Processing math: 100%
    • EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

铁铝土泥浆包覆与淬灭强化荔枝木炭化物的碳固存率

校亮, 吴静华, 李文瀚, 李悦诗, 袁国栋

校亮,吴静华,李文瀚,等. 铁铝土泥浆包覆与淬灭强化荔枝木炭化物的碳固存率[J]. 农业工程学报,2024,40(13):214-221. DOI: 10.11975/j.issn.1002-6819.202404012
引用本文: 校亮,吴静华,李文瀚,等. 铁铝土泥浆包覆与淬灭强化荔枝木炭化物的碳固存率[J]. 农业工程学报,2024,40(13):214-221. DOI: 10.11975/j.issn.1002-6819.202404012
XIAO Liang, WU Jinghua, LI Wenhan, et al. Enhanced carbon capture capacity in biochar from pyrolysis of Litchi branches with soil (Ferrasols) slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(13): 214-221. DOI: 10.11975/j.issn.1002-6819.202404012
Citation: XIAO Liang, WU Jinghua, LI Wenhan, et al. Enhanced carbon capture capacity in biochar from pyrolysis of Litchi branches with soil (Ferrasols) slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(13): 214-221. DOI: 10.11975/j.issn.1002-6819.202404012

铁铝土泥浆包覆与淬灭强化荔枝木炭化物的碳固存率

基金项目: 广东省基础与应用基础研究基金项目(2022A1515110330);广东省环境健康与资源利用重点实验室(2020121201014);2023年广东省普通高校特色创新类项目(2023KTSCX155);肇庆学院“人才特区”项目(2022BSZ005)
详细信息
    作者简介:

    校亮,博士,研究方向为碳负排放技术和低碳健康农业。Email:xiaoliang@zqu.edu.cn

    通讯作者:

    袁国栋,博士,特聘教授,博士生导师,研究方向为碳中和方面的科学研究和技术开发。Email:yuanguodong@zqu.edu.cn

  • 中图分类号: S216.2

Enhanced carbon capture capacity in biochar from pyrolysis of Litchi branches with soil (Ferrasols) slurry

  • 摘要:

    生物质炭作为一种富碳多孔材料,具有固碳、减污和培肥等多重功效。基于当前限氧高温热裂解制炭技术及炭改性方法,该研究以亚热带地区常见的荔枝木为原材料、选取铁铝土制成泥浆,通过泥浆包覆和淬灭实现生物质“自限氧”和“水”淬灭,探讨铁铝土泥浆在荔枝木炭化过程中的作用及其对炭质的影响机理。结果表明:铁铝土泥浆包覆和淬灭制得的荔枝木炭的碳含量和碳固存率最高,分别为83.5%和83.9%,较无包覆水淬灭炭品的碳含量和碳固存率提高了16.7和37.8个百分点。扫描电镜-能谱分析的结果表明,铁铝土泥浆包覆和淬灭生成的炭品的碳骨架结构规整且其表面有铁铝矿物负载。一方面,泥浆通过涂层包覆形成了包覆壳,以物理阻隔作用截留了碳(防止炭化物中的碳在持续燃烧中生成COX);另一方面,铁铝矿物在高温热裂解过程中与炭化物结合,形成了矿质(Fe/Al)-碳质复合体,实现了碳固存。研究可为生物质炭的制备提供新的便捷、廉价的技术思路,以生物质就地炭化和应用的碳负排放方案助力碳中和。

    Abstract:

    Biochar is one of the most important carbon-rich minerals with a porous structure in the carbon sequestration, immobilization of metal and organic contaminants, as well as soil fertility improvement. However, its large-scale use is very limited in the agriculture and environment, due to the high cost of production and transportation from agricultural biowaste to plant. In this study, a new technology was explored to directly convert from agricultural biowaste to biochar in the field. The local applications had significantly reduced the costs of biochar. Inspired by nature, biochar production was also proposed in the field, where only agricultural biowaste, water, and fire were required for biomass carbonization and charcoal formation; Specifically, Litchi branches sourced from subtropical regions were utilized as feedstock to explore an on-site production of biochar. Soil (Ferralsols) slurry was applied as a coating and quenching agent to create an oxygen-limited environment during fire-water coupled carbonization of the feedstock. This self-limiting oxidation approach was used to minimize the expenses of production, transportation, and utilization. Biochar that was produced with soil slurry coating and quenching also displayed the highest carbon content (83.5%) and carbon capture capacity (83.9%), exceeding unconverted biomass and biochar produced without coating by 16.7% and 37.8%, respectively. The burning process of Litchi branches was divided into three stages: 1) Surface was charred immediately but with an unburned core; 2) Surface was grayed out, while the core was in a self-ignition state with high temperature and limited oxygen, and the dark red char fell to the ground; and 3) The dark red char gradually burned out to be ash. Spraying water on the dark red char was used to prevent the occurrence of the 3rd stage, thus favoring the formation of biochar instead of ash. Furthermore, the soil coating likely acted as a barrier, thus reducing carbon monoxide or carbon dioxide release during combustion. Additionally, the soil integration was facilitated to form the mineral-carbon composite for the carbon capture. Scanning electron microscopy and energy spectroscopy analysis show that the regular structure of the carbon skeleton was observed after coating and quenching the iron-aluminum slurry. The iron-aluminum minerals were also loaded on the surface. A novel approach to carbonization accelerated a paradigm shift in biochar production from a sophisticated stationary facility to a simple way for practical use in the field. Low cost greatly contributed to the agricultural and environmental application of biochar. The economically viable combination of fire and soil (Ferralsols) slurry coupled carbonization can be expected to provide valuable insights for biochar adoption and carbon neutrality. In conclusion, the readily available agricultural residues and soil-based coatings can be integrated to mitigate the environmental impact of biochar production, in order to enhance the efficacy as a carbon capture. These findings can offer significant implications for the broader adoption of biochar as a sustainable solution, in order to promote climate and soil health.

