平均组合滤波器
形态滤波器的构建主要包括结构元素和形态算子。结构元素的选择包括结构元素的形状、长度、高度(振幅)等。在处理一维信号时 ,结构元素的形状一般有线形、三角形、半圆形、正弦等,本文选择 sin C函数作为结构元素 ,结合形态算子腐蚀Θ、膨胀\oplus 、形态开○和形态闭●,构建基于sinC函数的SMF平均组合滤波器。
设原信号f\left( n \right)和结构元素g\left( m \right)为分别定义在F\left( {1,2, \ldots ,n - 1} \right)和G = \left( {1,2, \ldots, m - 1} \right)上的离散函数, N \geqslant M。则f\left( n \right)关于g\left( m \right)的腐蚀运算、膨胀运算、开运算和闭运算[28]分别为
(f\Theta g)(n) = \min[f(n + m) - g(m)] (5) (f \oplus g)(n) = \max [f(n - m) + g(m)] (6) (f \circ g){\kern 1pt} (n) = (f\Theta g \oplus g)(n) (7) (f \bullet g){\kern 1pt} (n) = (f \oplus g\Theta g)(n) (8) 通常使用形态开和形态闭的级联形式去除信号中的正、负噪声。TANG[28]为了去除信号中的正、负噪声,定义了形态闭-开(closing-opening,CO)和开-闭(opening-closing,OC)滤波器:
{\mathrm{CO}}{\kern 1pt} (f(n)) = (f \bullet g \circ g)(n) (9) {\mathrm{OC}}{\kern 1pt} (f(n)) = (f \circ g \bullet g)(n) (10) 为了抑制统计偏倚,本文采用结合OC和CO的平均组合滤波器[28]:
y(n) = [{\mathrm{OC}}(f(n) + {\mathrm{CO}}(f(n)]/2 (11) 3.1.3 基于\sin C的平均组合滤波器效果验证
为了验证基于{\mathrm{sin}}\; C 函数的SMF滤波效果,生成模拟轴承外圈故障的仿真信号并添加信噪比(signal-to-noise ratio,SNR)为−3 dB的白噪声。图2为含噪声的仿真信号及滤波后的时域波形图,SMF降噪后的信噪比为0.7 dB,说明SMF较好的滤除干扰噪声,突显了信号的冲击特性。
将本文的SMF滤波器与文献[29]中的直线型滤波器(幅值为0,长度为10)进行对比,滤波器参数及滤波效果如图3所示。分析图3可知无论滤波器的参数如何选择,SMF的滤波后的信噪比总是要优于直线型滤波器。
3.2 基于DPC-OMP的盲源分离
3.2.1 DPC理论
DPC算法主要基于2个假设:1)聚类中心周围是低密度的点;2)聚类中心与密度较高的样本点之间的距离较大。设数据集U{{ = }}\left\{ {{u_1},{u_2}, \cdots, {u_R}} \right\}, {u_i}{{ = }}{\left( {{u_{i1}},{u_{i2}}, \cdots, {u_{io}}} \right)^{\mathrm{T}}} ,其中i = 1,2, \cdots ,R,{u_{ij}}表示数据点i的j维属性,j = 1,2, \cdots ,O;R为总体样本数。
1)计算局部密度\rho
对于每个数据点{u_i},i = 1,2, \cdots ,R,局部密度{\rho _i}可以被认为是距离点{u_i}较近的点的数量,{\rho _i}的定义如下[30]:
{\rho _i} = \sum\limits_{j,j \ne i} {\chi \left( {{d_{ij}} - {d_c}} \right)} (12) 式中\chi \left( x \right)为分段函数,x < 0时,\chi \left( x \right){\text{ = }}1,否则\chi \left( x \right){\text{ = 0}};{d_{ij}}表示i和j之间的距离(通常为欧氏距离),{d_c}表示截断距离。
2)计算最近邻距离\delta
每个点的最近邻距离{\delta _i} 为
{\delta _i} = \left\{ \begin{gathered} \mathop {\min \left( {{d_{ij}}} \right)}\limits_{j:{\rho_j} > {\rho_i}} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rho _i} < \max \left( \rho \right) \\ \mathop {\max \left( {{d_{ij}}} \right)}\limits_j ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rho _i} = \max \left( \rho \right) \\ \end{gathered} \right. (13) 对于密度较低的样本点,计算该样本点与高于其密度的最近样本点之间的距离;而对于密度最高的样本点,则计算该点与最远样本点之间的距离。
3)选取聚类中心 V
聚类中心定义为同时具有高密度{\rho _i}和较大距离{\delta _i}的点{x_i},令{V_i} = {\rho _i}{\delta _i},取 V > \dfrac{2}{N}\displaystyle\sum\limits_{i = 1}^N {{V_i}} 为聚类中心。由于聚类对象为RV故障信号,{V_i}大多为0。为保证不遗漏正确的聚类中心,因此选取大于均值2倍的数据点为聚类中心。
3.2.2 压缩感知重构算法
利用压缩感知重构算法中的OMP算法对源信号进行重构。将 m 个长度为 t 的观测信号表示为 {\boldsymbol{y}} = ({y_{11}}, {y_{12}}, \cdots {y_{1\;t}}, \cdots ,{y_{m1}},{y_{m2}}, \cdots {y_{mt}})^{\mathrm{T}} 。
