Processing math: 100%
    • EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

南方丘陵山地油菜和小麦播种机械化发展现状与趋势

廖宜涛, 施彬彬, 王传奇, 廖庆喜, 武安阳, 欧耀徽

廖宜涛,施彬彬,王传奇,等. 南方丘陵山地油菜和小麦播种机械化发展现状与趋势[J]. 农业工程学报,2025,41(1):12-26. DOI: 10.11975/j.issn.1002-6819.202406151
引用本文: 廖宜涛,施彬彬,王传奇,等. 南方丘陵山地油菜和小麦播种机械化发展现状与趋势[J]. 农业工程学报,2025,41(1):12-26. DOI: 10.11975/j.issn.1002-6819.202406151
LIAO Yitao, SHI Binbin, WANG Chuanqi, et al. Development status and trend of mechanization of rapeseed and wheat sowing in hilly and mountainous region of southern China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2025, 41(1): 12-26. DOI: 10.11975/j.issn.1002-6819.202406151
Citation: LIAO Yitao, SHI Binbin, WANG Chuanqi, et al. Development status and trend of mechanization of rapeseed and wheat sowing in hilly and mountainous region of southern China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2025, 41(1): 12-26. DOI: 10.11975/j.issn.1002-6819.202406151

南方丘陵山地油菜和小麦播种机械化发展现状与趋势

基金项目: 国家重点研发计划项目(2021YFD1600503);国家自然科学基金项目(51975238);国家现代油菜产业技术体系专项(CARS-12-17);湖南省智能农机装备创新研发项目(HN202308)
详细信息
    作者简介:

    廖宜涛,教授,博士生导师,研究方向为现代农业装备设计与测控。Email:liaoetao@mail.hzau.edu.cn

  • 中图分类号: S223.2

Development status and trend of mechanization of rapeseed and wheat sowing in hilly and mountainous region of southern China

  • 摘要:

    中国南方丘陵山地油菜和小麦的机械化生产是解决南方地区冬闲田难题的有效途径,也是保障国内粮油安全的重要措施,但受地形条件和种植模式影响,目前南方丘陵山地油菜、小麦机械化播种水平较低且发展缓慢,仍处于“无机可用”或“无好机可用”状态。该文从生产区划、应用场景、技术装备3个方面分析了南方丘陵山地油菜小麦机械化生产现状,通过梳理油菜和小麦典型生产场景与实际应用机具之间的矛盾,明确了湿黏稻茬土壤、复杂丘坡地形、油菜和小麦种植农艺要求、区域经济落后、经营主体倾向和技术市场空缺等是影响南方丘陵山地各油麦产区机械化播种发展水平不充分的主要因素;通过分析现阶段油菜小麦机械化播种装备应用、技术发展及南方丘陵山地油麦机械化播种的技术卡点和装备发展需求,提出了研发适应南方丘陵山地黏重湿烂土壤条件、丘坡地形和小地块播种的智能化油麦兼用联合直播机是提高油麦机播水平的装备基础,并明确黏重与湿烂土壤种床整备、丘陵山地起伏地表播深控制、油麦兼用精量排种、智能化播种控制等关键技术是研究重点。研究可为南方丘陵山地油菜、小麦机械化播种水平提升提供参考。

    Abstract:

    The accurate location of targets can greatly contribute to the precision operations within agricultural scenes. Binocular stereo vision can be used to obtain the three-dimensional (3D) perception of the real world. Considerable application potential can depend mainly on the 3D localization and point cloud reconstruction of targets in agricultural environments. This study aims to review the latest research on binocular stereo vision and its applications in the agricultural field. Firstly, the pipeline of binocular stereo vision was summarized, including binocular camera calibration, epipolar rectification, and stereo matching. The binocular camera was utilized to calculate the depth of targets using disparity data. The objective of stereo vision calibration was then to determine the intrinsic and extrinsic parameters of the camera, including reference calibration, active vision calibration, self-calibration, and neural network calibration. A mapping was also established among points in pixel and world coordinates. In epipolar rectification, the constraints were employed to reduce the search space, in order to match the points from two dimensions to one. Stereo matching was used to calculate the disparity, in order to match the left and right images in both feature-based and deep learning. Furthermore, the local, global, and semi-global methods were categorized in the search range of matching pixels. The local method was used to search for the matching points within surrounding areas, the global method was to minimize the global energy function, and the semi-global method was to aggregate the costs from various directions. In contrast, more complex features were learned to enhance the stereo matching using deep learning. The network frameworks were introduced, such as convolutional neural networks (CNN), generative adversarial networks (GAN), transformers, neural architecture search (NAS), iterative optimization (IO) and graph neural network (GNN). CNNs performed extensive convolution operations to compute the matching costs for high accuracy, including convolutional encoders and decoders, hierarchical pyramids, as well as complex cost volumes. GANs synthesized the data through adversarial generation, in order to acquire the realistic disparity in binocular datasets. In Transformer, the self-attention mechanisms were utilized to capture the contextual information, indicating the limitations of CNN receptive fields. In NAS, the stereo-matching network architectures were automatically constructed to incorporate the human prior knowledge, in order to removal the peripolar need for manual design. The IO with no requirements on the construction of cost volumes and aggregation, leading to significant resource savings for the large ranges of disparity. GNN was used to simulate the complex relationships among features, and then extract the global information. Furthermore, the number and impact of publications were analyzed to examine the widespread applications of binocular stereo vision in agricultural research. The latest applications were explored from the recent literature. As such, 3D localization of fruit targets facilitated map navigation in practical operations using point cloud processing. The technology also supported the 3D reconstruction of crops or the segmentation of individual organs for growth parameter measurement. Additionally, the crop diseases or pests were identified to combine with precision spraying by agricultural machinery. Ultimately, the challenges were summarized to apply the binocular stereo vision to agriculture. The high precision was demonstrated in the localization, measurement, and identification. Some issues still remained, such as model complexity, scene limitations, scarcity of datasets, and fewer evaluation standards for stereo matching. Looking ahead, future research should focus on the algorithm design and optimization, the intelligent assistance platforms, the comprehensive datasets, and the evaluation system, in order to enhance the practicality and efficiency of binocular stereo vision systems in precision agriculture.