  • 生物质炭是由农林废弃物等生物质经限氧高温热裂解过程产生的含碳材料[1-3],其具有固碳培肥[4-6]、减轻污染[7-9]、保护农业生态等功能[10-12]。生物质炭作为二氧化碳(CO2)负排放途径[13-14],也是应对全球气候变化的技术选项之一。生物质炭主要通过将生物质中的有机碳转化为稳定的芳香碳结构来固存碳元素以实现碳封存[15-17]。据报道,全球每年可通过生物质炭封存0.3~2 Gt的CO2,相当于能源部门年CO2排放量(36.8 Gt)的0.8%~5.4%[18]。然而,CO2捕集利用与碳封存(Carbon Capture, Utilization and Storage, CCUS)年度报告(2023)指出,全球每年仅有0.2 Gt CO2通过生物质炭封存,这尚未减去生物质炭生产过程中所产生的碳排放量,表明将生物质炭的潜在产能转化为实际产能并应用仍存在一定难度。

    目前,主流的限氧高温热裂解技术生成的生物质炭价格高达800~3 700 元/t,而施用其带来的新增平均收益仅为600 元/t[19],生产成本与其效益的巨大差距决定了其生产规模(国内年产量仅约100 万 t)和应用前景有限[20-22]。因而,亟需转变范式,在生物质炭的生产方式上创新思路。毋庸置疑,在生物质炭化过程中,限氧对于成炭不可或缺,但是否需要专门的设备来限氧,则直接关系到生物质炭的生产成本。近年来,一些矿物改性、限氧制炭的研究表明[23-26],掺Ca或Fe共热解可提升生物质炭的碳含量,指出Ca、Fe不仅通过催化作用加速了热化学反应,还以物理阻隔(CaCO3或Fe2O3包裹形成保护壳)和化学键桥(阻止C=O键进一步断裂生成气体COx)的方式截留了碳。有鉴于此,矿物包覆下“自限氧”制炭或可为生物质炭的制备提供新的技术思路。

    受南美亚马逊流域黑土形成与森林火灾衍生木炭的启发[21-22],借鉴现有的矿物改性制炭方法[23-26],XIAO等[27-28]提出了采用水-火联动方法和石灰水涂层措施进行原位曝氧炭化的技术,其通过石灰水涂层形成包覆壳实现生物质“自限氧”,采用水-火联动方法制炭;并参照影响限氧炭化的因素(升温速率、保留时间、炭化温度),提出了曝氧炭化过程中影响炭品性质的关键因素:火墨(燃烧体跌落地面形成的通体发红的高温物质)、暴露时间(火墨跌落地面至淋水淬灭前的时段)和成炭温度(淋水淬灭时火墨表面的温度),指出0~30 s暴露时间下炭品性质最佳,初步推测了其提高碳含量的作用过程。不足之处在于,该研究并未探明石灰水涂层在炭化过程中的作用机理;同时,炭化过程中涂层的原位获取也存在一定困难。

    鉴于此,本研究以南亚热带地区常见的农林废弃物荔枝木作为生物质原材料,选取南亚热带代表性土壤铁铝土制成泥浆。通过泥浆实现荔枝木涂层限氧,以水-火联动方法制成生物质炭,厘清泥浆包覆和淬灭对荔枝木炭化物碳含量、碳固存率、官能团含量等的影响,探讨铁铝土泥浆在炭化过程中的作用,解析其影响机理。研究可为生物质就地炭化应用提供新的技术思路和理论依据,拓宽生物质炭作为负排放方案的技术路径。

    荔枝木:截取尺寸为10 cm × 3 cm × 3 cm的荔枝木枝条若干,枝条平均质量为(113.6 ± 10.2)g,经去离子水洗去其表面附着物后,烘干,移至样品盒中备用。

    铁铝土泥浆:以去离子水为溶剂,称取多份1 g的铁铝土分别移至1 L的容量瓶中,混匀,配置成1 g/L的铁铝土泥浆,移至玻璃瓶中备用。供试铁铝土的Fe2O3、SiO2、Al2O3、CaO质量分数分别为32.75%、28.46%、15.22%、7.66%。

    试验共设6种处理(表1),包括使用去离子水铁铝土泥浆进行包覆和淬灭,每种处理各设4组重复。试验优先筛选获得高碳固存率的制炭方法,进而对比不同方法对荔枝木炭性质的影响,并进一步探讨铁铝土泥浆提高荔枝木成炭过程中碳固存率的作用机理。

    表  1  荔枝木的不同试验处理
    Table  1.  Experimental treatments of Litchi branches
    试验处理
    Treatments
    包覆
    Coating
    淬灭
    Quenching
    无浸润
    None
    去离子水
    Deionized water
    泥浆
    Soil slurry
    去离子水
    Deionized water
    泥浆
    Soil slurry
    T1
    T2
    T3
    T4
    T5
    T6
    下载: 导出CSV 
    | 显示表格

    首先,将荔枝木枝条分成3组。将其中一组置于样品盒中,直接用于制备生物质炭。另外两组分别置于去离子水和铁铝土泥浆中进行包覆处理,为保证铁铝土泥浆的均质性,包覆过程将样品盒置于恒温振荡器中,以150 r/min的速度振荡48 h[29],促使铁铝土泥浆充分渗入荔枝木内部并形成涂层包覆;其中,去离子水包覆作铁铝土包覆的对照,用于厘清包覆过程中进入荔枝木内部的泥浆在炭化过程中是否能够促成碳固持。随后将无包覆与经包覆处理后的荔枝木枝条分批置于85 ℃烘箱中烘干,称取质量(m),随后移至样品盒中,用于后续生物质炭的制备。

