• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

VPM模型与转产系数结合的吉林省玉米估产

王永昊, 王鸣雷, 闫慧敏, 杨建宇, 史文娇

王永昊,王鸣雷,闫慧敏,等. VPM模型与转产系数结合的吉林省玉米估产[J]. 农业工程学报,2024,40(20):195-201. DOI: 10.11975/j.issn.1002-6819.202404042
引用本文: 王永昊,王鸣雷,闫慧敏,等. VPM模型与转产系数结合的吉林省玉米估产[J]. 农业工程学报,2024,40(20):195-201. DOI: 10.11975/j.issn.1002-6819.202404042
WANG Yonghao, WANG Minglei, YAN Huimin, et al. Estimating maize yield in Jilin Province of China using VPM model combined with conversion coefficient[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(20): 195-201. DOI: 10.11975/j.issn.1002-6819.202404042
Citation: WANG Yonghao, WANG Minglei, YAN Huimin, et al. Estimating maize yield in Jilin Province of China using VPM model combined with conversion coefficient[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(20): 195-201. DOI: 10.11975/j.issn.1002-6819.202404042

VPM模型与转产系数结合的吉林省玉米估产

基金项目: 国家重点研发计划项目(2022YFB3903504);中国科学院战略性先导科技专项(XDA0440405);国家自然科学基金项目(72221002)
详细信息
    作者简介:

    王永昊,研究方向为遥感信息提取技术。Email:wyh990312@foxmail.com

    通讯作者:

    史文娇,博士,研究员,研究方向为全球变化与农业系统。Email:shiwj@lreis.ac.cn

  • 中图分类号: S127

Estimating maize yield in Jilin Province of China using VPM model combined with conversion coefficient

  • 摘要:

    准确估测农作物产量对于保障粮食安全、指导农业生产和调整生产策略等具有重要作用。为解决大范围估产参数确定难、成本高的问题,该研究基于2016–2021年Sentinel-2遥感数据和气象数据等,提出一种综合植被光合作用模型(vegetation photosynthesis model,VPM)与转产系数的产量估测方法,对吉林省30个玉米主产县进行估产研究。结果表明 :1)该研究提出的模型估产精度较传统VPM模型表现出更高的准确性和可靠性(决定系数提升0.18;相对均方根误差降低3.24%);2)研究区玉米单产范围为7~13 t/hm2,高值区主要集中在中部地区,并且呈现由中部向西北和东南地区递减的趋势;3)模型敏感性分析表明,更精细的转产系数、更高分辨率的玉米空间分布数据和遥感数据能够有效提高模型估产精度。该研究提出的模型可为低成本、大规模、快速精确的估产工作提供解决方案,对实施农业估产具有重要的现实意义和推广价值。

    Abstract:

    The objective of this study is to estimate the crop yields in the key corn-producing counties of Jilin Province, China. An accurate, efficient, scalable, and cost-effective model was developed using Sentinel-2 remote sensing data. High spatial and temporal resolution was offered along with the comprehensive meteorological data. A robust framework was built to estimate the maize yield. The limitations of traditional estimation were examined using ground surveys or lower-resolution satellite imagery. These were time-consuming, resource-intensive, and prone to errors, due to sampling biases or limited coverage. Sentinel-2 data was incorporated to provide a continuous and consistent view of crop growth patterns over a large area. The vegetation productivity model (VPM) was integrated to calibrate the yield conversion coefficient. VPM approach was used to estimate the crop biomass, according to the vegetation indices from remote sensing data. The biomass was converted directly into the yield. A yield conversion coefficient was also required to consider the agronomic conditions and crop varieties in the study area. The accuracy and relevance of the model were then enhanced to fine-tune the coefficient with the local yield data. The dynamic variables were integrated into the dynamic observation index in the VPM model. The relatively stable parameters were integrated into the conversion coefficient. The accuracy of yield estimation of the improved model (R²=0.53, RMSE=0.81, MRE=9.40%, NRMSE=11.73%) was superior to the traditional models (R²=0.35, RMSE=1.03 t/hm2, MRE=13.19%, NRMSE=14.97%). The obtained model was then applied to estimate the corn yields in the target counties of Jilin Province, where the yield range of maize per unit area was found to be 7-13 t/hm2. There was a distinct spatial pattern, where the higher yields were concentrated in the central regions and then gradually decreased towards the peripheries. This pattern was aligned with the geographical features, including soil fertility, irrigation availability, and climatic conditions. The high-resolution Sentinel-2 data was used to better capture these subtle variations in the yield patterns. Sensitivity analysis was conducted to further validate the robustness of the model. A systematic investigation was implemented to explore the impact of various factors, including the spatial resolution of remote sensing data, the vegetation indices, and the calibrated conversion coefficient. The precision of yield estimation was enhanced to employ the precise yield conversion coefficients, high-resolution remote sensing data, and maize planting distribution data. The rest factors were the spatial resolution of remote sensing data, the spatial resolution of crop distribution data, and the fineness of yield conversion coefficients. Furthermore, the future research direction was compared to further improve the accuracy of the model. The significant implications were achieved in agricultural modernization and food security. The timely and accurate information was obtained on crop yields, in order to optimize the planting strategies and decision-making on resource use. The findings can provide valuable insights into the influencing factors on agricultural productivity, and sustainability, particularly for food security at the regional and global levels.