利用聚类中心 {\boldsymbol{V}}(m \times n) 构造传感矩阵 {\boldsymbol{W}} 。根据压缩感知模型,当混合信号长度为 mt \times 1 ,其传感矩阵 {\boldsymbol{W}} 的长度为 mt \times nt 。利用傅里叶变换正交矩阵 {{\boldsymbol{E}}_{t \times t}} 扩充矩阵 {\boldsymbol{V}} 的元素值,变换关系为 {{\boldsymbol{B}}_{ij}} = {{\boldsymbol{E}}_{t \times t}}{{\boldsymbol{V}}_{ij}} ,具体变换如式(14)所示。
{\boldsymbol{y}} = \left[ \begin{gathered} {{\boldsymbol{{\boldsymbol{B}}}}_{11}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{12}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{1n}} \\ {{\boldsymbol{B}}_{21}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{21}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{2n}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots \\ {{\boldsymbol{B}}_{m1}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{m2}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{mn}} \\ \end{gathered} \right]{\boldsymbol{x}} (14) {\boldsymbol{x}} = {({x_{11}},{x_{12}}, \cdots ,{x_{1\;t}}, \cdots ,{x_{n1}},{x_{n2}}, \cdots ,{x_{nt}})^{\mathrm{T}}} 的长度是 (nt \times 1) 。至此,盲源分离的重构模型构建完成。
OMP是一种常用的压缩感知重构算法。首先在每次迭代过程中对所有选定的原子进行Schmidt正交化,以确保每次迭代的结果都是最优解。利用OMP算法进行重构的核心思想是构造频域感知矩阵。具体算法步骤如下:
1)初始化残差 {r_0} ,迭代次数 \ell ,傅立叶正交变换矩阵 {{\boldsymbol{E}}_{t \times t}} ,并根据 {{\boldsymbol{B}}_{ij}} = {{\boldsymbol{E}}_{t \times t}}{{\boldsymbol{V}}_{ij}} 构造传感矩阵 {\boldsymbol{W}}{\kern 1pt} {\kern 1pt} {\text{ = }}{\kern 1pt} {\kern 1pt} {\kern 1pt} \left[ \begin{gathered} {{\boldsymbol{B}}_{11}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{12}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{1n}} \\ {{\boldsymbol{B}}_{21}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{21}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{2n}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots \\ {{\boldsymbol{B}}_{m1}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{m2}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{mn}} \\ \end{gathered} \right] ;
2)使用内积法计算传感矩阵 {\boldsymbol{W}} 的列向量与残差{r_i}的投影系数,并记录最大投影系数相对应的位置 {{\boldsymbol{\beta}} _i} ,随后将最大投影系数所对应的传感矩阵 {\boldsymbol{W}} 的列置0;
3)使用最小二乘法计算本次迭代的重构信号的估计值 {x_i} = {({{\boldsymbol{\beta}} _i}^{\mathrm{T}} \cdot {{\boldsymbol{\beta}} _i})^{ - 1}} \cdot {{\boldsymbol{\beta}} _i}^{\mathrm{T}} \cdot {{\boldsymbol{r}}_i} ;
4)更新残差 {r_{i + 1}} = {r_i} - {x_i} ,并重复步骤2),直到迭代结束;
5)使用 {E_{t \times t}} 做逆傅立叶变换得到维数为 (kt \times 1) 的时域信号 x ,并根据聚类中心的维数k,将维数为 (kt \times 1) 的时域信号 x 分割为k个维数为\left( {t \times 1} \right)的时域信号,从而完成信号的盲源分离。
3.3 本文算法总流程
1)平稳阶段截取:提取一组观测信号x\left( t \right)并进行STFT得到其时频表达Q\left( {t,f} \right)。随后提取时频脊线并截取恒速时段信号,获得平稳信号{x_1}\left( t \right);
2)信号预处理:构造基于 \sin C 结构元素的平均组合滤波器,并对平稳信号{x_1}\left( t \right)进行滤波降噪,得到滤波信号{x_2}\left( t \right);
3)估计混合矩阵:对滤波信号{x_2}\left( t \right)进行DPC得到聚类中心,即混合矩阵;
4)源信号重构:利用步骤3)的混合矩阵构造传感矩阵,使用OMP算法在频域重构源信号;
5)故障识别:对重构源信号进行快速傅里叶变换(fast Fourier transform,FFT)处理,根据分离信号频谱中的频率进行故障识别。
本文算法的总体流程图如图4所示。
4. 试验验证
4.1 试验介绍