    将荔枝木枝条置于自制的生物质炭制备装置的炭化轨道上(图1),使枝条在相邻的轨道之间以30 r/min的转速均匀自转,以确保在引燃和自燃的过程中受热均匀。使用液化天然气进行引燃(外焰温度为700~780 ℃),枝条自燃后终止引火。待燃烧的荔枝木形成火墨[27],迅速(0~30 s暴露时间)将其浸没于盛有去离子水或铁铝土泥浆的样品盒中[28](内含300 mL溶液),以淬灭成炭。成炭温度的均一性是保证生成的生物质炭均一稳定的关键参数,火墨淬灭前使用非接触式红外测温仪(上海 DT-8833,工作范围为-50~800 ℃,分辨率为0.1 ℃)测量同轨道不同部位和同一处理分批制得炭品(4次重复测定)的成炭温度:T1介于(575.5 ± 14.1)℃,T2介于(585.1 ± 19.1)℃,T3介于(600.1 ± 11.0)℃,T4介于(609.6 ± 14.3)℃,T5介于(597.8 ± 14.9)℃,T6介于(617.4 ± 13.3)℃;同一处理成炭温度的变幅较小,表明炭品的稳定性较好。制炭过程同步使用自主研发的制炭尾气处理系统进行制炭尾气处理,确保烟气排放符合标准[30]

    图  1  生物质炭制备装置
    Figure  1.  Biochar preparation device

    将盛有炭化物的样品盒置于烘箱中105 ℃烘干,取出各处理制得的荔枝木炭,称取质量(m1),经玛瑙研钵磨细后,过0.150 mm网筛,存于EP管中,以备后续相关指标测定。

    下述指标测定前,将待测样品均置于烘箱中105 ℃干燥4 h,在干燥皿中冷却后进行称量。

    1)pH值:荔枝木炭与去离子水按1:10混合(质量/体积,160 r/min震荡24 h)后,离心(质量/体积,3 500 r/min离心20 min)、过滤,待体系平衡后用pH计测定[31]

    2)灰分质量分数:将炭品置于马弗炉(中环 SX-G18123),800 ℃灰化处理4 h(温度上升至800 ℃开始计时)后其残余灰渣质量占总物料质量的百分比[32]

    3)C、H、N元素含量:采用元素分析仪(Vario MACRO cube,德国,Elementar)进行测定分析。

    4)官能团含量:采用国际腐殖酸协会(international humic substances society, IHSS)提供的酸碱滴定法测定荔枝木炭的羧基(-COOH)和酚羟基(phenolic-OH)含量[33]

    5)采用傅立叶变换红外吸收光谱仪(fourier transform infrared spectroscopy, FTIR, Thermo Fisher Nicolet iS5)对不同处理的荔枝木炭官能团变化进行定性分析(扫描范围为500~4 000 cm−1,分辨率为2.0 cm−1[34]

    6)采用高分辨率的扫描电镜(scanning electron microscope, SEM,日本日立,S-4800)和能谱仪(energy dispersive spectrometer, EDS,日本,HORIBA EX-350)对样品的表面微观形貌和元素组成进行分析。

    以生物质炭作为负排放方案,不仅要考虑单位质量生物质的成炭率,还需考虑其生成的炭品的碳含量百分比;鉴于此,本研究借鉴XIAO等[28]所提出碳固存率(carbon capture capacity,XCCC),以表征单位质量生物质在炭化过程中的碳截留能力,计算式如下:

    XCCC=m1×C1m×C0 (1)

    式中,m1为不同处理下生成的生物质炭的质量,g;C1为不同处理下生成的生物质炭的碳含量,%;m为供试荔枝木的质量,g;C0为供试荔枝木的碳含量,%。

    并采用Excel 2021进行数据管理。所有统计分析均使用IBM SPSS statistics 21,采用单因素方差分析(one-way ANOVA)检验荔枝木炭的C、H、N元素含量、碳固存率、灰分质量分数、pH值、-COOH和phenolic-OH含氧官能团含量是否存在显著性差异(P < 0.05),同时对以上指标值进行Pearson相关分析(P < 0.05,P < 0.01),确定各指标间的联系。采用OriginPro 2023软件进行图件绘制。

    无包覆条件下,铁铝土泥浆淬灭生成的炭化物(T2)的碳含量比水淬灭(T1)显著提高了11.9个百分点;而水包覆铁铝土泥浆淬灭生成的炭化物(T4)的碳含量与水淬灭(T3)相比无显著差异(图2a)。进而,铁铝土泥浆包覆和淬灭生成的炭品(T6)的碳含量比水淬灭(T5)提高了9.7个百分点。这表明铁铝土泥浆淬灭在提升生物质炭的碳含量方面优于水淬灭处理。

    图  2  不同包覆和淬灭处理下荔枝木炭元素含量及碳固存率变化特征
    注:不同小写字母表示显著差异(P < 0.05),下同。
    Figure  2.  Elemental compositions and carbon capture capacity of Litchi biochars under different coating and quenching treatments
    Note: Different lowercase letters indicate significant differences (P < 0.05), the same below.