  • 图  1   研究区概况

    Figure  1.   Study area

    图  2   模型精度对比

    注:R2代表决定系数,RMSE代表均方根误差,MRE代表平均相对误差,NRMSE代表归一化均方根误差。

    Figure  2.   Comparison of model accuracy

    Note: R2 stands for coefficient of determination, RMSE stands for root mean square error, MRE stands for mean relative error, NRMSE stands for normalized root mean square error.

    图  3   模型均方根误差RMSE空间分布对比

    Figure  3.   Comparison of model RMSE spatial distribution

    图  4   2016—2021年研究区玉米估测单产空间分布

    Figure  4.   Spatial distribution of estimated maize yield from 2016 to 2021 in the study area

    图  5   2016—2021年研究区玉米估测单产与统计单产对比

    Figure  5.   Comparison of estimated and statistical maize yield from 2016 to 2021 in the study area

    表  1   吉林省各地级市转产系数α

    Table  1   Yield conversion coefficient α of each city in Jilin Province

    城市
    City
    转产系数
    Yield conversion coefficient/(×10−2)
    城市
    City
    转产系数
    Yield conversion coefficient/(×10−2)
    长春 1.21 四平 1.33
    通化 1.08 吉林 1.10
    松原 1.19 白城 1.05
    下载: 导出CSV

    表  2   敏感性分析表

    Table  2   Sensitivity analysis table t·hm−2

    项目Item 转产系数α 1 km CD MOD09A1
    市级
    City-level
    省级
    Province-level
    城市
    City
    白城 1.29 1.36 1.24 2.13
    四平 0.94 1.30 1.34 1.74
    长春 1.07 1.13 1.08 1.11
    松原 0.93 0.96 1.03 0.99
    通化 0.71 0.84 1.09 0.79
    吉林 0.59 0.71 0.96 0.59
    年份
    Year
    2016 1.38 1.39 1.61 1.84
    2017 0.91 0.98 0.97 1.38
    2018 0.80 1.04 1.13 1.27
    2019 0.67 0.86 1.01 1.22
    2020 0.87 0.94 0.98 0.94
    2021 0.77 0.94 0.98 1.31
    注:从左到右4列数据分别是使用不同尺度(市级、省级)的转产系数、不同空间分辨率的玉米分布数据(1 km)和遥感数据(500 m)估产结果的RMSE值。
    Note:Four columns from left to right were the RMSE of estimated maize yield by using different scale conversion coefficients (city level, provincial level), maize distribution data (1 km), and remote sensing data (500 m) with different spatial resolutions, respectively.
    下载: 导出CSV
  • [1] 贺鹏,王婧姝,曹晨斌,等. 基于多源遥感数据融合的运城盆地夏玉米估产研究[J]. 中国农业资源与区划,2023,44(3):1-10.