试验信号来自于模拟农业机器人单关节臂往复运动的RV减速器试验台,如图5所示。将2个型号为333B30的PCB加速度传感器相互垂直安装于减速器保持架上拾取信号。水平方向为传感器1,垂直方向为传感器2。其中,试验台基座7上安装减速器保持架4,通过减速器保持架4装RV减速器5,型号为SV-X2MH100C-B2 LN的电机6输出轴通过RV减速器5连接关节臂1。图6为故障齿轮的实物图,图6a为太阳轮磨损图,图6b为行星轮磨损图。
试验选用RV40E型减速器并以针轮固定的方式固定于试验台,减速比121、行星齿轮数目为2,太阳轮齿数{Z_1} = 12,行星轮齿数{Z_2} = 42,摆线轮齿数{Z_3} = 39,针轮齿数{Z_4} = 40。采集系统包括NI-USB9234采集卡与单向加速度传感器,采样频率为25.6 kHz。试验预设摆臂运动范围为0°~90°(单次抬升或下降90°),运行速度为100°/s。RV减速器的各个特征频率计算式见表1。
表 1 RV减速器各零件的工作频率Table 1. Working frequency of each part of RV reducer名称Name 计算公式Calculation formula 电机主轴转速
Motor spindle speed {n_1}/(r·min−1){n_1} = 60f/P 太阳轮转频
Sun gear rotation frequency {f_1}/Hz{f_1} = {n_1}/60 行星轮转频
Planetary gear rotation frequency {f_2}/Hz{f_2} = \dfrac{{{z_1}{z_4}}}{{({z_3} - {z_4})\left( {{z_1} + {z_2}{z_4}} \right)}}{f_1} 一级啮合频率
First stage engagement frequency {f_{1c}}/Hz{f_{1c}} = \dfrac{{{z_1}{z_2}{z_4}}}{{{z_1} + {z_2}{z_4}}}{f_1} 注:P为伺服电机磁极对数,{{\textit{z}}_1}为太阳轮齿数,{{\textit{z}}_2}为行星轮齿数,{{\textit{z}}_3} 为摆线轮齿数,{{\textit{z}}_4} 为针轮齿数。
Note: P is the number of magnetic poles of the servo moto, {{\textit{z}}_1} is the number of solar gear, {{\textit{z}}_2} is the number of planetary gear, {{\textit{z}}_3} is the number of cycloidal gear, and {{\textit{z}}_4} is the number of needle gear.行星轮故障频率{f_p}为行星轮相对于行星架的旋转频率,{f_p} = {f_2} - {f_3};太阳轮故障频率{f_s}为太阳轮相对于行星架的旋转频率,{f_s} = {f_1} + {f_3}。由于摆臂转速=100(°)/s =0.27 Hz,即支撑盘转频{f_3}=0.27 Hz。根据表1及太阳轮故障频率计算式计算可得太阳轮故障频率{f_s}为38.34 Hz,行星轮故障频率{f_p}为10.83 Hz。
4.2 试验信号分析
由传感器1和传感器2采集的2组信号都具有相同的运动状态,即同时加速或同时减速。因此本文在平稳阶段选取水平方向传感器1的振动信号用以分析机械臂的运动状态。图7为选取的振动信号进行STFT获得的时频图。可以看出,由于RV减速器的瞬时冲击过大,无法通过时频图区分出机械臂的3种运动状态,即启动加速阶段,恒速运动阶段以及减速停滞阶段。
时频图中的脊线对应时频域中能量最大的路径,可以近似看作设备瞬时频率的时频轨迹。对时频图进行脊线提取,结果如图8所示。分析脊线走势能够较为清楚地区分机械臂的不同运行阶段,包括启动加速阶段,平稳运行阶段以及减速停滞阶段(后续分析均为此阶段)。图9a为水平方向传感器1采集信号的时域波形,图9b为垂直方向传感器2采集信号的时域波形。图9时域波形体现了机械臂启动、平稳到停止整个工作过程幅值的变化。依据图8中脊线的平稳阶段区间,在图9中标注同步截取相应时段的时域振动信号(后续分析皆是截取后的振动信号)。
图10a为截取平稳阶段传感器1的信号波形,图10b为截取平稳阶段传感器2信号波形。对图10振动信号进行SMF处理,对图10振动信号进行SMF处理,传感器2的滤波前后的信号波形对比如图11所示,从图11b中能够观测到故障所导致的冲击更加明显。
对滤波后的信号进行包络谱分析,如图12所示,传感器1和传感器2滤波信号的频谱分别如图12a、12b所示。分析图12a、12b发现,太阳轮与行星轮的故障特征频率成分完全混合在一起,故障类型判断困难。
经SMF-DPC-OMP算法处理的频谱如图13所示,图13a的频率谱线集中在37.5 Hz及其倍频,与太阳轮理论计算故障频率38.34 Hz接近,故可推断图13a为太阳轮故障。图13b的频率谱线分布在10.94 Hz及其倍频,与行星轮理论计算故障频率10.83 Hz逼近,故识别其为行星轮故障。相比图12,图13中的频率混合现象已经完全被消除,说明本文方法可实现复合故障的完全分离。采用文献[29]提出的结合形态滤波与稀疏分量分析(MF-SCA)的盲分离算法进行对比进一步验证本文方法的有效性,结果如图14所示,分析可见,图14a、14b均存在太阳轮和行星轮故障特征频率,说明MF-SCA方法无法有效实现RV减速器复合故障的分离。与MF-SCA方法相比,SMF-DPC-OMP算法能够节省约75%的时间运行成本。
5. 结 论
本文结合时频图像脊线提取、\sin C函数改进形态滤波和密度峰值聚类改进的稀疏分量分析各算法的优点,提出一种新的往复运动、变转速工况的RV减速器复合故障盲分离方法。通过RETE算法提取的脊线解决旋转机械变转速的问题,利用SMF-DPC-OMP实现了RV减速器复合故障的分离提取。试验台采集的RV减速器的太阳轮和行星轮磨损复合故障信号的分析结果显示,本文方法能够有效地完成复合故障的盲分离任务,主要结论如下:
1)RETE算法能够在变转速工况导致时频图较为模糊的情况下,识别出RV减速器的运动状态;
2)SMF-DPC-OMP算法能够在故障源数目未知的情况下,有效完成复合故障的盲分离任务;
3)与MF-SCA方法比较,SMF-DPC-OMP算法能够节省约75%的时间运行成本,使得频谱更为简洁,抑制精细侧频和干扰分量。
本文今后的工作将重点放在欠定条件下的故障提取上,或者进一步将该算法推广到旋转机械声信号的故障诊断中。
-
图 5 乡村功能多元化与乡村聚落演变耦合协调度空间趋势