  • 南疆地处中国西北内陆干旱区,光热资源充足,是中国棉花的重要生产区[1]。新疆盐碱土的面积为2 184.4万hm2,约占全国盐碱土总面积的1/3[2],其中南疆土壤盐渍化问题更为突出。南疆地区水资源总量424.4亿m3,地均水资源量为全国平均水平的1/8,而农业用水占比超过总量的95%[3],水资源短缺和土壤盐渍化已经成为制约该地区农业发展的两大关键因素[4]。利用微咸水灌溉可以缓解淡水资源短缺,据统计,新疆矿化度大于3 g/L的咸水资源约100亿m3[5],南疆灌溉水矿化度普遍在2~6 g/L,适当的微咸水灌溉可以促进作物生长发育[6],但也可能造成土壤盐分在根区累积。因此,探究微咸水灌溉对土壤水热盐运移的影响,科学合理地制定微咸水灌溉制度对该地区农业可持续发展具有重要意义。

    近年来,地膜与滴灌结合的膜下滴灌技术得到广泛应用,具有减少蒸发和深层渗漏,提高土壤温度[7]的优势,有明显的节水增产效益。由于地膜阻碍土壤与近地面的气体交换,使膜内和膜间土壤中的水分、热量、盐分在二维剖面上产生差异,所以需要考虑水、热、盐在二维剖面的耦合运移。TIAN等[8]通过室内土箱试验对膜下滴灌土壤水、热、盐运移进行了研究,结果表明膜间的土壤比膜内更干,土壤含盐量更高,辐射升温幅度也更大。低滴灌强度的根区脱盐效率较高,横向盐分布不均匀。吉光鹏等[9]研究南疆多次微量滴水技术分析土壤水热盐二维分布的影响,得到了最佳土壤水热盐环境下的灌水量。孙贯芳等[10]的研究表明,不同灌溉制度下土壤盐分均随水分由膜内向膜外地表裸露区定向迁移,趋于膜外地表积累。微咸水与膜下滴灌结合的灌溉方式节水效果更好,但在淋洗土壤盐分的同时会带入土壤新的盐分,灌水矿化度较高时将导致土壤次生盐渍化。因此,有必要进一步探究微咸水膜下滴灌条件下土壤水热盐二维运移机制。

    田间试验受到环境的影响较大,且费时费力,而田间试验与数值模拟相结合能够更方便有效地获取和预测农田土壤各项指标的动态。HYDRUS-2D模型是由美国盐土实验室开发,能够较好地模拟土壤水分、热量、溶质在二维可变饱和多孔介质中的运动过程[11]。DOU等[12]利用HYDRUS-2D模拟了3种排水条件下的土壤水盐运移,结果表明土壤水分主要分布在0~40 cm土层,且在生育后期出现不同程度的次生盐渍化;ZHAO等[13]的研究表明,覆膜提高了土壤水分和温度,HYDRUS-2D可以有效模拟覆膜情况下二维土壤水热耦合运移。王在敏等[14]基于田间数据构建的HYDRUS-2D模型,优化了生育期内微咸水灌溉制度,得到最佳滴灌制度为高频少量灌溉;LI等[15]模拟南疆膜下滴灌棉田不同灌水定额的土壤水热盐二维分布,并提出了适宜的淡水灌溉制度。尽管前人验证了HYDRUS-2D模型模拟膜下滴灌农田土壤水热盐运动过程的适用性,并根据模拟结果提出了适宜的灌溉制度,但针对不同灌水量和灌水矿化度组合下的土壤水盐运移研究较少。为此,本研究在南疆膜下滴灌棉田开展了不同水盐处理下的田间试验,分析不同灌水量及灌水矿化度对膜下滴灌棉田土壤水热盐二维迁移与分布特征的影响,并利用HYDRUS-2D进行模拟验证和情景预测,从而确定南疆微咸水膜下滴灌适宜的灌溉制度,以期为南疆水资源高效利用和防治土壤次生盐渍化提供参考。

    田间试验于2023年4—10月在新疆阿拉尔现代农业院士专家工作站(40°06′N,81°02′E)进行。该站位于新疆第一师阿拉尔市十团,属于典型的大陆性暖温带干旱荒漠气候,全年降雨稀少,蒸发强烈,生育期内(2023年5月7日—2023年10月15日)平均气温23.47 ℃,降雨总量为15 mm,参考作物潜在蒸散发量为962.59 mm。该地区光热资源丰富,属于纯灌溉农业[16]。逐日气象数据来源于试验站内安装的HOBO自动气象站(美国Onset公司),生育期内降雨蒸发数据见图1。试验区地下水埋深2~3 m,从地表至地下80 cm深度的土壤大致可分5层,土壤质地均为砂壤土,其基本物理性质见表1[17]

    图  1  棉花生育期内降雨及参考作物腾发量
    Figure  1.  Rainfall and reference crop evapotranspiration (ET0) in growing season of cotton

    田间试验共设置3个灌水量和3个灌水矿化度水平,其中3个灌水量水平分别为作物灌溉需水量的75%(W1)、100%(W2)和125%(W3),3个灌水矿化度水平分别为1.5 g/L(S1,当地灌溉用水)、3.5 g/L(S2)和5.5 g/L(S3),共9个处理,每个处理设置3个重复,共27个小区,小区布置完全随机。试验小区长10 m,宽6.84 m,面积为68.4 m2。试验作物为棉花,品种为“塔河2号”,棉花种植模式为“一膜两带六行”(图2),采用膜下滴灌的灌溉方式。滴灌带为贴片式滴灌带,滴头间距24 cm,滴头流量2 L/h。棉花播种日期为4月24日,灌溉出苗水为淡水,5月7日进入苗期后,进行不同水盐灌溉,其中1.5 g/L的淡水和3.5 g/L的微咸水[18]分别为当地深层地下水和浅层地下微咸水,矿化度5.5 g/L的咸水是在3.5 g/L的基础上根据研究区地下水离子组成人工配制而成(NaCl:CaCl2=2:1),每隔7~10 d灌水一次,具体的灌溉制度见表2。棉花播种采用机播,株距10 cm,所有处理的施肥管理参照当地经验实行。

    表  1  土壤物理性质
    Table  1.  Soil physical properties
    土壤深度
    Soil depth/cm
    容重
    Bulk density/
    (g·cm−3
    田间持水量
    Field capacity/
    (cm3·cm−3
    粒径组成Particle composition/%
    <0.002 mm 0.002~
    0.05 mm
    >0.05~2 mm
    0~20 1.60 0.21 2.43 41.49 56.08
    >20~40 1.55 0.24 2.55 41.40 56.05
    >40~60 1.58 0.25 2.89 42.82 54.29
    >60~80 1.59 0.25 2.60 41.40 56.00
    下载: 导出CSV 
    | 显示表格
    表  2  灌溉制度
    Table  2.  Irrigation schedule
    生育阶段
    Growth stage
    灌水日期
    Irrigation date
    灌水量Irrigation amount/mm
    W1 W2 W3
    苗期
    Squaring
    06-14 22.5 30.0 37.5
    蕾期
    Bolling
    06-23 30.0 40.0 50.0
    07-03
    07-09
    34.5 46.0 57.5
    17.4 23.2 29.0
    07-18 32.5 43.3 54.2
    花铃期
    Flowering
    07-26 36.8 49.0 61.3
    08-03 28.1 37.5 46.9
    08-10 33.8 45.0 56.3
    08-16 22.5 30.0 37.5
    08-26 33.8 45.0 56.3
    总计
    Total/mm
    291.8 389.0 486.3
    下载: 导出CSV 
    | 显示表格
    图  2  棉花种植模式示意图
    Figure  2.  Schematic diagram of cotton planting pattern

    在生育期始末和灌水前后,用土钻在每个小区对土壤进行取样,分别在棉花的中间行(地膜中线处)、滴灌带下、棉花边行和裸土中间(以下简称为“中行” “滴灌带下” “边行” “裸土”)4个位置处,取样位置如图2,取样深度为10、20、40、60和80 cm,共5层。取得的土样通过烘干法(105 ℃,8~12 h)得到各层土壤的质量含水率,经土壤容重转换为体积含水率。将土样风干、碾碎后过1 mm筛,采用1:5的土水比例制成土壤浸提液,测量土水比1:5的土壤浸提液的电导率(SEC1:5电导率仪DDSJ-308A,上海精科仪器公司)。

