• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

荒漠草原生长季不同时间尺度水热通量变化特征及其影响因子

韩信, 张宝忠, 车政, 王军, 周青云, 韩娜娜

韩信,张宝忠,车政,等. 荒漠草原生长季不同时间尺度水热通量变化特征及其影响因子[J]. 农业工程学报,2024,40(15):65-75. DOI: 10.11975/j.issn.1002-6819.202403135
引用本文: 韩信,张宝忠,车政,等. 荒漠草原生长季不同时间尺度水热通量变化特征及其影响因子[J]. 农业工程学报,2024,40(15):65-75. DOI: 10.11975/j.issn.1002-6819.202403135
HAN Xin, ZHANG Baozhong, CHE Zheng, et al. Characteristics and impact factors of water and heat flux changes at different time scales during the growing season of desert grasslands[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(15): 65-75. DOI: 10.11975/j.issn.1002-6819.202403135
Citation: HAN Xin, ZHANG Baozhong, CHE Zheng, et al. Characteristics and impact factors of water and heat flux changes at different time scales during the growing season of desert grasslands[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(15): 65-75. DOI: 10.11975/j.issn.1002-6819.202403135

荒漠草原生长季不同时间尺度水热通量变化特征及其影响因子

基金项目: 中国水利水电科学研究院内蒙古阴山北麓草原生态水文国家野外科学观测研究站开放研究基金项目(YSS202110);国家自然科学基金项目(52130906);中建六局科技研发课题(CSCEC6B-2023-Z-11);中国水利水电科学研究院基本科研业务专项项目(ID0145B022021);天津市主要农作物智能育种重点实验室青年开放基金项目(KLIBMC2303)
详细信息
    作者简介:

    韩信,博士,硕士生导师,研究方向为陆地水热循环与水资源高效利用。Email:xinhan@tjau.edu.cn

    通讯作者:

    张宝忠,博士,正高级工程师,博士生导师,研究方向为农业用水效率多时空尺度转换与综合评价。Email:zhangbz@iwhr.com

  • 中图分类号: S126

Characteristics and impact factors of water and heat flux changes at different time scales during the growing season of desert grasslands

  • 摘要:

    荒漠草原水热通量变化特征及其影响因素分析对提高区域水热交换规律认识和了解其在气候变化中的作用具有重要意义。该研究基于内蒙古荒漠草原2018和2019年4—10月涡度相关系统与相应的环境因子观测资料,分析了荒漠草原不同时间尺度水热通量(感热通量(sensible heat flux,H)和潜热通量(latent heat flux,LE))及能量占比(H/LE)的变化特征及其环境因子调控机制。结果表明:1)H为该生态系统的主要能量消耗形式,且同一环境因子在不同生育期对H、LE、H/LE的影响存在差异;2)小时尺度上,H、LE呈单峰型变化,峰值均主要出现在12:00—14:00之间,且LE峰值出现时间较H滞后1~2 h。H的主要影响因素为平均风速(wind speed,Ws),相对湿度(relative humidity,RH)、饱和水汽压差(vapor pressure deficit,VPD)和空气温度(air temperature,Ta),相关系数(correlation coefficient,r)绝对值大小分别为Ws(0.72)> RH(0.66)> VPD(0.61)>Ta(0.38)。LE的主要影响因素为Ta、VPD、地面温度(soil temperature,Ts)和降雨(precipitation,P);3)日尺度上,H、LE呈明显的季节变化,H的主要影响因素是RH、Ws、Ts、Ta、P和VPD,LE主要影响因素为RH、Ws、Ts和Ta;4)月尺度上,H、LE近似呈单峰型变化,夏季能量消散方式以LE为主,H的主要影响因素为RH、Ws和VPD,其中VPD正效应最强(r=0.75),P对LE的正效应最强(r=0.75),而RH对H/LE的负效应最强(r=-0.76)。研究结果有利于准确理解多时间尺度下荒漠草原H和LE对环境因子的响应,同时可为草原生态功能区的植被恢复、生态环境保护提供理论依据和技术支撑。

    Abstract:

    Water and heat flux is a key components for the energy exchange of surface air in atmospheric circulation. The driving mechanism can include the sensible heat flux (H) and latent heat flux (LE). There is a great variation in the water and heat flux in desert grasslands. The influencing factors are of great significance to understanding the regional exchange of water and heat flux against climate change. This study aims to explore the variation patterns of water and heat flux at different time scales. The eddy covariance and continuous observation were also utilized from automatic meteorological stations in Xilamuren Town, Damao Banner, Inner Mongolia, China. After that, the regulatory mechanisms of environmental factors were proposed for the desert grassland during growing seasons (April to October) in 2018 and 2019. A systematic analysis was made on the H, LE, and energy ratio (H/LE) in the desert grasslands at different time scales, together with their environmental control mechanisms. The results indicated that the H of plants was the main form of near-surface energy consumption in the desert grassland during the growth season. There was an unimodal variation in the H and LE on an hourly scale. The H and LE peaks mainly occurred between 12:00 and 14:00, where the time of LE peak occurrence was lagged by 1-2 h, compared with the H. The variation range of H and LE between 8:00—18:00 was 0.1-160.5 and 15.4-90.9 W/m2, respectively. The main influencing factors of H were the wind speed (Ws), relative humidity (RH), vapor pressure deficit (VPD) and air temperature (Ta)with the correlation coefficients (r) of 0.72, -0.66, 0.61 and 0.38, respectively. The main influencing factors of LE were Ta, VPD, and ground soil temperature (Ts) and precipitation (P), with r of 0.76, 0.67, 0.61, and 0.37, respectively. The main influencing factors of H/LE were RH, Ws, and VPD, with r values of -0.74, 0.86, and 0.24, respectively. There was an outstanding seasonal variation in the H and LE on a daily scale. The maximum is also reached before and after the middle stage of plant growth. The daily variation ranges of H, LE, and H/LE during the plant growth season were 4.2-186.1, 1.3-160.9 W/m2, and 0.2-29.4, respectively. The main influencing factors of H were RH, Ws, Ts, Ta, P, and VPD, with correlation coefficients of -0.41, 0.13, 0.17, 0.21, -0.15, and 0.39, respectively. The main influencing factors of LE were RH, Ws, Ts, and Ta, there was no significant correlation with P. The main influencing factor of H/LE was the RH with a correlation coefficient of -0.16, which was not significantly correlated with other factors. On a monthly scale, the H and LE were approximated a unimodal change. The average H and LE reached the maximum in June and August. The variation ranged of H and LE were 36.4-133.8 and 15.6-96.3 W/m2, respectively, from April to October. The LE was the main mode of energy dissipation in summer. The main influencing factors of H were the Ts, Ta, and VPD, where there was the strongest positive correlation of VPD. The LE was significantly correlated with the RH, Ws, Ts, Ta, and P, where the P shared the strongest positive correlation (r =0.75). There was a significant correlation between H/LE with RH, Ws and P, in which the RH having the strongest positive correlation (r =-0.76). The finding can provide the theoretical basis and practical significance for vegetation restoration and environment protection in ecological functional grassland.

  • 图  1   涡度相关系统

    Figure  1.   Eddy covariance

    图  2   2018和2019年(4—10月)的日间(08:00—18:00)能量平衡率

    Figure  2.   Daytime (08:00—18:00) energy balance rates for 2018 and 2019 (April—October)

    图  3   2018和2019年不同生育期(早、中、后期)环境因子小时尺度变化

    Figure  3.   Hourly scale changes in environmental factors during different growth periods (early, medium, and later stages) in 2018 and 2019

    图  4   2018和2019年植物生长季环境因子日尺度变化规律

    Figure  4.   Daily scale changes in environmental factors during plant growth seasons in 2018 and 2019

    图  5   2018年和2019年小时尺度感热通量H和潜热通量LE变化

    注:图例中1为2018年,2为2019年。

    Figure  5.   Hourly scale H (sensible heat flux) and LE (latent heat flux) changes in 2018 and 2019

    Note:1 is 2018 and 2 is 2019 in legend.

    图  6   2018和2019年日尺度H、LE和H/LE变化

    Figure  6.   Daily scale H, LE, and H/LE changes in 2018 and 2019

    图  7   不同时间尺度不同生育期H、LE、H/LE对环境因子的响应

    Figure  7.   Responses of H, LE, and H/LE to environmental factors at different time scales in growth stages

    表  1   2018和2019年植物生长季环境因子月均值

    Table  1   Monthly mean values in environmental factors during plant growth seasons in 2018 and 2019