注:X轴表示正东方向,Y轴表示正北方向,Z轴表示两系统的耦合协调度,红线和蓝线分别表示东西方向和南北方向的趋势线。
Figure 5. Spatial trend of coupling coordination degree of rural functional diversity and rural settlement evolution
Note: The X-axis indicates the due-east direction, the Y-axis indicates the due-north direction, the Z-axis indicates the coupling coordination of the two systems, and the red and blue lines indicate the east-west and north-south trend lines, respectively.
表 1 乡村功能多元化评价指标体系
Table 1 Rural function evaluation index system
功能层Functional layer 指标层
Indicator layer具体指标
Specific indicators计算方法
Calculation method平均权重
Average weights生产功能
Production
function农业生产功能 人均耕地面积/(hm2·人-1) 耕地面积/乡村总人口 0.016 人均粮食产量/(kg·人-1) 粮食产量/乡村总人口 0.020 乡村畜牧业产值/元 统计年鉴 0.069 乡村经果林产量(kg·人-1) 经果林产量/乡村总人口 0.026 工业发展功能 乡镇企业个数/个 统计年鉴 0.051 乡镇工业产值/元 统计年鉴 0.051 人均工矿用地面积/(hm2·人-1) 工矿用地面积/乡村总人口 0.016 乡镇工业从业人数/人 统计年鉴 0.051 生活功能
Living
function休闲旅游功能 农家乐数量/个 统计年鉴 0.076 主要风景点数量/个 统计年鉴 0.044 年接待人次/人 统计年鉴 0.076 公共服务用地占比/% 公共服务用地面积/总面积 0.158 社会保障功能 农村人均可支配收入/元 统计年鉴 0.029 人均粮食保证率/% 粮食总产量/(人口总数×400 kg/人) 0.016 区域参保比例/% 统计年鉴 0.016 乡村就业率/% 乡村地域从业人数/总人口 0.013 公路路网密度/(km·km-2) 公路总里程/总用地面积 0.106 生态功能
Ecological
function生态保育功能 土壤保持量/(t·hm-2·a-1) 土壤流失方程(RUSLE)计算 0.024 地均生态服务价值量/元 生态服务价值总量/总面积 0.013 森林覆盖率/% 森林面积/总面积 0.116 生物丰度指数 生态系统活力 0.012 注:土壤保持量、生态系统服务价值和生物丰度指数的计算方法分别见参考文献[30]、[31]、[32]。 Note: Calculation methods for soil conservation, ecosystem service value and biological abundance index are described in references[30], [31], [32], respectively. 表 2 乡村聚落演变评价体系
Table 2 Evaluation system for the evolution of rural settlements
一级指标
Level 1 indicators二级指标
Level 2 indicators计算方式
Calculation
method平均权重
Average
weight面积Area 平均斑块面积(AreaMN) Fragstats4.2中计算 0.119 形状Shape 景观形状指数(LSI) Fragstats4.2中计算 0.146 密度Density 斑块密度(PD) Fragstats4.2中计算 0.184 聚集性Aggregation 聚集度指数(AI) Fragstats4.2中计算 0.550 表 3 乡村功能多元化与乡村聚落演变耦合模式
Table 3 The coupling model of rural function diversification and rural settlement evolution
耦合关系
Coupling relationship∆Ei ∆Hi 耦合响应模式
Coupling response models协同关系
Synergistic relationships>0 >0 活力型 <0 <0 衰退型 权衡关系
Trade-off relationships>0 <0 转型型 <0 >0 传统型 注:∆Ei为乡村功能多元化综合指数变化量,∆Hi为乡村聚落演变综合指数变化量。 Note: ∆Ei denotes the change in the composite index of rural function diversification, ∆Hi denotes the change in the composite index of rural settlement evolution. 表 4 乡村功能多元化与乡村聚落演变耦合协调度驱动因素指标
Table 4 Indicators of coupling drivers of rural functional diversity and rural settlement evolution
驱动因素Influence factor 变量Variable 自然环境因素
Natural environmental factors平均高程(X1)、平均坡度(X2)、耕地面积(X3)、地形起伏度(X4)、森林覆盖度(X5) 社会经济因素
Socio-economic factors距县政府距离(X6)、人口密度(X7)、交通便利度(X8)、人均GDP(X9)、人类活动强度(X10)、土地利用程度(X11)、乡村从业人口数(X12) 注:人类活动强度、土地利用程度的计算方法分别见参考文献[36]、[37]。
Note:The calculation methods for the intensity of human activities and the degree of land use are described in references [36], [37], respectively.