    相同淬灭条件下,T1、T3、T5处理下生成的炭化物的碳含量分别为69.9%、73.6%、75.4%;T2、T4、T6处理下生成的炭化物的碳含量分别为79.0%、74.0%、83.5%。这一结果表明,铁铝土泥浆包覆有助于提高生物质炭的碳含量。与无包覆水淬灭(T1)和水包覆、水淬灭炭化物(T3)相比,铁铝土泥浆包覆和淬灭生成的炭化物(T6)的碳含量显著增加了16.7和11.8个百分点。此外,N元素的含量变化趋势与C类似,而H元素的含量变化则无明显规律。总体上,铁铝土泥浆包覆和淬灭生成的荔枝木炭(T6)的H、N元素含量均最高,如图2a所示。

    可见,铁铝土泥浆淬灭或包覆均可提高生物质炭的C、H、N元素含量,而二者联合使用(T6)可进一步提高荔枝木炭的碳含量。

    无包覆状况下,与水淬灭(T1)相比,采用铁铝土泥浆淬灭处理(T2)下荔枝木炭的碳固存率CCC显著增加了28.8个百分点(图2b)。然而,在水包覆条件下,水淬灭(T3)和铁铝土泥浆淬灭(T4)生成的炭品的CCC并无显著变化。这表明,水包覆对提升荔枝木炭的CCC作用有限。

    铁铝土泥浆包覆下,荔枝木炭的CCC在铁铝土泥浆淬灭(T6)下较水淬灭(T5)提高了14.5个百分点。水淬灭下,T3和T5的CCC分别较T1提高了23.4和27.3个百分点,但T3与T5间无显著差异,说明铁铝土泥浆包覆有助于提升荔枝木的CCC,但水淬灭所产生的“水洗”作用会削减这一效果。铁铝土泥浆淬灭下,T4的CCC显著降低;而T6的CCC最高(83.9%),与T1相比提高了37.8个百分点;T2的CCC略低于T6。以上结果表明,铁铝土泥浆包覆与淬灭的联合使用对提升荔枝木炭的CCC效果最优。

    相同包覆条件下,较T1,T2的pH值减少了0.14;较T5,T6的pH值减少了0.09;较T3,T4的pH值增加至8.26。与T1相比,T2、T5、T6的灰分质量分数分别显著降低了1.5、27.0和28.0个百分点。与T3相比,T4的灰分质量分数呈现出28.2个百分点的增长(表2)。相同淬灭条件下,与T1相比,T3和T5的灰分质量分数降低,但这二者间并无显著性差异。在无包覆和水包覆的处理下(T2和T4)所得荔枝木炭的灰分质量分数无显著变化,而铁铝土泥浆包覆下的荔枝木炭(T6)的灰分质量分数则明显下降。通常,灰分质量分数和炭化物的pH值正向对应。然而,水淬灭下产生的生物质炭的pH值与灰分质量分数的变化趋势相反。这与铁铝土泥浆包覆或淬灭影响下炭化物羧基(-COOH)和酚羟基(phenolic-OH)的含量变化有关(图3)。

    表  2  不同包覆和淬灭处理下荔枝木炭的pH值和灰分质量分数
    Table  2.  pH value and ash mass fraction of Litchi biochars under different coating and quenching treatments
    指标Indexes T1 T2 T3 T4 T5 T6
    pH值pH value 7.98±0.04 c 7.84±0.01 d 8.14±0.01 b 8.26±0.01 a 8.27±0.09 a 8.18±0.01 ab
    灰分Ash/% 20.85±0.31 a 20.53±0.92 a 16.19±1.39 b 22.56±3.56 a 15.22±1.63 b 15.02±0.28 b
    注:不同小写字母表示处理间显著差异(P < 0.05),下同。
    Note: Different lowercase letters indicate significant difference among treatments (P < 0.05), the same below.
    下载: 导出CSV 
    | 显示表格

    无包覆条件下,T2的-COOH含量较T1自0.47 mol/kg增至0.52 mol/kg,phenolic-OH含量无差异;水包覆处理下,T3的-COOH含量(0.48 mol/kg)与phenolic-OH含量(0.25 mol/kg)均高于T4(0.36和0.22 mol/kg);铁铝土泥浆包覆下,T6官能团含量高于T5。铁铝土泥浆淬灭下,T2、T4与T6的-COOH与phenolic-OH含量呈降低规律,且不同处理间差异显著(图3)。

    图  3  不同包覆和淬灭处理下荔枝木炭官能团含量变化特征
    Figure  3.  Functional group contents of Litchi biochars formed with different coating and quenching treatments

    较其他处理,T5和T6处理下炭品的-COOH含量较低,究其可能原因,进入炭品内部的铁铝矿物在较高温度下易与-COOH结合,使得大量的含氧官能团在碳截留的过程中被消耗。不同处理下phenolic-OH含量也存在显著差异,尤其是水包覆的条件下制备的生物质炭,其含量较高。这可能是因为涂层提供了限氧环境,保存了荔枝木中较多的H和O元素,从而在炭化过程中形成了更多的含氧官能团。

    不同处理下炭品各指标值的相关性分析结果表明(图4):1)炭品的CCC与-COOH含量呈负相关,这可能与碳截留过程中-COOH被消耗有关;2)炭品的CCC与phenolic-OH含量正相关,这可能是由于泥浆包覆提供了限氧环境,促进荔枝木中H和O元素的保留且更易形成phenolic-OH;3)多种处理下炭化物的CCC与灰分质量分数呈负相关,即较高的碳固存率伴随着较低的灰分质量分数。

    图  4  不同处理下荔枝木炭系列指标相关分析
    注(Note):*,P < 0.05;**,P < 0.01。
    Figure  4.  Correlations between properties of Litchi biochars formed with different treatments

    铁铝土泥浆包覆和淬灭进行荔枝木炭化的过程可分为以下4个阶段[35-37]:1)准备阶段:将荔枝木浸泡在泥浆中,使荔枝木表面被泥浆充分包覆,形成包覆壳;2)燃烧阶段:荔枝木被点燃,包覆壳实现荔枝木内芯的限氧;3)燃烧中期:内芯处于高温限氧的自燃状态,通体燃烧后结构变化、质量变轻,在重力作用下跌落形成火墨;4)成炭阶段:用泥浆对高温火墨进行淬灭,强化限氧作用并淬灭形成矿质-碳质复合体。为理解其炭化过程,可将每枝荔枝木视为一个微型限氧炉,泥浆包覆壳类似于炉壁,荔枝木可比作炉内薪柴。其炭化过程为在物理阻隔限氧和高温共同作用下实现荔枝木热裂解成炭的过程。