    在W2灌水量下的3个不同灌水矿化度处理中,各随机选取1个试验小区,在中行、滴灌带下、边行和裸土这4个位置(与取样位置相同)的10、20、40、60和80 cm处,分别插入土壤水热盐监测探头(TDR315N,美国),探头与数据采集器相连,每隔1 h获取一次土壤体积含水率、电导率、温度等数据,代表不同位置处0~10、>10~20、>20~40、>40~60、>60~80 cm深度的数据,并用取土得到的实测数据对探头数据进行校准。

    各采样点土壤含盐量(S1,g/kg)是将SEC1:5按照当地经验公式转换,公式如下[19]

    S1=0.004SEC1:5+1.029 (1)

    1)忽略与滴灌带平行方向上水分分布的差异,采用与滴灌带垂直方向上的二维Richards方程描述土壤水分运移[20]

    θt=x[K(θ)hx]+z[K(θ)hz]+K(θ)zS0 (2)

    式中θ为土壤体积含水率,cm3/cm3K(θ)为非饱和土壤导水率,cm/d;h为压力水头(基质势),cm;t为时间,d;x为横坐标;z为纵坐标;S0为源汇项。式(2)中土壤含水率-基质势-导水率的关系采用van Genuchten-Mualem模型描述[21]

    K(θ)=KsSle[1(1S1me)]2,(m=11n,n>1) (3)
    Se=θθrθsθr (4)

    式中Ks为饱和导水率,cm/d;θr为土壤残余含水率,cm3/cm3θs为土壤饱和含水率,cm3/cm3Se为相对饱和系数;l为孔隙连通性参数;m、n为土壤水分特征曲线形状系数。

    2)不考虑溶质的降解、吸附、沉淀等过程,土壤盐分运移采用二维对流-弥散方程描述[22]

    θct=x[θD0cx]+z[θD0cz](qxc)x(qzc)z (5)
    θD0=DT|q|δ+(DLDT)qxqz|q|+θDWτWδ (6)

    式中c为溶质质量浓度,mg/cm3D0为弥散系数,cm2/d;qxqz为体积通量,cm/d;DW为溶质分子在水中的扩散系数,cm2/d;DL为纵向弥散度,cm;DT为横向弥散度,cm;δ为Kronecker函数;τW为液相弯曲系数。

    3)土壤热运移采用二维热传导方程描述[23-25]

    C(θ)Tt=x[λ(θ)Tx]+z[λ(θ)Tz]CwqxTxCwqzTz (7)
    C(θ)=Cnθn+Coθ0+Cwθ+Cgαv (8)
    λ(θ)=λTCw|q|δ+(λLλT)Cwqxqz|q|+λ0(θ)δ (9)
    λ0(θ)=b1+b2θ+b3θ0.5 (10)

    式中C(θ)是总体积热容量,J/(cm3· ℃);T为土壤热量, ℃;λ(θ)是土壤表观热导率,W/(cm· ℃);CnCwCo分别为固相、液相、有机质的体积比热容,J/(cm3· ℃);θnθo分别为固相、有机质的含量,在本研究中忽略有机质的影响,θo取为0;λL为纵向导热弥散度,cm;λT为横向导热弥散度,cm;λ0(θ)是热导系数,W/(cm· ℃);b1b2b3分别为热传导函数的参数,W/(cm· ℃)。

    4)根系吸水采用修正的Feddes模型[26]描述:

    S(h,hϕ,x,z)=α(h,hϕ,x,z)b(x,z)StTp (11)
    b(x,z)=b(x,z)ΩRb(x,z)dΩR (12)

    式中S(hhϕxz)为根系吸水函数;α(hhψxz)为水盐胁迫函数;hψ为渗透压力,cm;b(xz)为根系分布函数,1/cm2St为与蒸腾有关的地表长度,cm;Tp为潜在蒸腾速率,cm/d;ΩR为根系分布区域面积,cm2

    5)由试验区实测的气象资料,根据Penman-Monteith公式[27]计算参考作物腾发量ET0,通过作物系数Kc[28]计算作物潜在腾发量ETc,并根据Beer定律划分为潜在蒸腾与棵间蒸发[29]

    ET0=0.408Δ(RnG)+γ900T+273μ2(esea)Δ+γ(1+0.34μ2) (13)
    ETc=KcET0 (14)
    Tp=ETc(1eβLAI) (15)
    Ep=ETcTp (16)

    式中ET0为参考作物腾发量,mm;Rn为净辐射量, MJ/(m2·d);G为土壤热通量,MJ/(m2·d);μ2为2 m高处的风速,m/s;es为饱和水汽压,kPa;ea为实际水汽压,kPa;△为饱和水汽压与温度曲线的斜率,kPa/ ℃;γ为湿度计常数, kPa/ ℃;Kc为作物系数,参考FAO-56的取值并考虑试验地气象、覆膜等情况进行调整[28]Ep为潜在蒸发速率,cm/d;Tp为潜在蒸腾速率,cm/d;β为太阳辐射消光系数,参考文献[30]取值;LAI为叶面积指数,根据试验实测取值。

    利用HYDRUS-2D模型模拟棉花整个生育期从2023年5月7日—2023年10月15日共162 d的根区0~60 cm土壤水分、盐分和热运移的情况。试验小区在垂直于滴灌带的剖面上以地膜中线为轴,呈左右对称(图2),以膜中间划分,对右侧进行模拟,选取的模拟区域(图3)长度为120 cm,高度为80 cm(长度为膜宽的1/2,高度为棉花根系能达到的最大深度),模拟区域内有610个节点,1138个有限元网格,网格划分情况如图3

    图  3  模拟区域及边界条件示意图
    Figure  3.  Schematic diagram of simulated region and boundary conditions

    灌水量、灌水矿化度分别按照实际的水流通量[31]和盐分浓度输入[12],土壤上边界温度按照膜下和膜间两部分分别输入[15]。在模拟中缺乏实测地表温度,根据经验公式[32],由实测日平均气温得到5 cm深度的土壤平均温度,取日平均气温与5 cm土壤平均温度的平均值作为日平均地表温度。模拟的初始条件为土壤剖面上含水率、含盐量、温度的实测值。土壤水分运动上边界条件在滴头的湿润区[33]设为变通量边界(图3,30~50 cm处),灌水期间滴头的湿润区,根据灌水强度设置为通量边界,非灌水期为零通量边界。膜间裸地设为包含降水和蒸散发的大气边界(100~120 cm),膜下其他位置(0~30、50~100 cm)蒸发较小忽略不计,设为零通量边界,下边界为定水头边界(设置为土壤80 cm处的体积含水率);土壤溶质运移的上下边界均为第三类边界;土壤热运移的上下边界为第一类边界。左、右边界均为零通量边界。

    采用W2S2、W1S3和W3S1共3个不同的水盐梯度组合对HYDRUS-2D模型的适用性进行分析,选取W2S2处理对模型进行参数率定,以W1S3和W3S1处理验证模型。