表 5 耦合协调度全局Moran's I
Table 5 Global Moran's I of the coupling coordination degree
年份 Year Moran's I Z值 Z-value P值 P-value 2000 0.57 4.53 <0.001 2010 0.59 4.57 <0.001 2020 0.46 3.57 <0.001 -
[1] 徐凯,房艳刚. 辽宁省乡村多功能评价和演变特征分析[J]. 经济地理,2021,41(1):147-157. XU Kai, FANG Yangang. Rural multi-function evaluation and evolution characteristics in Liaoning Province[J]. Economic Geography, 2021, 41(1): 147-157. (in Chinese with English abstract)
[2] 张荣天,张小林. 长三角乡村多功能时空演化特征与驱动机制[J]. 农业工程学报,2022,38(13):264-272. doi: 10.11975/j.issn.1002-6819.2022.13.029 ZHANG Rongtian, ZHANG Xiaolin. Spatiotemporal evolution and driving mechanism of rural multi-functions in the Yangtze River Delta[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(13): 264-272. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.13.029
[3] 周国华,戴柳燕,贺艳华,等. 论乡村多功能演化与乡村聚落转型[J]. 农业工程学报,2020,36(19):242-251. doi: 10.11975/j.issn.1002-6819.2020.19.028 ZHOU Guohua, DAI Liuyan, HE Yanhua, et al. Rural multifunctional evolution and rural settlements transformation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 242-251. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2020.19.028
[4] HUTCHINGS P, WILLCOCK S, LYNCH K, et al. Understanding rural–urban transitions in the Global South through peri-urban turbulence[J]. Nature Sustainability, 2022, 5: 924-930. doi: 10.1038/s41893-022-00920-w
[5] 王凯歌,栗滢超,张凤荣,等. 基于要素配置功能识别的差异化乡村发展策略[J]. 农业工程学报,2021,37(3):250-258. doi: 10.11975/j.issn.1002-6819.2021.03.030 WANG Kaige, LI Yingchao, ZHANG Fengrong, et al. Differentiated development strategy of rural settlements using the function identification of factor allocation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(3): 250-258. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.03.030
[6] SIKORSKI D, LATOCHA-WITES A, SZMYTKIE R, et al. Functional changes in peripheral mountainous areas in east central Europe between 2004 and 2016 as an aspect of rural revival? Kłodzko County case study[J]. Applied Geography, 2020, 122: 102223. doi: 10.1016/j.apgeog.2020.102223
[7] CUI X, DENG X, WANG Y. Evolution characteristics and driving factors of rural regional functions in the farming-pastoral ecotone of northern China[J]. Journal of Geographical Sciences, 2023, 33(10): 1989-2010. doi: 10.1007/s11442-023-2162-2
[8] QU L, LI Y, YANG F, et al. Assessing sustainable transformation and development strategies for gully agricultural production: A case study in the Loess Plateau of China[J]. Environmental Impact Assessment Review, 2023, 104: 107325.
[9] LI X, LIU J, JIA J, et al. Relationship between multifunctionality and rural sustainable development: Insights from 129 counties of the Sichuan Province, China[J]. Chinese Journal of Population Resources and Environment, 2022, 20(3): 285-294. doi: 10.1016/j.cjpre.2022.09.010
[10] WU Z, ZENG T, CHEN H, et al. Rural transformation in the hilly and mountainous region of southern China: Livelihood trajectory and cross-scale effects[J]. Habitat International, 2024, 144: 103011. doi: 10.1016/j.habitatint.2024.103011
[11] LI H, YUAN Y, ZHANG X, et al. Evolution and transformation mechanism of the spatial structure of rural settlements from the perspective of long-term economic and social change: A case study of the Sunan region, China[J]. Journal of Rural Studies, 2019, 93(2): 234-243.