    年份
    Year
    月份
    Month
    Ts/(℃) Ta/(℃) RH/(%) Ws/(m·s-1) P/(mm) VPD/(kPa)
    2018 4 9.3 11.3 39.5 5.0 0.4 1.1
    5 18.3 19.4 31.1 4.5 0.3 1.7
    6 23.5 24.0 30.4 4.2 0.2 2.2
    7 24.3 24.4 58.6 3.5 2.1 1.4
    8 24.2 23.2 57.3 2.4 1.6 1.3
    9 14.0 13.4 54.0 4.1 2.1 0.8
    10 5.3 7.0 42.1 3.5 0.0 0.6
    2019 4 8.2 12.1 35.5 4.3 0.4 1.0
    5 14.3 16.6 29.8 5.2 0.4 1.5
    6 21.7 22.7 39.0 3.9 0.3 1.8
    7 22.7 23.4 48.9 3.4 1.0 1.6
    8 20.2 20.2 57.3 2.8 2.9 1.1
    9 17.2 18.8 48.0 2.5 0.8 1.3
    10 8.0 9.3 43.0 3.3 0.1 0.8
    下载: 导出CSV

    表  2   2018年和2019年H、LE和H/LE不同生育期日均值

    Table  2   Daily mean values of H, LE, and H/LE at different reproductive stages in 2018 and 2019

    年份
    Year
    生育期
    Growth period
    时段
    Time interval
    H/
    (W·m−2)
    LE/
    (W·m−2)
    H/LE
    2018 早期 04-01—05-31 105.8 32.2 3.3
    中期 06-01—08-31 92.5 63.1 1.5
    后期 09-01—10-31 51.0 32.0 1.6
    全生长季 04-01—10-31 84.5 44.1 1.9
    2019 早期 04-01—05-31 99.6 32.2 3.1
    中期 06-01—08-31 73.3 64.5 1.1
    后期 09-01—10-31 58.2 40.2 1.4
    全生长季 04-01—10-31 76.6 48.4 1.6
    下载: 导出CSV

    表  3   2018年和2019年H、LE和H/LE不同生育期月均值

    Table  3   Monthly mean values of H, LE, and H/LE at different reproductive stages in 2018 and 2019

    年份Year 月份Month H/(W·m−2) LE/(W·m−2) H/LE P/mm
    2018 4 92.2 27.9 3.3 12.6
    5 118.9 36.4 3.3 10.4
    6 133.8 21.0 6.4 6.3
    7 82.9 61.9 1.3 64.0
    8 62.2 96.3 0.6 47.7
    9 66.1 46.9 1.4 63.7
    10 36.4 17.5 2.1 0.6
    2019 4 93.5 24.9 3.8 11.0
    5 105.6 39.3 2.7 12.3
    6 86.4 51.1 1.7 9.0
    7 81.2 57.1 1.4 30.4
    8 52.8 84.7 0.6 88.4
    9 52.4 66.6 0.8 23.6
    10 63.7 15.6 4.1 4.1
    下载: 导出CSV
  • [1] 施生锦,黄彬香,刘绍民,等. 大尺度水热通量观测系统的研制[J]. 地球科学进展,2010,25(11):1128-1138.

    SHI Shengjin, HUANG Binxiang, LIU Shaomin, et al. Development of a measuring system for surface energy and water vapor fluxes at large scale[J]. Advances in earth science, 2010, 25(11): 1128-1138. (in Chinese with English abstract)

    [2] 李思恩,康绍忠,朱治林,等. 应用涡度相关技术监测地表蒸发蒸腾量的研究进展[J]. 中国农业科学,2008,41(9):2720-2726. doi: 10.3864/j.issn.0578-1752.2008.09.020

    LI Sien, KANG Shaozhong, ZHU Zhilin, et al. Research progress of measurement of land surface evapotranspiration based on eddy covariance technology[J]. Scientia Agricultura Sinica, 2008, 41(9): 2720-2726. (in Chinese with English abstract) doi: 10.3864/j.issn.0578-1752.2008.09.020

    [3] 杨晓君. 科尔沁地沙丘和草甸生态系统水热碳通量特征研究[D]. 呼和浩特:内蒙古农业大学,2020.

    YANG Xiaojun. Study on Water, Heat and Carbon Fluxes Characteristics in Horqin Sand Dune and Meadow Ecosystem[D]. Hohhot: Inner Mongolia Agricultural University, 2020. (in Chinese with English abstract)

    [4] 王婧,刘廷玺,雷慧闽,等. 基于涡度相关的半干旱区沙丘-草甸水热通量对比分析[J]. 干旱区研究,2016,33(3):593-600.