    随着燃烧的进行,无铁铝土泥浆引入制得的炭(T1、T3),无法形成涂层包覆,直接暴露在空气中燃烧导致其碳含量较少(图2a)。水包覆处理(T3、T4)对提升荔枝木炭CCC的效果不显著,T4处理虽然在增强CCC方面的效果较弱,但比单独水包覆(T3)有着更为明显的改善作用。对比不同淬灭处理,铁铝土泥浆淬灭对提升CCC的作用优于单纯的水淬灭。这一现象在水与铁铝土泥浆共同作用(T4、T5)的结果中得到了进一步证实。说明水淬灭可能具有洗涤作用,而铁铝土泥浆包覆形成的矿物涂层则降低了这种作用,进而提高了碳固存率(图2b)。由此可见,铁铝土泥浆包覆对于提升碳截留量具有显著效果。高温炭化过程中,铁铝土泥浆中的矿物进一步与火墨反应生成矿质-炭质复合体,以固持更多的碳,这表现在铁铝土泥浆包覆和淬灭处理的炭化物(T6)不仅具有了高的碳固存率,还具备最高的C、H元素含量(图2a)和最低的灰分质量分数(表2)。

    红外光谱结果表明(图5):1)1 514~1 531 cm−1处出现明显的吸收峰(对应于C=C吸收峰)[38]。与无包覆水淬灭处理(T1)相比,无包覆铁铝土泥浆淬灭(T2)、水包覆铁铝土泥浆淬灭(T4)、铁铝土泥浆包覆水淬灭(T5)、铁铝土泥浆包覆和淬灭(T6)处理下的炭样品的吸收峰能量增强,说明其芳香化程度也增强[38-39];2)1 674~1 676 cm−1和3 754~3 757 cm−1处出现明显的吸收峰(对应于-COOH和phenolic-OH的吸收峰)[40-41]。与T1处理相比,T2、T4~T6处理下的炭样品的吸收峰发生红移,这意味着对震动所需的能量变低,基团变得不稳定,表明上述官能团与矿物发生了反应[42]。这在EDS分析(图6)中可得到证实,在T2、T4~T6处理中均存在Ca、Fe或Al元素。以上现象均表明在铁铝土涂层下,部分矿物进入物料内部并与炭化物中的含氧官能团发生了反应,有效阻止了C=O键断裂生成气体COx,从而提高了碳截留量。

    图  5  不同包覆和淬灭处理下荔枝木炭官能团FTIR的变化
    Figure  5.  FTIR spectra of Litchi biochars from different coating and quenching treatments

    对于无包覆(T1、T2)和水包覆处理(T3、T4)的炭化物,扫描电镜图谱(图6a~6d所示)显示,在未包覆处理的SEM图谱中,碳间隙中存在较多的絮状物质(如灰分),而水包覆处理的炭化物显示出明显的孔隙结构。热解过程中,可移动物质的元素以小分子形式释放,例如H2O、CO和CO2[43],同时碳间隙中的絮状物质较少。在铁铝土泥浆包覆处理(T5、T6)所得炭化物的扫描电镜图谱(如图6e~6f所示)中观察到,铁铝土泥浆包覆使矿物粘附在炭化物表面,改变了炭品的表面形态。与其他处理相比,T5与T6的结构基本相似,发生了轻微的结构性断裂;二者相比,铁铝土泥浆包覆和淬灭(T6)形成的炭化物的碎屑物质较少,碳骨架结构更为规整。这种良好的结构有助于减少生物质炭孔隙间的丝状物质的存在,并增强其碳捕获能力。

    EDS分析给出了炭样品中存在元素的结果(图6):不同处理生成的生物质炭样品中均检测到C、O元素。在铁铝土泥浆包覆或铁铝土泥浆淬灭处理下生成的生物质炭(T2、T4~T6)中均存在Ca、Fe或Al元素,表明包覆过程铁铝土泥浆中矿物成功进入物料内部。与其他处理所制成的生物质炭(T1~T5)相比,T6的EDS光谱显示出钙、铁、铝等的峰值,表明钙铁铝已成功负载在炭品表面或内部,形成了碳质-矿质复合体,实现碳截留。

    中国荔枝的栽培面积达526 073.33 hm2[44],平均每公顷产量约13 500 kg,废弃物干物质产生量约22 500 kg[45]。据报道,1 kg荔枝冷链流通情景下全生命周期(包括种植、冷库储藏、冷链运输、商超零售和家庭消费)产生的碳排放为0.699 kg (CO2当量,下同);其中,在荔枝种植过程中产生的碳排放为0.221 kg,约占全生命周期碳排放的31.62%[46]。据此可测算荔枝种植阶段的碳排放约为3 000 kg /hm2,冷链流通情景下全生命周期的碳排放约为9 000 kg/hm2。采用铁铝土泥浆包覆和淬灭技术将荔枝木转化为荔枝炭可固存碳6 000 kg/hm2(已扣除制炭过程中的碳排放量),换算成CO2当量为22 000 kg/hm2。可见,利用该简易方法制备的生物质炭原位归还至荔枝园可实现荔枝冷链流通情景下全生命周期的碳中和。本研究有望以较低的成本为荔枝废弃物转化为生物质炭提供技术支持,突破目前生物质炭生产的技术瓶颈,发挥生物质炭在实现中国荔枝园碳中和及缓解全球气候变暖方面的潜力。

    图  6  不同处理下荔枝木炭的扫描电子显微图和能谱图
    注:图a、b、c、d、e、f 左右图分别为T1、T2、T3、T4、T5、T6的扫描电子显微图与能谱图。
    Figure  6.  SEM images and EDS spectra of Litchi biochars formed with different treatments
    Note: Left and right graphs of Fig.a, b, c, d, e, and f are the canning electron micrographs and energy spectra of T1, T2, T3, T4, T5, and T6, respectively.