[12] MA X, SUN X, ZHEN Y, et al. Classification and spatial pattern of rural multifunction from the diversify of construction land use: Taking Tongshan District of Jiangsu Province as a case study[J]. Chinese Geographical Science, 2023, 33(5): 865-879. doi: 10.1007/s11769-023-1376-7
[13] 马耀壮,李飞,李梦飞,等. 陕西省乡村聚落内部绿色空间的景观特征及区域差异[J]. 农业工程学报,2023,39(20):244-254. (in Chinese with English abstract doi: 10.11975/j.issn.1002-6819.202306024 MA Yaozhuang, LI Fei, LI Mengfei, et al. Landscape characteristics and regional differences of the green space within the rural settlements in Shaanxi Province of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(20): 244-254. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202306024
[14] SU K, HU B, SHI K, et al. The structural and functional evolution of rural homesteads in mountainous areas: A case study of Sujiaying village in Yunnan province, China[J]. Land Use Policy, 2019, 88: 104100. doi: 10.1016/j.landusepol.2019.104100
[15] ZHANG H, CHEN W, LIU W, et al. The evolution of settlement system and the paths of rural revitalization in alpine pastoral areas of the Qinghai-Tibet Plateau: A case study of Nagqu County[J]. Ecological Indicators, 2023, 150(11): 110274.
[16] JIA K, QIAO W, CHAI Y, et al. Spatial distribution characteristics of rural settlements under diversified rural production functions: A case of Taizhou, China[J]. Habitat International, 2020, 102: 102201.
[17] WANG Y, DENG Q, YANG H, et al. Spatial-temporal differentiation and influencing factors of rural settlements in mountainous areas: An example of Liangshan Yi Autonomous Prefecture, Southwestern China[J]. Journal of Mountain Science, 2024, 21(1): 218-235. doi: 10.1007/s11629-023-8191-6
[18] 夏春华,李阳兵,黄孟勤,等. 山区社会-生态系统转型测度——以三峡典型库区为例[J]. 生态学报,2023,43(1):274-289. XIA Chunhua, LI Yangbing, HUANG Mengqin, et al. Measurement of mountain social-ecological system transformation: Taking the typical Three Gorges Reservoir Area as an example [J]. Acta Ecologica Sinica, 2023, 43(1): 274-289. (in Chinese with English abstract)
[19] 曾晨岑,李阳兵,夏春华,等. 基于聚落—坡耕地—果园空间耦合的三峡库区腹地人—地—业多样性分析[J]. 中国农业资源与区划,2023,44(6):119-134. ZENG Chencen, LI Yangbing, XIA Chunhua, et al. An analysis of the diversity of human-land-industry in the hinterland of the Three Gorges Area based on the spatial coupling of settlement-sloping farmland-orchard[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(6): 119-134. (in Chinese with English abstract)
[20] 邱坚坚,刘毅华,陈澄静,等. 生态系统服务与人类福祉耦合的空间格局及其驱动方式——以广州市为例[J]. 自然资源学报,2023,38(3):760-778. doi: 10.31497/zrzyxb.20230313 QIU Jianjian, LIU Yihua, CHEN Chengjing, et al. Spatial structure and driving pathways of the coupling between ecosystem services and human well-beings: A case study of Guangzhou[J]. Journal of Natural Resources, 2023, 38(3): 760-778. (in Chinese with English abstract) doi: 10.31497/zrzyxb.20230313
[21] 赵雯欣,李阳兵,王清荣,等. 三峡库区山区乡村功能多元化与坡耕地演变耦合关系探究[J]. 生态学报,2024,44(7):1-17. ZHAO Wenxin, LI Yangbing, WANG Qingrong, et al. The coupling relationship between functional diversification of mountain villages and evolution of sloping farmland in the Three Gorges Reservoir Area[J]. Acta Ecologica Sinica, 2024, 44(7): 1-17. (in Chinese with English abstract)
[22] 刘卫平,魏朝富. 居住形态分异视角下乡村聚落格局的演化机制[J]. 地理研究,2023,42(1):228-244. doi: 10.11821/dlyj020220337 LIU Weiping, WEI Chaofu. Evolutionary mechanism of rural settlement patterns: A perspective of residential form differentiation[J]. Geographical Research, 2023, 42(1): 228-244. (in Chinese with English abstract) doi: 10.11821/dlyj020220337
[23] 蒋雨欣,戴文远,陈娟,等. 闽东丘陵山区乡村聚落空间格局演变及其影响因素——以福建省屏南县为例[J]. 水土保持研究,2024,31(3):311-319. JIANG Yuxin, DAI Wenyuan, CHEN Juan, et al. Spatial pattern evolution and its influencing factors of rural settlements in Hillyand mountainous areas of Eastern Fujian: A case study in Pingnan County of Fujian Province[J]. Research of Soil and Water Conservation, 2024, 31(3): 311-319. (in Chinese with English abstract)