    土壤水分特征参数根据表1实测的土壤粒径组成和干容重,利用Rosetta软件由ANN方法预测的van Genuchten-Mualem模型参数初始值[34],然后根据试验实测值进行调试,得到最终的van Genuchten-Mualem模型参数见表3。土壤溶质运移和热运移参数初始取值参考文献[15,35],经调试后的参数DW=5.5 cm2/d,λL=5 cm,λT=1 cm,θn=0.68,其他参数取值见表4

    表  3  土壤水分特征参数
    Table  3.  Soil moisture characteristic parameters
    土壤深度
    Soil depth/cm
    θr/(cm3·cm−3) θs/(cm3·cm−3) α/cm−1 n Ks/(cm·d−1) l
    0~10 0.0269 0.3676 0.0296 2.1676 50.55 0.5
    >10~20 0.0279 0.3456 0.0281 2.2141 49.34 0.5
    >20~40 0.0277 0.3523 0.0372 2.1983 48.41 0.5
    >40~60 0.0286 0.3657 0.0421 1.9152 40.48 0.5
    >60~80 0.0272 0.3589 0.0474 2.1354 46.12 0.5
    注:θr为土壤残余含水率;θs为土壤饱和含水率;αn为土壤水分特征曲线形状系数;Ks为饱和导水率; l为孔隙连通性参数。
    Note: θr is the residual moisture content of soil; θs is the saturated moisture content of soil; α and n are the shape coefficient of soil water characteristic curve; Ks is the saturated water conductivity; l is the pore connectivity parameter.
    下载: 导出CSV 
    | 显示表格
    表  4  土壤溶质运移和热特性参数
    Table  4.  Soil solute transport parameters and thermal parameters
    土壤深度
    Soil depth/cm
    DL/cm DT/cm b1/(W·cm−1· ℃−1) b2/(W·cm−1· ℃−1) b3/(W·cm−1· ℃−1) Cn/(J·cm−3· ℃−1) Co/(J·cm−3· ℃−1) Cw/(J·cm−3· ℃−1)
    >0~10 65 45 8.67×1016 8.53×107 5.89×108 1.43×1014 1.87×1014 3.12×1014
    >10~20 60 45 2.87×1017 7.95×107 6.24×108 1.43×1014 1.87×1014 3.12×1014
    >20~40 45 40 6.57×1017 7.83×107 7.49×108 1.43×1014 1.87×1014 3.12×1014
    >40~60 20 15 7.77×1017 7.65×107 8.29×108 1.43×1014 1.87×1014 3.12×1014
    >60~80 20 15 4.57×1016 2.53×107 9.89×108 1.43×1014 1.87×1014 3.12×1014
    注:DL为纵向弥散度;DT为横向弥散度;b1b2b3分别为热传导函数的参数;CnCwCo分别为固相、液相、有机质的体积比热容。
    Note: DL is longitudinal dispersion; DT is lateral dispersion; b1b2 and b3 are the parameters of the heat conduction function; CnCw and Co are the volume specific heat capacities of solid phase, liquid phase and organic matter, respectively.
    下载: 导出CSV 
    | 显示表格

    为了定量描述模型模拟的精度,采用模拟值与实测值之间的均方根误差(root mean squared error,RMSE)、平均绝对误差(mean absolute error,MAE)和决定系数(R2)对模型进行评价[36]。其中,RMSE、MAE越接近0,R2越接近1,表明模拟值的变化趋势与实测值吻合程度越高。

    在棉花生育期内土壤水分会伴随着灌水、土壤蒸发、植株蒸腾等过程运动,影响土壤水分在剖面上的分布。选取棉花苗期(6月12日)、蕾期(7月15日)和花铃期(8月25日)3个时期代表生育进程中的前、中、后3个阶段(选取日期均为相应生育阶段末期最后一次灌水前取土日期),分析生育期内不同灌水量下土壤水分的二维运移及空间分布(图4),图中距离(水平坐标)表示与覆膜中间的水平距离,其中0、40、80、120 cm的距离分别代表中行、滴灌带下、边行、裸土。

    图  4  S1处理不同灌水量下土壤水分二维分布
    注:S1为灌水矿化度1.5 g·L−1
    Figure  4.  Two-dimensional distribution of soil moisture under various irrigation amounts of S1 treatment
    Note: Mineralization is 1.5 g·L−1 in irrigation water

    图4可知,苗期和蕾期土壤水分二维分布的差异性较大,由于棵间蒸发耗水严重,土壤表层0~20 cm含水率最低,在0.05~0.11 cm3/cm3之间,40~60 cm含水率在整个剖面中最高,可达到0.14~0.18 cm3/cm3,土壤含水率随深度的增加先增大后减小,水平方向上表现为由膜下向膜间裸土逐渐递减的变化趋势。随着灌水量的累加和植株发育,冠层遮蔽降低了膜间裸土蒸发,生育后期土壤剖面上含水率的分布逐渐均匀(图4c图4f图4i)。生育期内灌水对0~40 cm深度土壤水分的影响显著[37],从苗期到花铃期,3个灌水量下土壤含水率均增加,W1、W2、W3的0~40 cm平均含水率分别增加了21.84%、29.13%、32.37%,40~80 cm均略有降低。总的来说,土壤含水率在二维剖面内呈现出随深度增加先增大后减少,由膜内向膜间递减的分布规律。

    图4a图4b可以发现,在低灌水量下,土壤水分主要分布在水平0~20 cm和垂直40~60 cm,高灌水量下(图4g图4h),土壤水分主要分布在水平0~60 cm和垂直30~80 cm,随着灌水量的增加,土壤湿润区域增大。对比W2S1和W3S1处理,在苗期(图4d图4g)、蕾期(图4e图4h)和花铃期(图4f图4i),W2S1土壤40~80 cm含水率均保持在大于W3S1的水平,过量的灌溉定额会增加植株蒸腾,这表明过量灌水不一定提高根区土壤含水率。

    以W2S1处理(当地常规灌溉)为例分析不同位置土壤含水率在生育期始末的变化(生育期末-生育期初),如表5

    表  5  生育期始末土壤含水率变化
    Table  5.  Changes of soil moisture from the initial to the end of growth stage
    土壤深度
    Soil depth/cm
    中行
    Middle row/
    (cm3·cm−3)
    滴灌带
    Drip irrigation tape/
    (cm3·cm−3)
    边行
    Border row/
    (cm3·cm−3)
    裸土
    Bare soil/
    (cm3·cm−3)
    0~10 −0.038 −0.082 −0.040 −0.013
    >10~20 −0.044 −0.053 −0.048 −0.015
    >20~40 −0.041 −0.033 −0.049 −0.037
    >40~60 −0.037 0.024 −0.045 −0.046
    >60~80 −0.045 −0.011 −0.047 −0.034
    平均值Average −0.041 −0.031 −0.046 −0.029
    注:负号表示生育期末土壤含水率下降。
    Note: The negative sign indicates that the soil moisture content decreases at the end of the growth period.
    下载: 导出CSV 
    | 显示表格