    1)铁铝土泥浆包覆和淬灭的成炭过程为泥浆包覆壳限氧和泥浆淬灭的高温热裂解过程。铁铝土泥浆包覆和淬灭可有效提升荔枝木在炭化过程中的碳含量(83.5%)和碳固存率(83.9%),较无包覆水淬灭炭品的碳含量和碳固存率分别提高了16.7和37.8个百分点。

    2)铁铝土泥浆通过涂层包覆形成了包覆壳,以物理阻隔作用截留了碳(防止炭化物中的碳在燃烧中生成COX);同时,泥浆中的铁铝矿物在高温热裂解过程中负载在了炭化物表面或内部,优化碳骨架结构,形成了矿质-碳质复合体,截留了更多的碳。

    3)以荔枝冷链流通情景下全生命周期9 000 kg (CO2当量)/hm2碳排放计,利用该简易方法制备生物质炭并归还至荔枝园可固碳22 000 kg (CO2当量)/hm2,能够实现荔枝冷链流通情景下全生命周期的碳中和。

  • 图  1   生物质炭制备装置

    Figure  1.   Biochar preparation device

    图  2   不同包覆和淬灭处理下荔枝木炭元素含量及碳固存率变化特征

    注:不同小写字母表示显著差异(P < 0.05),下同。

    Figure  2.   Elemental compositions and carbon capture capacity of Litchi biochars under different coating and quenching treatments

    Note: Different lowercase letters indicate significant differences (P < 0.05), the same below.

    图  3   不同包覆和淬灭处理下荔枝木炭官能团含量变化特征

    Figure  3.   Functional group contents of Litchi biochars formed with different coating and quenching treatments

    图  4   不同处理下荔枝木炭系列指标相关分析

    注(Note):*,P < 0.05;**,P < 0.01。

    Figure  4.   Correlations between properties of Litchi biochars formed with different treatments

    图  5   不同包覆和淬灭处理下荔枝木炭官能团FTIR的变化

    Figure  5.   FTIR spectra of Litchi biochars from different coating and quenching treatments

    图  6   不同处理下荔枝木炭的扫描电子显微图和能谱图

    注:图a、b、c、d、e、f 左右图分别为T1、T2、T3、T4、T5、T6的扫描电子显微图与能谱图。

    Figure  6.   SEM images and EDS spectra of Litchi biochars formed with different treatments

    Note: Left and right graphs of Fig.a, b, c, d, e, and f are the canning electron micrographs and energy spectra of T1, T2, T3, T4, T5, and T6, respectively.

    表  1   荔枝木的不同试验处理

    Table  1   Experimental treatments of Litchi branches

    试验处理
    Treatments
    包覆
    Coating
    淬灭
    Quenching
    无浸润
    None
    去离子水
    Deionized water
    泥浆
    Soil slurry
    去离子水
    Deionized water
    泥浆
    Soil slurry
    T1
    T2
    T3
    T4
    T5
    T6
    下载: 导出CSV

    表  2   不同包覆和淬灭处理下荔枝木炭的pH值和灰分质量分数

    Table  2   pH value and ash mass fraction of Litchi biochars under different coating and quenching treatments

    指标Indexes T1 T2 T3 T4 T5 T6
    pH值pH value 7.98±0.04 c 7.84±0.01 d 8.14±0.01 b 8.26±0.01 a 8.27±0.09 a 8.18±0.01 ab
    灰分Ash/% 20.85±0.31 a 20.53±0.92 a 16.19±1.39 b 22.56±3.56 a 15.22±1.63 b 15.02±0.28 b
    注:不同小写字母表示处理间显著差异(P < 0.05),下同。
    Note: Different lowercase letters indicate significant difference among treatments (P < 0.05), the same below.
    下载: 导出CSV
  • [1]

    CEA M, GONZALEZ M E, SANGALETTI N, et al. Biochar derived from agricultural and forestry wastes: Characterization and potential application for enzyme immobilization[J]. New Biotechnology, 2012(29): S60.

    [2]

    ZAMBON I, COLOSIMO F, MONARCA D, et al. Colantoni A. An innovative agro-forestry supply chain for residual biomass: Physicochemical characterisation of biochar from olive and hazelnut pellets[J]. Energies, 2016, 9(7): 526. doi: 10.3390/en9070526

    [3]

    WANG H, WANG X, CUI Y, et al. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanismn[J]. Bioresource Technology, 2018, 263: 444-449. doi: 10.1016/j.biortech.2018.05.040

    [4]

    HOSSAIN M Z, BAHAR M M, SARKAR B, et al. Biochar and its importance on nutrient dynamics in soil and plant[J]. Biochar, 2020, 2: 379-420. doi: 10.1007/s42773-020-00065-z

    [5] 杨卫君,杨梅,郭颂,等. 减氮配施生物炭对北疆小麦产量品质及固碳减排的影响[J]. 农业工程学报,2024,40(4):104-111.