[24] 徐凯,房艳刚,周宇航. 基于“三生”视角的镇域乡村功能空间分化研究——以山东省为例[J]. 地理科学进展,2023,42(4):644-656. doi: 10.18306/dlkxjz.2023.04.003 XU Kai, FANG Yangang, ZHOU Yuhang. Spatial differentiation of rural functions from the perspective of production-living-ecological functions at the township level: A case study of Shandong Province[J]. Progress in Geography, 2023, 42(4): 644-656. (in Chinese with English abstract) doi: 10.18306/dlkxjz.2023.04.003
[25] 徐磊,王建鹏,尹士,等. 基于共生视角的河北省乡村地域多功能空间格局与分区调控[J]. 农业工程学报,2022,38(11):268-278. doi: 10.11975/j.issn.1002-6819.2022.11.030 XU Lei, WANG Jianpeng, YIN Shi, et al. Multifunctional spatial pattern and regional regulation of rural territory in Hebei Province from the perspective of symbiosis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(11): 268-278. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.11.030
[26] 杨帆,赵之枫,胡智超. 超大城市外围乡村地域功能的演化路径及定位建议[J]. 农业工程学报,2024,40(1):276-285. doi: 10.11975/j.issn.1002-6819.202306049 YANG Fan, ZHAO Zhifeng, HU Zhichao. Evolution path and positioning suggestions for rural area functions on the edge of megacities[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(1): 276-285. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202306049
[27] 包雪艳,戴文远,刘少芳,等. 城乡融合区乡村地域多功能空间分异及影响因素——以福州东部片区为例[J]. 自然资源学报,2022,37(10):2688-2702. doi: 10.31497/zrzyxb.20221015 BAO Xueyan, DAI Wenyuan, LIU Shaofang, et al. Spatial differentiation and influencing factors of rural territorial multi-functions in urban-rural integration area: A case study of Eastern Fuzhou[J]. Journal of Natural Resources, 2022, 37(10): 2688-2702. (in Chinese with English abstract) doi: 10.31497/zrzyxb.20221015
[28] 刘玉,郜允兵,潘瑜春,等. 基于多源数据的乡村功能空间特征及其权衡协同关系度量[J]. 地理研究,2021,40(7):2036-2050. doi: 10.11821/dlyj020201140 LIU Yu, GAO Yunbing, PAN Yuchun, et al. Spatial differentiation characteristics and trade-off/synergy relationships of rural multi-functions based on multi-source data[J]. Geographical Research, 2021, 40(7): 2036-2050. (in Chinese with English abstract) doi: 10.11821/dlyj020201140
[29] 尹婧博,李红,王冬艳,等. 吉林省乡村地域多功能时空变化与耦合协调测度研究[J]. 中国土地科学,2021,35(9):63-73. YIN Jingbo, LI Hong, WANG Dongyan, et al. Spatial-temporal change and coupling coordination measurement of rural territorial multi-functions in Jilin Province[J]. China Land Science, 2021, 35(9): 63-73. (in Chinese with English abstract)
[30] 刘振坤,刘峰,郑光辉,等. 基于RUSLE模型的青藏高原土壤保持功能定量评价[J]. 土壤,2024,56(1):173-181. LIU Zhenkun, LIU Feng, ZHENG Guanghui, et al. Quantitative Evaluation of Soil Conservation Function in the Qinghai-Tibet Plateau Based on RUSLE Model[J]. Soils, 2024, 56(1): 173-181. (in Chinese with English abstract)
[31] 谢高地,甄霖,鲁春霞,等. 一个基于专家知识的生态系统服务价值化方法[J]. 自然资源学报,2008,23(5):911-919. doi: 10.3321/j.issn:1000-3037.2008.05.019 XIE Gaodi, ZHEN Lin, LU Chunxia, et al. Expert knowledge based valuation method of ecosystem services in China[J]. Journal of Natural Resources, 2008, 23(5): 911-919. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-3037.2008.05.019
[32] 郭春霞,诸云强,孙伟,等. 中国1km生物丰度指数数据集[J]. 全球变化数据学报(中英文),2017,1(1):60-65+183-188. GUO Chunxia, ZHU Yunqiang, SUN Wei, et al. Dataset of Biological Abundance Index of China in 1985 and 2005 at 1 km Resolution[J]. Journal of Global Change Data & Discovery, 2017, 1(1): 60-65+183-188. (in Chinese with English abstract)
[33] 王金伟,孙洁,雷婷,等. 中国粮食生产效率与旅游发展的耦合机制及时空分异[J]. 自然资源学报,2022,37(10):2651-2671. doi: 10.31497/zrzyxb.20221013 WANG Jinwei, SUN Jie, LEI Ting, et al. Coupling mechanism and spatiotemporal differentiation between grain production efficiency and tourism development in China[J]. Journal of Natural Resources, 2022, 37(10): 2651-2671. (in Chinese with English abstract) doi: 10.31497/zrzyxb.20221013
[34] 张超正,杨钢桥,陈丹玲,等. 长江中游生态系统服务供需平衡与居民福祉耦合的时空特征[J]. 农业工程学报,2024,40(2):356-368. doi: 10.11975/j.issn.1002-6819.202307267 ZHANG Chaozheng, YANG Gangqiao, CHEN Danling, et al. Spatiotemporal coupling relationship between supply-demand balance of ecosystem services and welfare of residents in the Middle Reaches of the Yangtze River[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(2): 356-368. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202307267