    生育期内土壤含水率在灌溉、植株蒸腾和土壤蒸发影响下不断波动,但生育期结束后的总体土壤含水率低于初始值。覆膜春灌的非生育期盐分淋洗模式有效提升了生育期初的土壤含水率,但膜间裸土含水率提高较少,同时生育期内的灌水也较少运移到膜间,因此裸土水分降低最少,0~80 cm土层平均降低0.029 cm3/cm3;而边行和中行初始含水率较高,同时在棉花旺盛的蒸腾作用下导致土壤水分降低最多,分别为0.046、0.041 cm3/cm3;生育期内频繁的灌水使得滴灌带下60 cm处始终处在湿润锋边缘,同时棉花根系吸水和土壤蒸发影响较小,使其土壤含水率在生育期末上升0.024 cm3/cm3

    图5为不同水盐处理下根区0~60 cm土壤含水率模拟值与实测值的比较结果,在每次灌水之后土壤水分得到补充,随着作物耗水和土壤蒸发缓慢下降,各层土壤水分呈现锯齿状波动,其中土壤0~20 cm波动较深层大。土壤含水率的模拟效果较好,R2、RMSE、MAE分别在0.64~0.85、0.01~0.03 cm3/cm3、0.01~0.03之间,深层土壤含水率模拟效果优于表层。

    图  5  不同水盐处理下0~60 cm土壤含水率模拟值与实测值的比较
    注:RMSE为均方根误差。MAE为平均决定误差。S2和S3中,灌水矿化度分别为3.5和5.5 g·L−1
    Figure  5.  Comparison of simulated and measured water content in 0-60 cm soil depth under different water and salinity treatments
    Note: RMSE is root mean square error. MAE is mean relative error. Irrigation mineralization is 3.5 and 5.5 g·L−1 for S2 and S3respectively.

    本文以棉花生育中期的第5次灌水事件(灌水日期为7月18日,灌水量见表2)为例,分析不同灌水量下单次灌水前后土壤剖面上的盐分运移(图6)。灌水前,垂直方向上土壤盐分主要分布在深层,W1S1处理(图6a)盐分在土壤40~80 cm深度累积,平均盐含量是0~40 cm的2.4倍,而W2S1(图6b)和W3S1(图6c)处理主要分布在土壤60~80 cm深度,平均盐含量是0~60 cm的1.91、2.26倍;水平方向上,W1、W2处理土壤盐分在边行和裸土的20~40 cm累积,W3处理在30~60 cm累积,灌水量增加提高了低矿化度处理下的洗盐效率,导致土壤积盐深度增大。灌水后,由于滴灌的点源入渗特性,在滴头下方形成一个半圆形脱盐区,土层加深淋洗作用减弱,40~80 cm土层土壤盐分在W1时基本不变,W2、W3盐分向下迁移而呈现降低趋势。S1矿化度低,0~40 cm土层中行和滴灌带下的盐含量均小于灌水前,以盐分淋洗为主,而对于不同的灌水量,边行和裸土的盐分变化不同,低灌水量下边行盐分增加,积盐率为11.55%,中、高灌水量下盐分在裸土增加,积盐率分别为5.53%、15.21%(图6d图6f),表明随着灌水量增大,盐分淋洗到较深的土层中,脱盐区域向膜外移动扩展。

    图  6  S1处理不同灌水量下灌水前后土壤盐分的剖面分布
    Figure  6.  Distribution of soil salinity before and after irrigation under various irrigation amounts of S1 treatment

    微咸水灌溉能够淋洗土壤中的盐分,同时也会将灌水将盐分带入土壤中,不同灌溉量下盐分淋洗速率与累积速率的大小将影响土壤盐分的运移及分布。为了明晰生育期内0~80 cm土壤盐分的动态变化及运移趋势,与土壤水分相同,以棉花苗期(6月12日)、蕾期(7月15日)和花铃期(8月25日)3个阶段为生育前期、中期和后期进行分析。生育期内不同灌水矿化度下土壤剖面盐分的分布如图7所示。

    图  7  生育期内不同灌水矿化度下土壤盐分二维分布
    Figure  7.  Two-dimensional distribution of soil salinity in different growth stages under various irrigation salinity

    苗期土壤盐分主要分布在40~80 cm土层,盐分在上层土壤的水平方向上没有显著差异(图7a图7d图7g),这是由于播前采用覆膜春灌的方式将盐分淋洗至深层土壤,膜间裸土的蒸发对于膜内外盐分运移的影响较小。此时正处生育期的第1次灌水前,不同矿化度之间的盐分分布无显著差异。

    与生育初期相比,蕾期(图7b图7e图7h)的土壤盐分分布出现差异,在此期间较高的灌水频率有利于盐分向下迁移并在湿润锋边缘积聚,导致深层土壤的盐分升高。3种灌水矿化度处理下40~80 cm土壤深度中行和滴灌带位置的盐分均相对较高,其中,W2S2和W2S3处理中行和滴灌带下的40~80 cm平均含盐量分别比苗期增加了36.61%和31.07%,这是在“一膜两带六行”的种植模式下,中行位于两侧滴灌带形成的湿润峰交汇处,高盐浓度时导致盐分在40~80 cm的中行和滴灌带下积聚。W2S1处理在裸土的0~40 cm盐分累积,0~40 cm平均含盐量分别比苗期增加了77.47%,由于蒸发驱动的盐分向上迁移,导致裸土的40~80 cm盐分有所下降;而W2S2和W2S3处理0~40 cm边行土壤含盐量要高于膜间裸土。

    在花铃期(图7c图7f图7i),不同灌水矿化度对盐分的空间分布产生显著的影响。与生育初期相比, S1矿化度灌溉下的中行和滴灌带下40~80 cm深度土壤盐分分别降低了45.71%、29.03%,盐分淋洗效果明显,而S3盐浓度较高,中行和滴灌带下土壤40~80 cm盐分分别增加了56.28%、80.14%。S1处理0~80 cm土壤含盐量相对较低,水平方向上主要在边行和裸土积聚;S2处理60~80 cm深度为主要积盐区,水平方向上除滴灌带下均发生积盐;S3处理灌水矿化度较高,在40~80 cm深度发生盐分累积,水平方向上在边行和裸土处积盐。

    表6为W2S1处理土壤剖面上不同位置盐分在生育期始末的变化。灌溉是土壤盐分运移的主要驱动因素,由表可知,低矿化度的灌水淋洗滴灌带下0~40 cm土壤盐分,其中表层0~10 cm土壤生育期末盐分降低0.46 g/kg,随着土壤深度的增加淋洗效果减弱,盐分在40~80 cm积聚,生育期末上升1.51 g/kg;边行10~40 cm处于湿润范围内盐分得到淋洗,而0~10 cm处于湿润锋边缘,生育期末盐分上升0.30 g/kg;膜间裸土是主要的积盐区,田间土壤较砂且10~40 cm处于湿润锋边缘,因此在生育期末膜间土壤10~40 cm盐分累积高于膜间0~10 cm土壤;中行处于两根滴灌带造成的湿润锋重合处,生育期末在中行20~40 cm处累积的盐分最多,为1.05 g/kg。

    表  6  生育期始末土壤含盐量变化
    Table  6.  Changes of soil salinity from the initial to the end of growth stage
    土壤深度
    Soil depth/cm
    中行
    Middle row/
    (g·kg−1)
    滴灌带
    Drip irrigation
    tape/(g·kg−1)
    边行
    Border row/
    (g·kg−1)
    裸土
    Bare soil/
    (g·kg−1)
    0~10 0.60 −0.46 0.30 0.28
    >10~20 0.42 −0.23 −0.02 0.91
    >20~40 1.05 −0.07 −0.13 0.79
    >40~60 0.07 1.04 0.39 0.46
    >60~80 −0.20 0.47 0.17 −0.05
    平均值Average 0.39 0.15 0.14 0.48
    注:负号表示生育期末土壤含盐量下降。
    Note: The negative sign indicates that the soil salinity decreases at the end of the growth period.
    下载: 导出CSV 
    | 显示表格