    HE Peng, WANG Jingshu, CAO Chenbin, et al. Yield estimation of summer maize in Yuncheng Basin based on fusion of multi-source remote sensing data[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(3): 1-10. (in Chinese with English abstract)

    [2] 王耀民,陈皓锐,陈俊英,等. 光谱指数筛选方法与统计回归算法结合的水稻估产模型对比[J]. 农业工程学报,2021,37(21):208-216. doi: 10.11975/j.issn.1002-6819.2021.21.024

    WANG Yaomin, CHEN Haorui, CHEN Junying, et al. Comparison of rice yield estimation model combining spectral index screening method and statistical regression algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CASE), 2021, 37(21): 208-216. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.21.024

    [3]

    KERRN A, BARCZA Z, MARJANOVIć H, et al. Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices[J]. Agricultural and Forest Meteorology, 2018, 260: 300-320.

    [4]

    WIT A, BOOGAARD H, FUMAGALLI D, et al. 25 years of the WOFOST cropping systems model[J]. Agricultural Systems, 2019, 168: 154-167.

    [5]

    ZHANG L, ZHANG Z, LUO Y, et al. Integrating satellite-derived climatic and vegetation indices to predict smallholder maize yield using deep learning[J]. Agricultural and Forest Meteorology, 2021, 311: 108666.

    [6]

    WU B, ZHANG M, ZENG H, et al. Challenges and opportunities in remote sensing-based crop monitoring: A review[J]. National Science Review, 2023, 10(4): nwac290.

    [7]

    POTTER C, RANDERSON J, FIELD C, et al. Terrestrial ecosystem production: A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 1993, 7(4): 811-841.

    [8]

    RUNNING W, NEMANI R, HEINSCH A, et al. A continuous satellite-derived measure of global terrestrial primary production[J]. Bioscience, 2004, 54(6): 547-560.

    [9]

    XIAO X, HOLLINGER D, ABER J, et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest[J]. Remote Sensing of Environment, 2004, 89(4): 519-534.

    [10]

    YAN H, DU W, ZHOU Y, et al. Satellite-based evidences to improve cropland productivity on the high-standard farmland project regions in Henan Province, China[J]. Remote Sensing, 2022, 14(7): 1724.

    [11]

    YAN H, FU Y, XIAO X, et al. Modeling gross primary productivity for winter wheat–maize double cropping system using MODIS time series and CO2 eddy flux tower data[J]. Agriculture, Ecosystems & Environment, 2009, 129(4): 391-400.

    [12]

    HUANG X, MA M, WANG X, et al. The uncertainty analysis of the MODIS GPP product in global maize croplands[J]. Frontiers of Earth Science, 2018, 12: 739-749.

    [13] 黄晓娟. 基于全球FLUXNET站点的MODIS GPP产品算法改进 [D]. 重庆:西南大学,2019.

    HUANG, Xiaojuan. Improved MODIS GPP Product Algorithm Based on Global FLUXNET Sites[D]. Chongqing: Southwest University, 2019. (in Chinese with English abstract)

    [14] 谢光辉,韩东倩,王晓玉,等. 中国禾谷类大田作物收获指数和秸秆系数[J]. 中国农业大学学报,2011,16(1):1-8. doi: 10.11841/j.issn.1007-4333.2011.01.001

    XIE Guanghui, HAN Dongqian, WANG Xiaoyu, et al. Harvest index and residue factor of cereal crops in China[J]. Journal of China Agricultural University, 2011, 16(1): 1-8. (in Chinese with English abstract) doi: 10.11841/j.issn.1007-4333.2011.01.001

    [15] 袁文平,蔡文文,刘丹,等. 陆地生态系统植被生产力遥感模型研究进展[J]. 地球科学进展,2014,29(5):541−550.

    YUAN Wenping, CAI Wenwen, LIU Dan, et al. Satellite-based vegetation production models of terrestrial ecosystem: an overview[J]. Advances In Earth Science, 2014, 29(5): 541−550. (in Chinese with English abstract)

    [16]

    PENG S, DING Y, WEN Z, et al. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100[J]. Agricultural and Forest Meteorology, 2017, 233: 183-194.

    [17]

    SHEN R, DONG J, YUAN W, et al. A 30 m Resolution distribution map of maize for China based on landsat and sentinel images[J]. Journal of Remote Sensing, 2022, 2022: 12.

    [18]

    LUO Y, ZHANG Z, CHEN Y, et al. ChinaCropPhen1km: a high-resolution crop phenological dataset for three staple crops in China during 2000–2015 based on leaf area index (LAI) products[J]. Earth System Science Data, 2020, 12(1): 197-214.