[35] 李琛,吴映梅,高彬嫔,等. 高原湖泊乡村聚落空间分异及驱动力探测——以环洱海地区为例[J]. 经济地理,2022,42(4):220-229. LI Chen, WU Yingmei, GAO Binpin, et al. Spatial differentiation and driving factors of rural settlement in Plateau Lake: A case study of the area around the Erhai[J]. Economic Geography, 2022, 42(4): 220-229. (in Chinese with English abstract)
[36] 朱琳娜,赵牡丹,李云绯,等. 西安都市圈生态系统服务价值与人类活动强度的时空关系[J]. 生态与农村环境学报,2024,40(3):325-334. ZHU Linna, ZHAO Mudan, LI Yunfei, et al. The space-time relationship between the ecosystem service value and the human activity intensity in Xi'an metropolitan area[J]. Journal of Ecology and Rural Environment, 2024, 40(3): 325-334. (in Chinese with English abstract)
[37] 马松增,史明昌,杨贵森,等. 基于GIS的土地利用时空动态变化分析——以塔里木盆地农垦区为例[J]. 水土保持研究,2013,20(1):177-181. MA Songzeng, SHI Mingchang, YANG Guisen, et al. Analysis on spationtemporal change of land use based on GIS technology-taking Xinjiang Tarim Basin as an example[J]. Research of Soil and Water Conservation, 2013, 20(1): 177-181. (in Chinese with English abstract)
[38] 屠爽爽,蒋振华,龙花楼,等. 广西乡村聚落空间分异与类型划分[J]. 经济地理,2023,43(12):159-168. TU Shuang, JIANG Zhenhua, LONG Hualou, et al. Spatial pattern and classification of rural settlements in Guangxi[J]. Economic Geography, 2023, 43(12): 159-168. (in Chinese with English abstract)
[39] 林攀,余斌,武洁萌. 多维城市化与乡村地域功能演化的时空关联研究:以江汉平原为例[J]. 生态与农村环境学报,2024,40(3):345-362. LIN Pan, YU Bin, WU Jiemeng. Study on the spatio-temporal correlation between multidimensional urbanization and the evolution of rural territorial functions: A case study of Jianghan Plain[J]. Journal of Ecology and Rural Environment, 2024, 40(3): 345-362. (in Chinese with English abstract)
[40] 魏超,张梦鑫,吴洲,等. 功能视角下长江中游城市群城乡协调发展特征及障碍因素诊断[J]. 长江流域资源与环境,2023,32(10):2032-2044. WEI Chao, ZHANG Mengxin, WU Zhou, et al. Characteristcs and obstacles of coordinated urban-rural development in urban agglomeration in Mid-Yangtze River from a functional perspective[J]. Resources and Environment in the Yangtze Basin, 2023, 32(10): 2032-2044. (in Chinese with English abstract)
[41] 张玉,王介勇,刘彦随. 陕西秦巴山区地域功能转型与高质量发展路径[J]. 自然资源学报,2021,36(10):2464-2477. doi: 10.31497/zrzyxb.20211002 ZHANG Yu, WANG Jieyong, LIU Yansui. Regional function transformation and high-quality development path in Qinling-Daba Mountains of Shaanxi province[J]. Journal of Natural Resources, 2021, 36(10): 2464-2477. (in Chinese with English abstract) doi: 10.31497/zrzyxb.20211002
[42] 刘荣萍,周忠发,朱孟,等. 易地扶贫搬迁驱动下喀斯特山区乡村聚落时空演变特征[J]. 地理科学,2023,43(11):2024-2032. LIU Rongping, ZHOU Zhongfa, ZHU Meng, et al. Spatiotemporal evolution characteristics of rural settlements in Karst mountainous areas driven by poverty-alleviation relocati[J]. Scientia Geographica Sinica, 2023, 43(11): 2024-2032. (in Chinese with English abstract)
[43] 吴涛,李传武. 江苏沿海乡村聚落空间演变特征及其驱动机制:以盐城市为例[J]. 生态与农村环境学报,2024,40(3):1-12. WU Tao, LI Chuanwu. Spatial evolution and driving mechanism of rural settlements in coastal areas of Jiangsu Province: A case study of Yancheng City[J]. Journal of Ecology and Rural Environment, 2024, 40(3): 1-12. (in Chinese with English abstract)
[44] 娄帆,李小建,陈晓燕. 平原和山区县域聚落空间演变对比分析——以河南省延津县和宝丰县为例[J]. 经济地理,2017,37(4):158-166. LOU Fan, LI Xiaojian, CHEN Xiaoyan. Comparison on spatial evolution of rural settlements between the flat and the mountainous areas: Evidence from Yanjin County and Baofeng County, Henan Province[J]. Economic Geography, 2017, 37(4): 158-166. (in Chinese with English abstract)
-
期刊类型引用(4)
1. 郭俊杰,郭正红. 基于深度置信网络的旋转机械在线故障诊断. 计算机测量与控制. 2025(01): 60-68 . 百度学术
2. 刘喜庆,张文豪,潘真真. 基于DAL的工业机器人RV齿轮箱故障识别分析. 现代工业经济和信息化. 2024(09): 217-219 . 百度学术
3. 高国泽,郭瑜,赵博涵,王红伟. 基于瞬时角速度信号窄带解调的RV减速器针齿故障检测. 振动与冲击. 2024(22): 155-161+208 . 百度学术
4. 孙长胜,曹浩男. 基于VMD和CNN方法的电机传动系统故障诊断研究. 机械管理开发. 2024(12): 75-77 . 百度学术
其他类型引用(1)