    YANG Weijun, YANG Mei, GUO Song, et al. Effects of reducing nitrogen ferilizer combined with biochar on the yield and quality of wheat and carbon sequestration and emission reduction in Northern Xinjiang of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(4): 104-111. (in Chinese with English abstract)

    [6]

    HAMIDZADEH Z, GHORBANNEZGAD P, KETABCHI M R, et al. Biomass-derived biochar and its application in agriculture[J]. Fuel, 2023, 341: 127701. doi: 10.1016/j.fuel.2023.127701

    [7]

    QIU M, LIU L, LING Q, et al. Biochar for the removal of contaminants from soil and water: a review[J]. Biochar, 2022, 4(1): 19. doi: 10.1007/s42773-022-00146-1

    [8] 胡玉莲,郭朝晖,徐智,等. 镉污染水稻秸秆生物炭对土壤中镉稳定性的影响[J]. 农业工程学报,2022,38(5):204-211. doi: 10.11975/j.issn.1002-6819.2022.05.024

    HU Yulian, GUO Zhaohui, XU Zhi, et al. Effects of biochar from Cd-containing rice straw on stabilization of Cd in soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(5): 204-211. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.05.024

    [9]

    LIANG M, LU L, HE H, LI J, ZHU Z, ZHU Y. Applications of biochar and modified biochar in heavy metal contaminated soil: A descriptive review[J]. Sustainability, 2021, 13(24): 14041. doi: 10.3390/su132414041

    [10] 张丰,刘畅,王喆,等. 不同吸附特性的稻草生物炭对稻田氨挥发和水稻产量的影响[J]. 农业工程学报,2021,37(9):100-109. doi: 10.11975/j.issn.1002-6819.2021.09.012

    ZHANG Feng, LIU Chang, WANG Zhe, et al. Effects of rice straw biochar with different adsorption characteristics on ammonia volatilization from paddy field and rice yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(9): 100-109. (in Chinese with English abstract). doi: 10.11975/j.issn.1002-6819.2021.09.012

    [11] 刘畅,迟道才,张丰,等. 稻草生物炭对干湿交替稻田CH4和N2O排放的影响[J]. 农业工程学报,2023,39(14):232-242. doi: 10.11975/j.issn.1002-6819.202304130

    LIU Chang, CHI Daocai, ZHANG Feng, et al. Effects of rice straw biochar on CH4 and N2O emissions in alternating wetting and drying rice fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(14): 232-242. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202304130

    [12]

    WANG G, LIU F, TARIQ M, et al. A comparative study on various indicators for evaluating soil health of three biochar materials application[J]. Journal of Cleaner Production, 2022, 343: 131085. doi: 10.1016/j.jclepro.2022.131085

    [13]

    LEHMANN J, COWIE A, MASIELLO C A, et al. Biochar in climate change mitigation[J]. Nature Geoscience, 2021, 14(12): 883-892. doi: 10.1038/s41561-021-00852-8

    [14]

    ROOS P. How biochar can help combat climate change [J]. Energy Intelligence, 2023, 12(19): 4-5.

    [15]

    WINDEATT J H, ROSS A B, WILLIAMS P T, et al. Characteristics of biochars from crop residues: Potential for carbon sequestration and soil amendment[J]. Journal of Environmental Management, 2014, 146: 189-197.

    [16]

    WOOLF D, AMONETTE J E, STREET-PERROTT F A, et al. Sustainable biochar to mitigate global climate change[J]. Nature Communications, 2010, 1(5): 56.

    [17]

    LENG L, HUANG H. An overview of the effect of pyrolysis process parameters on biochar stability[J]. Bioresource Technology, 2018, 270: 627-642. doi: 10.1016/j.biortech.2018.09.030

    [18]

    FAWZY S, OSMAN A I, YANG H P, et al. Industrial biochar systems for atmospheric carbon removal: A review[J]. Environmental Chemistry Letters, 2021, 19: 3023-3055. doi: 10.1007/s10311-021-01210-1

    [19]

    CAMPBELL R M, ANDERSON N M, DAUGAARD D E, et al. Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty[J]. Applied Energy, 2018, 230: 330-343. doi: 10.1016/j.apenergy.2018.08.085

    [20]

    BATISTA R, YOUNG P, LAWRENCE J, et al. Biochar market profile report [R]. Gippsland Climate Change Network, Worcester Polytechnic Institute, 2021.

    [21]

    HARDER B. Smoldered-earth policy: Created by ancient Amazonian natives, fertile, dark soils retain abundant carbon[J]. Science News, 2006, 169(9): 133.

    [22]

    WARDLE D A, NILSSON M C, ZACKRISSON O. Fire-derived charcoal causes loss of forest humus[J]. Science, 2008, 320(5876): 629. doi: 10.1126/science.1154960

    [23] 李飞跃,张丽,李孝良,等. 磷酸二氢钙与生物质共热解提高生物炭固碳效果[J]. 农业工程学报,2016,32(12):201-205. doi: 10.11975/j.issn.1002-6819.2016.12.029

    LI Feiyue, ZHANG Li, LI Xiaoliang, et al. Biomass co-pyrolysis with calcium dihydrogen phosphate improving carbon fixation of biochar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(12): 201-205. (in Chinese with English abstract). doi: 10.11975/j.issn.1002-6819.2016.12.029

    [24] 杨婷婷,黄艳艳,柳维扬,等. 三种改性小麦秸秆生物炭表征及其对Cu2+的吸附性能[J]. 农业工程学报,2023,39(8):222-230. doi: 10.11975/j.issn.1002-6819.202210107

    YANG Tingting, HUANG Yanyan, LIU Weiyang, et al. Characterization of three kinds of modified wheat straw derived biochars and their sorption capacity for Cu2+[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(8): 222-230. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202210107

    [25]

    LIN M, LI F, CHENG W, et al. Facile preparation of a novel modified biochar-based supramolecular self-assembled g-C3N4 for enhanced visible light photocatalytic degradation of phenanthrene[J]. Chemosphere, 2022, 288: 132620. doi: 10.1016/j.chemosphere.2021.132620