    WANG Jing, LIU Yanxi, LEI Huimin, et al. Heat and water vapor fluxes of Dune-Meadow landscape in semiarid area based on eddy covariance measurements[J]. Arid Zone Research, 2016, 33(3): 593-600. (in Chinese with English abstract)

    [5] 李辉东,关德新,袁凤辉,等. 科尔沁温带草甸能量平衡的日季变化特征[J]. 应用生态学报,2014,25(1):69-76.

    LI Huidong, GUAN Dexin, YUAN Fenghui, et al. Diurnal and seasonal variations of energy balance over Horqin Meadow[J]. Chinese Journal of Applied Ecology, 2014, 25(1): 69-76. (in Chinese with English abstract)

    [6] 付 强,颜培儒,李天霄,等. 冻融期不同覆盖和气象因子对土壤导热率和热通量的影响[J]. 农业工程学报,2017,33(20):98-105. doi: 10.11975/j.issn.1002-6819.2017.20.013

    FU Qiang, YAN Peiru, LI Tianxiao, et al. Influence of different coverage and meteorological factors on soil thermal conductivity and heat flux during freezing and thawing period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 98-105. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2017.20.013

    [7] 黄天宇,刘廷玺,段利民,等. 科尔沁沙地梯级生态带水热通量变化特征及气候学足迹[J]. 中国沙漠,2019,39(6):30-39.

    HUANG Tianyu, LIU Yanxi, DUAN Limin, et al. Characteristics of water and heat fluxes and its footprint climatology in Horqin cascade ecological zone[J]. Journal of Desert Research, 2019, 39(6): 30-39. (in Chinese with English abstract)

    [8] 李辉东,关德新,袁风辉,等. 科尔沁草甸生态系统水分利用效率及影响因素[J]. 生态学报,2015,35(2):478-488.

    LI Huidong, GUAN Dexin, YUAN Fenghui, et al. Water use efficiency and its influential factor over Horqin Meadow[J]. Acta Ecologica Sinica, 2015, 35(2): 478-488. (in Chinese with English abstract)

    [9]

    WU J B, GUAN D X, HAN S J, et al. Energy budget above a temperate mixed forest in northeastern China[J]. Hydrological Processes: An International Journal, 2007, 21(18): 2425-2434. doi: 10.1002/hyp.6395

    [10]

    KOSUGI Y, TAKANASHI S, TANAKA H, et al. Evapotranspiration over a Japanese cypress forest Eddy covariance fluxes and surface conductance characteristics for 3 years[J]. Journal of Hydrology, 2007, 337(3/4): 269-283. doi: 10.1016/j.jhydrol.2007.01.039

    [11]

    JIA X, ZHA T S, WU B, et al. Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China[J]. Biogeosciences, 2014, 11(17): 4679-4693.

    [12]

    OU Y Z T, CHEN J Q, BECKER R, et al. Disentangling the confounding effects of PAR and air temperature on net ecosystem exchange at multiple time scales[J]. Ecological Complexity, 2014, 19: 46-58. doi: 10.1016/j.ecocom.2014.04.005

    [13] 李亚威,刘笑吟,徐哲威,等. 不同蒸散量时间尺度提升法用于节水灌溉稻田的对比分析[J]. 农业工程学报,2021,37(21):90-99. doi: 10.11975/j.issn.1002-6819.2021.21.011

    LI Yawei, LIU Xiaoyin, XU Zhewei, et al. Comparative analysis of different temporal up-scaling methods for evapotranspiration applied to water-saving irrigated paddy fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(21): 90-99. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.21.011

    [14] 金艳,廖立国,张颖,等. 西双版纳热带季雨林通量分配及能量平衡问题[J]. 热带亚热带植物学报,2022,30(4):472-482.

    JIN Yan, LIAO Liguo, ZHANG Ying, et al. Studies on the flux distribution and energy closure in Xishuangbanna Tropical Seasonal Rainforest, China[J]. Journal of Tropical and Subtropical Botany, 2022, 30(4): 472-482. (in Chinese with English abstract)

    [15] 王云霞. 内蒙古半农半牧区草原退化与合理利用研究[J]. 内蒙古农业大学学报 (社会科学版),2010,12(3):56-59.