    生育期内0~60 cm土壤含盐量的动态变化模拟与实测值的比较如图8所示,模拟的盐分变化趋势与实际基本一致,图8展示的3个处理中,灌溉水矿化度大于S2时,0~40 cm土壤盐分波动式上升,而W3S1处理的含盐量基本不变,40~60 cm含盐量均呈降低趋势。模拟结果较好,R2、RMSE、MAE分别在0.56~0.79、0.27~1.28 g/kg、0.25~1.24之间。

    图  8  不同水盐处理下0~60 cm土壤含盐量模拟与实测的比较
    Figure  8.  Comparison of simulated and measured soil salinity in 0-60 cm soil depth under different water and salinity treatments

    由于试验设置只在W2S1、W2S2和W2S3这3个处理下埋设土壤温度传感器,而经过比较发现在不同处理之间生育期内土壤温度差异较小,所以本文选择以W2S1(当地常规灌溉)为例进行分析。通过分析各层土壤温度随棉花生育阶段的变化规律(图9),可以发现各层土壤温度变化趋势一致,生育初期土壤温度迅速升高,进入蕾期后在冠层遮蔽和灌水的双重作用下,土壤温度呈波动式下降。进入吐絮期后土壤温度略有回升,此后随空气温度迅速降低。

    图  9  生育期内0~80 cm土层温度动态变化
    Figure  9.  Dynamic changes of soil temperature of 0-80 cm soil depth in different growth stages

    土壤0~40 cm温度受外界环境影响较大引起波动幅度大,各生育阶段始末的平均温差在3.56~8.41 ℃之间,而土壤40~80 cm温度波动较小,各生育阶段始末的平均温差在1.61~4.55 ℃之间。从空间尺度上看,随深度增加土壤平均温度逐渐降低,0~80 cm的土壤各层平均温度从24.06 ℃降至22.41 ℃。覆膜可以显著提高生育初期的土壤温度,这种增温效果对0~40 cm土壤影响较大。棉花苗期由于覆膜导致0~40 cm的膜内外土壤平均温差为1.35 ℃,此后随着冠层发育遮蔽土壤,覆膜的增温效果减弱。

    在田间试验中只收集了W2灌水量下3个处理的温度实测值,所以在土壤水热盐耦合模拟中,仅对比了W2S2处理土壤温度的实测与模拟结果,图10为0~60 cm土壤日平均温度的模拟值与实测值比较,表现出良好的一致性,R2在0.77~0.87之间。

    图  10  0~60 cm土壤温度模拟值与实测值比较
    Figure  10.  Comparison of simulated and measured soil temperature in 0-60 cm soil depth

    由以上模拟与实测值的对比可知,本文建立的模型能够可靠地反映膜下滴灌农田不同水盐处理下的土壤水盐运移规律。进一步采用本模型进行情景模拟,设置W0.7、W0.8、W0.9、W1.0共4个灌水量水平,分别为灌溉需水量的70%、80%、90%、100%和S1.5、S2.5、S3.5、S4.5、S5.5共5个灌溉水矿化度水平,分别为1.5、2.5、3.5、4.5、5.5 g/L,以便模拟多水盐处理下膜下滴灌农田棉花根区的土壤水盐动态,确定南疆适宜的膜下滴灌灌溉制度。情景模拟除灌水量和灌水矿化度的输入外,模型设置均与以上模拟相同。

    根据前人的研究,膜下滴灌棉花根系分布主要集中在土壤25~35 cm之间[38],0~40 cm是棉花的主根区,因此情景模拟结果主要分析不同灌溉水盐条件下土壤0~40 cm膜下与膜间的土壤盐分迁移规律。生育期始末膜下和膜间的土壤积、脱盐率如图11,可以发现,土壤盐分淋洗主要发生在膜下(图11a),当矿化度小于2.5 g/L时,4个灌水量的膜下0~40 cm深度均没有积盐。同一灌水矿化度下,随着灌水量的增加,土壤湿润范围扩大,膜下的盐分淋洗作用加强(低矿化度时的脱盐率增大,高矿化度时的积盐率减小),向膜间迁移的盐分增加,而在灌水量超过W0.9时,膜下土壤脱盐率有所降低。

    图  11  0~40 cm土壤膜内外积/脱盐率
    注:W0.7~W1.0分别为灌水需水量70%、80%、90%、和100%。
    Figure  11.  Salt accumulation rate or desalting rate of 0-40 cm soil depth in and out of mulch
    Note: W0.7-W1.0 are 70%, 80%, 90% and 100% of water demand, respectively.

    在相同的灌水量下,随着灌水矿化度的增加,土壤脱盐率减少,积盐率逐渐增大,当矿化度大于3.5 g/L时,所有灌水量的膜下0~40 cm土壤均出现积盐。随着灌水量的增加,更多的盐分淋洗至膜间(图11b),灌水矿化度为1.5 g/L条件下,灌溉水量高于W0.95会导致膜间0~40 cm土壤出现盐分累积;当灌水矿化度高于2.5 g/L时,所有灌水量均会导致膜间土壤积盐。生育期内根区土壤盐分淋洗效率不会随着灌水量的增大而增加,同一灌水矿化度下,当灌水量为W0.9时,可以达到膜下土壤最高的脱盐率或最小的土壤积盐率。充分灌溉条件下,保证膜下0~40 cm土壤不积盐的最高灌水矿化度为3.2 g/L;在90%的灌溉需水量下,保证膜下土壤根区不积盐的最高灌水矿化度为3.5 g/L;灌水矿化度低于2.5 g/L时,所有灌溉水平均不会导致根区土壤出现盐分累积。

    本试验观测到土壤水分在垂直方向上呈现出先增大后减小的分布规律,在40~60 cm土层含水率较高。这是由于南疆地区土壤质地偏砂性,且地下水埋深多在2.5 m[16]以下,土壤水分主要靠灌溉进行补给,由于覆膜滴灌单次灌水量少且灌水强度小,生育期内灌水湿润深度多在60 cm左右,而0~40 cm为棉花的主根区,在植株蒸腾耗水影响下导致土壤水分在垂直方向上呈现先增大后减小的特征。这与CHEN等[37]得到的研究结果相同。“一膜两带六行”的种植模式下,由于生育期内持续灌水使相互对称的两侧滴灌带湿润区在膜中间的中行处产生重叠,在覆膜作用下蒸发较小,而膜间裸土距离滴灌带较远且裸露土壤蒸发强烈,水分散失快,生育期内的少量降雨(图1,单次降雨量在0.2~4.4 mm之间)虽然会在短时间内提高膜间裸土含水率,但对膜间10 cm以下土壤无显著影响,同时在强烈的蒸发作用下膜间裸土含水率迅速降低,单次降雨对土壤水分二维分布影响较小,因此水平方向上土壤含水率呈现出从膜内中行到膜间裸土逐渐降低,这也与以往研究一致[39-40]。生育前期土壤水分有较大的分布差异,随着灌水量的增加,湿润体逐渐向膜外移动,湿润区范围扩大(图4),在生育后期土壤剖面上水分分布的均匀性增加,这与CHEN等[41]的研究结果相同。125%的灌溉需水量并不能提高根区土壤含水率(图4h图4i),这是因为过量的灌溉定额促进作物生长发育,旺盛的蒸腾作用在一定程度上降低了土壤含水率。