    [26] 马啸,熊巧,周香君,等. 赤铁矿改性生物炭回收水中磷及其作为磷肥的效果[J]. 农业工程学报,2023,39(22):216-225. doi: 10.11975/j.issn.1002-6819.202307290

    MA Xiao, XIONG Qiao, ZHOU Xiangjun, et al. Phosphate reclamation from water using biochar modified with hematite and its application as soil phosphorus fertilizer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(22): 216-225. (in Chinese with English abstract). doi: 10.11975/j.issn.1002-6819.202307290

    [27]

    XIAO L, FENG L, YUAN G, et al. Low-cost field production of biochars and their properties[J]. Environmental Geochemistry and Health, 2020, 42: 1569-1578. doi: 10.1007/s10653-019-00458-5

    [28]

    XIAO L, WU J, LI W, et al. Mineral coating enhances the carbon sequestration capacity of biochar derived from Paulownia biowaste[J]. Agronomy, 2023, 13: 2361. doi: 10.3390/agronomy13092361

    [29]

    LI H, WANG B, SIRI M, et al. Calcium-modified biochar rather than original biochar decreases salinization indexes of saline-alkaline soil [J]. Environmental Science and Pollution Research, 2023, 30(30): 74966-74976.

    [30] 校亮,袁国栋,毕冬雪,等. 农林废弃物田间曝氧水-火联动制炭设备及技术研究[J]. 农业工程学报,2019,35(11):239-244. doi: 10.11975/j.issn.1002-6819.2019.11.028

    XIAO Liang, YUAN Guodong, BI Dongxue, et al. Equipment and technology of field preparation of biochars from agricultural and forest residues under aerobic conditions with water-fire coupled method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 239-244. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2019.11.028

    [31]

    SONG S, CONG P, WANG C, et al. Properties of biochar obtained from tropical crop wastes under different pyrolysis temperatures and its application on acidic soil[J]. Agronomy, 2023, 13(3): 921. doi: 10.3390/agronomy13030921

    [32]

    JING F Q, SOHI S P, LIU Y Y, et al. Insight into mechanism of aged biochar foradsorption of PAEs: Reciprocal effects of ageing and coexisting Cd2+[J]. Environmental Pollution, 2018, 242: 1098-1107. doi: 10.1016/j.envpol.2018.07.124

    [33]

    IHSS. [EB/OL]. 2023-12-04. https://ihss.humicsubstances.org/

    [34]

    GAO P, LIU Y, HUANG X, et al. Effect of wet torrefaction on the physicochemical characteristics and gasification behavior of biochar[J]. Industrial Crops and Products, 2023, 197: 116544. doi: 10.1016/j.indcrop.2023.116544

    [35]

    HAMELINCK C, VAN H, FAAIJ A. Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle-and long-term[J]. Biomass Bioenergy, 2005, 28: 384-410. doi: 10.1016/j.biombioe.2004.09.002

    [36]

    SHAFIZADEH F. Introduction to pyrolysis of biomass[J]. Journal of Analytical and Applied Pyrolysis, 1982, 3: 283-305. doi: 10.1016/0165-2370(82)80017-X

    [37]

    SHANMUGAM V, SREENIVASAN S, MENSAH R, et al. A review on combustion and mechanical behaviour of pyrolysis biochar[J]. Materials Today Communications, 2022, 31: 103629. doi: 10.1016/j.mtcomm.2022.103629

    [38]

    KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1247-1253.

    [39]

    DAI L, LU Q, ZHOU H, et al. Tuning oxygenated functional groups on biochar for water pollution control: A critical review[J]. Journal of Hazardous Materials, 2021, 420: 126547. doi: 10.1016/j.jhazmat.2021.126547

    [40]

    ZHU Z, DUAN W, CHANG Z, et al. Stability of Functionally Modified Biochar: The role of surface charges and surface homogeneity[J]. Sustainability, 2023, 15(10): 7745. doi: 10.3390/su15107745

    [41]

    JING F, SUN Y, LIU Y, et al. Interactions between biochar and clay minerals in changing biochar carbon stability[J]. Science of the Total Environment, 2022, 809: 151124. doi: 10.1016/j.scitotenv.2021.151124

    [42]

    NAN H Y, YIN J X, YANG F, et al. Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration[J]. Environmental Pollution, 2021, 287: 117566. doi: 10.1016/j.envpol.2021.117566

    [43]

    WORASUWANNARAK N, SONOBE T, TANTHAPANICHAKOON W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78(2): 265-271. doi: 10.1016/j.jaap.2006.08.002

    [44] 2023年中国荔枝产业报告. [EB/OL]. 2023-12-24. https://www.gaoyuanyunguo.com/home/data/productdetail/id/163/doc_id/17432.html

    2023年中国荔枝产业报告. [EB/OL]. 2023-12-24. https://www.gaoyuanyunguo.com/home/data/productdetail/id/163/doc_id/17432.html

    [45] 侯宪文,张军,符瑞益,等. 荔枝剪枝还田腐解及养分释放特征研究[J]. 广东农业科学,2020,47(4):77-84.

    HOU Xianwen, ZHANG Jun, FU Ruiyi, et al. Study on characteristics of decomposing and nutrients releasing of Litchi cuttings returned to the field[J]. Guangdong Agricultural Sciences, 2020, 47(4): 77-84. (in Chinese with English abstract)

    [46] 马平川. 促荔枝供应链全生命周期碳排放评价研究[D]. 广州:广州大学,2022.

    MA Pingchuan. Evaluation of the Life Cycle Carbon Emissions of Litchi Supply Chain [D]. Guangzhou: Guangzhou University, 2022. (in Chinese with English abstract)

图(6)  /  表(2)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  9
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 修回日期:  2024-06-11
  • 网络出版日期:  2024-06-25
  • 刊出日期:  2024-07-14

目录

/

返回文章
返回