    WANG Yunxia. Study on grassland degradation and reasonable utilization in the half agriculture and half pastoral areas of Inner Mongolia[J]. Journal of Inner Mongolia Agricultural University (Social Science Editon), 2010, 12(3): 56-59. (in Chinese with English abstract)

    [16] 王炜,刘钟龄,郝敦元,等. 内蒙古退化草原植被对禁牧的动态响应[J]. 气候与环境研究,1997,2(3):236-240. doi: 10.3878/j.issn.1006-9585.1997.03.04

    WANG Wei, LIU Zhongling, HAO Dunyuan, et al. Dynamic response of degraded grassland vegetation in Inner Mongolia to grazing prohibition[J]. Climatic and Environmental Research, 1997, 2(3): 236-240. (in Chinese with English abstract) doi: 10.3878/j.issn.1006-9585.1997.03.04

    [17] 邹旭东,蔡福,李荣平,等. 玉米农田水热通量及能量变化研究[J]. 生态环境学报,2021,30(8):1642-1653.

    ZOU Xudong, CAI Fu, LI Rongping, et al. Study on water and heat flux and energy change of maize field[J]. Ecology and Environment Sciences, 2021, 30(8): 1642-1653. (in Chinese with English abstract)

    [18]

    LAUNIAINEN S. Seasonal and inter-annual variability of energy exchange above a boreal scoots pine forest[J]. Biogeosciences, 2010, 7(12): 3921-3940. doi: 10.5194/bg-7-3921-2010

    [19]

    RIGDEN J, SALVUCCI G, ENTEKHAB D, et al. Partitioning evapotranspiration over the continental United States using weather station data[J]. Geophysical Research Letters, 2018, 45(18): 9605-9613. doi: 10.1029/2018GL079121

    [20]

    WEI Z, YOSHIMURA K, WANG L, et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration[J]. Geophysical Research Letters, 2017, 44(6): 2792-2801. doi: 10.1002/2016GL072235

    [21]

    SCOTT R, BIEDERMAN J. Partitioning evapotranspiration using long-term carbon dioxide and water vapor fluxes[J]. Geophysical Research Letters, 2017, 44(13): 6833-6840. doi: 10.1002/2017GL074324

    [22]

    SUN X, WILCOX B, ZOU C. , et al. Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies[J]. Journal of Hydrology, 2019, 576: 123-136. doi: 10.1016/j.jhydrol.2019.06.022

    [23]

    JIN L, ZHANG H, HE Q, et al. Comparison of the sensible heat flux determined by large-aperture scintillometer and eddy covariance measurements with respect to the energy balance problem in the Taklimakan Desert[J]. Boundary-Layer Meteorology, 2022, 185(3): 365-393. doi: 10.1007/s10546-022-00736-3

    [24] 沈贝贝,魏一博,马磊超,等. 内蒙古草原植被覆盖度时空格局变化及驱动因素分析[J]. 农业工程学报,2022,38(12):118-126. doi: 10.11975/j.issn.1002-6819.2022.12.014

    SHEN Beibei, WEI Yibo, MA Leichao, et al. Spatiotemporal changes and drivers of fractional vegetation cover in Inner Mongolia grassland of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(12): 118-126. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.12.014

    [25]

    LI X, GAO Z Q, LI Y B, et al. Comparison of sensible heat fluxes measured by a large aperture scintillometer and eddy covariance system over a heterogeneous farmland in east China[J]. Atmosphere, 2017, 8(6): 101. doi: 10.3390/atmos8060101

    [26]

    SUN G H, HU Z Y, SUN FL, et al. An analysis on the influence of spatial scales on sensible heat fluxes in the north Tibetan plateau based on eddy covariance and large aperture scintillometer data[J]. Theoretical and Applied Climatology, 2017, 129(3/4): 965-976.

    [27]

    ZHANG J H, DING Z H, HAN S J, et al. Turbulence regime near the forest floor of a mixed broad leaved Korean pine forest in Changbai Mountain[J]. Journal of Forestry Research, 2002, 13: 119-122. doi: 10.1007/BF02857234

    [28] 张果,周广胜,阳伏林. 内蒙古温带荒漠草原生态系统水热通量动态[J]. 应用生态学报,2010,21(3):597-603.

    ZHANG Guo, ZHOU Guansheng, YANG Fulin. Dynamics of sensible and latent heat fluxes over a temperate desert steppe ecosystem in Inner Mongolia[J]. Journal of Applied Ecology, 2010, 21(3): 597-603. (in Chinese with English abstract)

    [29]

    SUN C, JIANG H, CHEN J, et al. Energy flux and balance analysis of Phyllostachys edulis forest ecosystem in subtropical China[J]. Acta Ecologica Sinica, 2015, 35(12): 4128-4136.