    盐随水走,随着裸土蒸发和定期灌溉,土壤盐分在不同灌水量和灌水矿化度的影响下再分布。S1矿化度下,灌水量增加提高了此矿化度处理的洗盐效率。由灌前土壤盐分分布(图6)可知,低灌水量下,土壤水盐向下迁移,在40~80 cm深度积聚,较低的灌水量水盐横向运移较少(图6a);随着灌水量的增加,湿润区不断扩大,在膜间裸土蒸发作用下盐分被淋洗到膜间,而W3处理充足的灌溉水量也淋洗了裸土0~20 cm土壤盐分(图6b图6c)。灌后土壤在滴灌带处出现明显的脱盐区(图6d图6e图6f),其中低(W1)灌水量处理盐分分布与灌前相同,高灌水处理盐分淋洗效果显著,盐分被淋洗至深层土壤,这与HOU等[42]的研究结论相同。

    随着生育期的进行,中、高矿化度灌水处理土壤盐分不断累积,累积位置主要在中行和滴灌带处的40~80 cm(图7e图7h),这是因为“一膜两带六行”的模式下中行和滴灌带处为土壤主要湿润区,中、高矿化度的灌溉水在此累积提高了土壤盐分。进入花铃期,停止灌水后盐分的主要驱动力来自膜间裸土的蒸发,水平方向上边行和膜间裸土处出现盐分累积(图7c图7f图7 i)。与前人研究结果[42-43]不同的是,膜间0~20 cm含盐量低于20~40 cm,盐分表聚现象不明显,这是由于试验地土壤质地偏砂,导水率较大,垂直方向的盐分运移远高于水平方向,因此盐分在随湿润峰运移时导致膜间20~40 cm土壤盐分高于0~20 cm。同一灌水量下,随着灌水矿化度的增加,生育期内灌水对盐分的淋洗效果减弱,高矿化度的处理60~80 cm土壤积盐更加显著,灌水带入的盐分在此处产生积聚(图7)。灌水矿化度增大,盐分累积占主导,盐分累积深度降低。

    苗期土壤温度随空气温度的升高迅速增高,进入蕾期后作物生长旺盛,同时频繁的灌水降低了土壤温度,使得进入蕾期后土壤温度开始降低,覆膜的增温效果减弱。进入吐絮期后停止灌水,棉花叶片脱落,土壤温度略有回升,此后又在空气温度影响下迅速降低。生育期内土壤温度的分布差异表现为膜内温度高于膜间温度,上层土壤温度高于下层。同时,覆膜的增温效应在棉花生育初期土壤表层(0~40 cm)表现更加明显,这是因为生育初期植株的遮蔽作用较弱,受太阳直射导致近地表的气体交换频繁,温度波动大,后期植株冠层发育遮蔽膜间裸土,导致覆膜的增温效减弱,这与孙贯芳等[1044-45]的研究结果一致。

    随着灌水矿化度的增加,盐分累积趋势增大[46],当矿化度小于3.5 g/L时,棉花主根区0~40 cm土壤盐分淋洗速率大,这与杨广等[22]的研究得出的矿化度在4 g/L以下,盐分淋洗速率大于累积速率,结果基本一致。低矿化度下,膜内0~40 cm土壤脱盐率随灌水量的增加先增大后减小,高矿化度下,膜内土壤积盐率随灌水量的增加先减小后增大,这是由于灌水量增加提高了土壤淋洗深度,W0.9对于根区0~40 cm土壤淋洗效果最好,而过量灌水湿润峰位置处于深层土壤,对根区土壤的淋洗效果与W0.9相同,此外灌水的同时伴随着带入土壤中更多的盐分,除盐分横向运移外,也导致膜下土壤盐分增加。膜间土壤盐分累积与灌水定额密切相关[47],增大灌水量能够将更多盐分淋洗至膜间0~40 cm,在不同灌溉制度下膜间0~40 cm土壤主要以积盐为主。由于初始盐含量对盐分的变化有很大影响,情景模拟仅在轻度盐渍土上进行,在不同盐渍程度的区域,其适用性还需要进一步验证。

    本文利用HYDRUS-2D模型能够较好地模拟膜下滴灌农田的土壤二维水热盐运移,但仍存在不足之处,例如模型将土壤含水率的覆膜边界在非灌水期简单设置为零通量边界,没有考虑到膜的破损导致的膜下土壤水分蒸发,导致在灌水后土壤湿润条件下,0~20 cm的土壤含水率被高估,峰值较高,而在土壤较干燥的时期,模拟值更加接近实测值。此外还缺少对地上作物生长的模拟,在模拟中采用了已知的土壤水热盐上边界条件。而在实际应用中,土壤的上边界温度往往是未知的,需要考虑根据气象观测结合下垫面能量平衡和水热传输过程来进行量化。

    本研究通过田间试验和数值模拟,分析了南疆膜下滴灌农田土壤水热盐在二维剖面上的分布特征及运移规律,并通过情景模拟探究了不同灌水量和灌水矿化度对土壤积/脱盐率的影响,主要得到以下结论:

    1)生育前期土壤二维剖面内水分分布差异明显,后期逐渐均匀;125%的灌溉需水量不能提高根区土壤含水率;低灌水矿化度下土壤盐分累积位置随灌水量增大向深层、膜间土壤运移,中、高矿化度灌水提高了滴灌带下、中行位置处的土壤盐分;覆膜对生育初期0~40 cm土壤增温效果明显。

    2)HYDRUS-2D模型能可靠模拟膜下滴灌棉田土壤水热盐二维运移,0~60 cm土层土壤含水率、含盐量、温度模拟值与实测值的动态变化表现出良好的一致性,R2均大于0.56。

    3)膜间土壤主要以积盐为主,微咸水灌溉下较高的灌水定额会提高膜下根区土壤含盐量。灌水矿化度小于2.5 g/L时,不同灌溉水量均不会造成膜下根区土壤在生育期末的盐分累积。充分灌水条件下,保证膜下0~40 cm土壤不积盐的最高灌水矿化度为3.2 g/L;在90%的灌溉需水量下,灌水矿化度为3.5 g/L时,是微咸水灌溉下保证膜下土壤根区不积盐的最大阈值。

  • 图  1   耕地湿烂情况

    Figure  1.   Wet and rotten condition of cultivated land

    图  2   兴赣黑芝麻专业合作社地形地貌

    Figure  2.   Topography and landforms of Xinggan Black Sesame Professional Cooperative

    图  3   特色粮油作物江津综合试验站地形地貌

    Figure  3.   Topography and landforms of Jiangjin Comprehensive Experimental Station of Characteristic Grain and Oil Crops