    [19] 吉林省统计局. 吉林统计年鉴 [M] 北京; 中国统计出版社. 2017-2022
    [20]

    MONTEITH J, Moss C. Climate and the efficiency of crop production in Britain[J]. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 1977, 281(980): 277-294.

    [21]

    XIAO X, ZHANG Q, BRASWELL B, et al. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data[J]. Remote Sensing of Environment, 2004, 91(2): 256-270.

    [22]

    XIAO X, BOlES S, LIU J, et al. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images[J]. Remote Sensing of Environment, 2005, 95(4): 480-492.

    [23]

    LIU G , WANG X , BAIOCCHI G , et al. On the accuracy of official Chinese crop production data: Evidence from biophysical indexes of net primary production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41): 25434-25444.

    [24] 赫晓慧,罗浩田,乔梦佳. 基于 CNN-RNN 网络的中国冬小麦估产[J]. 农业工程学报,2021,37(17):124-132. doi: 10.11975/j.issn.1002-6819.2021.17.014

    HE Xiaohui, LUO Haotian, QIAO Mengjia, et al. Yield estimation of winter wheat in China based on CNN-RNN network[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CASE), 2021, 37(17): 124-132. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.17.014

    [25] 张悦,王鹏新,张树誉,等. 基于双参数和Morlet多时间尺度特性的冬小麦单产估测[J]. 农业机械学报,2021,52(10):243-254. doi: 10.6041/j.issn.1000-1298.2021.10.025

    ZHANG Yue, WANG Pengxin, ZHANG Shuyu, et al. Yield estimation of winter wheat based on two parameters and morlet multi-scale characteristics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 243-254. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2021.10.025

    [26] 王鹏新,齐璇,李俐,等. 基于随机森林回归的玉米单产估测[J]. 农业机械学报,2019,50(7):237-245. doi: 10.6041/j.issn.1000-1298.2019.07.026

    WANG Pengxin, QI Xuan, LI Li, et al. Estimation of maize yield based on random forest regression[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 237-245. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2019.07.026

    [27] 周西嘉,张悦,王鹏新,等. 基于Sentinel的时间序列田块尺度LAI重建与冬小麦估产[J]. 农业机械学报,2022,53(8):173-185.

    ZHOU Xijia, ZHANG Yue, WANG Pengxin, et al. Reconstruction of time series LAI and winter wheat yield estimation at field scales based on sentinel satellites[J]. Transactions of the chinese society for agricultural machinery, 2022, 53(8): 173-185. (in Chinese with English abstract)

    [28] 任建强,陈仲新,周清波,等. MODIS植被指数的美国玉米单产遥感估测[J]. 遥感学报,2015,19(4):568-577.

    REN Jianqiang, CHEN Zhongxin, ZHOU Qinbo, et al. MODIS vegetation index data used for estimating corn yield in USA[J]. Journal of Remote Sensing, 2015, 19(4): 568-577. (in Chinese with English abstract)

    [29] 王汇涵,张泽,康孝岩,等. 基于Sentinel-2A的棉花种植面积提取及产量预测[J]. 农业工程学报,2022,38(9):205-214. doi: 10.11975/j.issn.1002-6819.2022.09.022

    WANG Huihan, ZHANG Ze, KANG Xiaoyan, et al. Cotton planting area extraction and yield prediction based on Sentinel-2A[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CASE), 2022, 38(9): 205-214. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.09.022

    [30] 孙少杰,吴门新,庄立伟,等. 基于CNN卷积神经网络和BP神经网络的冬小麦县级产量预测[J]. 农业工程学报,2022,38(11):151-160. doi: 10.11975/j.issn.1002-6819.2022.11.017

    SUN Shaojie, WU Men Xin, ZHUANG Liwei, et al. Forecasting winter wheat yield at county level using CNN and BP neural networks[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CASE), 2022, 38(11): 151-160. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.11.017

图(5)  /  表(2)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  9
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-07
  • 修回日期:  2024-07-11
  • 网络出版日期:  2024-09-26
  • 刊出日期:  2024-10-29

目录

    /

    返回文章
    返回