    [30] 徐亚琪,陈妮娜,高西宁,等. 科尔沁草甸草地生长季能量平衡特征[J]. 气象与环境学报,2012,28(3):31-36. doi: 10.3969/j.issn.1673-503X.2012.03.006

    XU Yaqi, CHEN Nina, GAO Xining, et al. Characteristics of energy balance on Horqin meadow during growth season[J]. Journal of Meteorology and Environment, 2012, 28(3): 31-36. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-503X.2012.03.006

    [31]

    WANG Y F, LV W W, XUE K, et al. 2022. Grassland changes and adaptive management on the Qinghai-Tibetan Plateau[J]. Nature Reviews Earth & Environment, 2022, 3(10): 668-683.

    [32] 张思敏,郝丽娜,童新,等. 科尔沁沙地沙丘生态系统水热通量特征及影响驱动因子[J]. 中国环境科学,2024,44(2):1041-1052.

    ZHANG Simin, HAO Lina, TONG Xin, et al. Water and heat flux characteristics and driving factors of dune ecosystem in Horqin Sandy Land[J]. China Environmental Science, 2024, 44(2): 1041-1052. (in Chinese with English abstract)

    [33]

    HIESTAND M P, CARLETON A M, DAVIS K J. Interannual, sub-seasonal and spatial variations in growing season surface heat fluxes for the U. S. Corn Belt[J]. Agricultural and Forest Meteorology, 2023, 332: 109377. doi: 10.1016/j.agrformet.2023.109377

    [34] 于洪亮,赵越,李淑贞,等. 呼伦贝尔草甸草原不同显热通量观测方法比较[J]. 农业工程学报,2023,39(21):88-97. doi: 10.11975/j.issn.1002-6819.202306117

    YU Hongliang, ZHAO Yue, LI Shuzhen, et al. Comparation of observation methods of sensible heat flux in Hulunbuir meadow steppe[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(21): 88-97. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202306117

    [35]

    LIN H Q, LI Y, ZHAO L. Partitioning of sensible and latent heat fluxes in different vegetation types and their spatiotemporal variations based on 203FLUXNET sites[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(21): e2022JD037142.

    [36] 徐诗韵,徐彦森,张宇杰,等. 地表臭氧浓度升高对麦田水热通量的影响[J]. 农业工程学报,2024,40(8):116-124. doi: 10.11975/j.issn.1002-6819.202309059

    XU Shiyun, XU Yansen, ZHANG Yujie, et al. Effects of elevated ozone on the water and heat flux of winter wheat in farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(8): 116-124. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202309059

    [37] 王壮壮,吕雅琼,魏达,等. 围栏封育下藏北高寒湿地和高寒草原水热通量[J]. 高原气象,2023,42(6):1416-1428. doi: 10.7522/j.issn.1000-0534.2023.00005

    WANG Zhuangzhuang, LV Yaqiong, WEI Da, et al. Water and heat flux characteristics of alpine wetland and alpine steppe under grazing exclusion on the northern Xizang[J]. Plateau Meteorology, 2023, 42(6): 1416-1428. (in Chinese with English abstract) doi: 10.7522/j.issn.1000-0534.2023.00005

    [38]

    ZHAO X L, WANG J B, YE H, et al. The bowen ratio of an alpine grassland in Three-River Headwaters, Qinghai-Tibet Plateau, from 2001 to 2018[J]. Journal of Resources and Ecology, 2021, 12(3): 305-318.

    [39]

    FU Y F, MA Y M, ZHONG L, et al. Land-surface processes and summer-cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: A review and perspective[J]. National Science Review, 2020, 7(3): 500-515. doi: 10.1093/nsr/nwz226

    [40]

    GUO L M, CHANG J, XU H L, et al. Modelling plant canopy effects on water-heat exchange in the freezing-thawing processes of active layer on the Qinghai-Tibet Plateau[J]. Journal of Mountain Science, 2021, 18(6): 1564-1579. doi: 10.1007/s11629-020-6335-5

    [41] 陈东旭,黄萧霖,陈留根,等. 长江中下游地区稻田不同时间尺度土壤热通量特征分析[J]. 水土保持研究,2021,28(4):151-158.

    CHEN Dongxu, HUANG Xiaolin, CHEN Liugen, et al. Analysis of soil heat flux characteristics at different times scales in paddy field in the middle and lower reaches of the Yangtze River[J]. Research of Soil and Water Conservation, 2021, 28(4): 151-158. (in Chinese with English abstract)

图(7)  /  表(3)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  13
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 修回日期:  2024-06-18
  • 刊出日期:  2024-08-14

目录

    /

    返回文章
    返回