    图  4   机械与人工结合的分段播种

    Figure  4.   Segmented sowing with combination of mechanical and human labor

    图  5   机械耕整地开沟/免耕+飞播

    Figure  5.   Mechanical plowing and trenching/no tillage with aerial sowing

    图  6   油菜机械联合直播

    Figure  6.   Rapeseed mechanical combined direct sowing

    图  7   2BYM-6/8型油麦兼用联合直播机

    Figure  7.   2BYM-6/8 direct sowing machine for rapeseed and wheat

    图  8   平坝机械化作业现状

    Figure  8.   Current situation of mechanized operations in flat plains

    图  9   坡田机械化作业现状

    Figure  9.   Current situation of mechanized operations in sloping fields

    图  10   梯田机械化作业现状

    Figure  10.   Current situation of mechanized operations in terrace

    图  11   机械式油麦兼用集排器[39]

    1.充种仓 2.种层调节装置 3.传动主轴 4.型孔轮组件 5.外壳 6.电机 7.气力辅助导种装置 8.风机组 9.种箱

    Figure  11.   Mechanical rapeseed and wheat dual-purpose metering device[39]

    1.Seed filling warehouse 2.Seed layer adjustment device 3.Drive spindle 4.Type-hole wheel assembly 5.Shell 6.Motor 7.Pneumatic assisted seed guide device 8.Fan unit 9. Seed box

    图  12   油麦兼用气送式集排系统[41]

    1.涵道风机 2.输气管 3.文丘里管 4.稻麦油兼用供种装置 5.波纹管 6.分配装置 7.导种管

    Figure  12.   Air-conveyed centralized drainage system for rapeseed and wheat[41]

    1.Culvert fan 2.Gas pipe 3.Venturi tube 4.Rice, wheat and rapeseed seed supply device 5.Corrugated pipe 6.Distribution device 7.Seed guiding pipe

    图  13   土壤耕层构建装置

    Figure  13.   Soil plough layer construction device

    图  14   被动碾压式厢面平整装置

    Figure  14.   Passive rolling van surface leveling device

    图  15   主动挤压式厢面平整装置

    Figure  15.   Active extrusion van surface leveling device

    图  16   开畦沟装置及其作业效果

    Figure  16.   Ditching device and its operation effect

    图  17   播深不一致对作物出苗的影响

    Figure  17.   Effect of inconsistent sowing depth on crop emergence

    图  18   主动式开沟深度控制装置[97]

    1.下压力测量装置 2.播深调节杆 3.播深测量装置 4.电子秤

    Figure  18.   Active trenching depth control device[97]

    1. Down pressure measuring device 2. Sowing depth adjusting rod 3. Sowing depth measuring device 4. Electronic scale

    表  1   南方丘陵山地油麦种植场景耕地分类

    Table  1   Farmland classification of rapeseed and wheat planting scene in hilly and mountainous region of southern China

    耕地类型
    Farmland type
    地形特点
    Topographic features
    适机耕播特征
    Characteristics of suitable tillage and sowing
    典型地形地貌
    Typical landform
    梯田
    Terrace
    丘陵山地上沿等高线方向
    修筑的条状阶台式或波浪式
    断面的耕地
    水旱轮作梯田:精细等高水平改造形成,田块平整,适宜水旱轮作,
    但田面弯曲狭长,单块面积不足0.03hm2,中大型机组作业和转运困难,
    导致机械化生产率普遍偏低
    旱作梯田:粗放改造形成,以坡式梯田和隔坡梯田为主,田块间落差较大,单田块面积0.20~0.33hm2,部分田块有较小坡度(6°以下),机具作业时可顺坡运移、入田作业,机械化生产难度较水旱轮作梯田低
    平坝
    Flat plains
    丘陵山地山间盆地、峰丛洼地及河谷地带的坡度起伏小、地势相对平缓(6°以下)的耕地 大平坝:耕地面积从6.67~666.67hm2不等,地形地貌与平原地区相似,适宜发展农业机械化生产,机械化作业主要难点在于机耕道不完善、农业技术服务机构不足等基础建设问题,技术难度相对较低
    小平坝:面积在6.67hm2以下,普遍存在于丘陵山地谷底区域,一般为两山所夹的底部平缓耕地,地形平坦、地势较低,生产上多采用稻-油/麦水旱轮作
    模式,油麦播种时土壤含水量较大且长期浸水,加之受雨热同期气候特征
    影响,导致耕地黏重湿烂特征显著,现有播种机具作业时存在机组易下陷、开沟起垄稳定性差、易缠绕拥堵等问题
    坡田
    Sloping field
    丘陵山地中未经改造或简单改造后仍具有一定坡度的耕地 坡度在6°~15°之间,地势起伏无规律,降水易通过径流流失,
    土壤蓄水保土保肥能力弱,易旱特征显著[20-21],机械化播种对
    机具仿形和播深控制能力要求较高
    下载: 导出CSV
  • [1] 王磊. 油麦兼用型宽幅高速气送式播种机关键部件设计与试验[D]. 武汉:华中农业大学,2021.

    WANG Lei. Design and Experiment on Broad Width and High Speed Air-assisted Planter for Rapeseed and Wheat[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese with English abstract)

    [2]

    HU Q, HUA W, YIN Y, et al. Rapeseed research and production in China[J]. The Crop Journal, 2017, 5(2): 127-135. doi: 10.1016/j.cj.2016.06.005

    [3] 国家统计局. 中国统计年鉴[J]. 北京:中国统计出版社,2023.
    [4] 中国新闻网. 农业农村部:预计冬油菜面积超过1亿亩,产量达到1450万吨以上[EB/OL]. [2023-10-23]. https://www.chinanews.com.cn/cj/2023/10-23/10098943.shtml.
    [5] 中国新闻网. 首批冬小麦收获了!产自哪里?产量如何?[EB/OL]. [2023-05-10]. https://www.chinanews.com.cn/gn/2023/05-10/10004518.shtml.
    [6] 中华人民共和国农业农村部. 农业农村部办公厅关于大力开发冬闲田积极扩种冬油菜的通知[EB/OL]. [2020-11-24]. https://www.moa.gov.cn/xw/bmdt/202011/t20201124_6356875.htm.
    [7] 夏训谅. 油菜生产全程机械化技术实践与探索[J]. 农机科技推广,2021,224(6):29-31. doi: 10.3969/j.issn.1671-3036.2021.06.019
    [8] 张友义. 油菜主产县有望实现全机械化生产[J]. 湖南农业,2019,499(7):14-15. doi: 10.3969/j.issn.1005-362X.2019.07.015
    [9] 中华人民共和国农业农村部. 农业农村部办公厅关于公布全国第五批率先基本实现主要农作物生产全程机械化示范县(市、区)名单的通知[EB/OL]. [2020-12-24]. https://www.moa.gov.cn/govpublic/NYJXHGLS/202012/t20201224_6358797.htm.
    [10] 中华人民共和国农业农村部. 2022年全国农业机械化发展统计公报[EB/OL]. [2024-06-18]. http://www.njhs.moa.gov.cn/nyjxhqk/202406/t20240618_6457395.htm .
    [11] 中华人民共和国中央人民政府. 南方丘陵山地带生态保护和修复重大工程建设规划(2021-2035年)[EB/OL]. [2021-12-30]. https://www.gov.cn/zhengce/zhengceku/2022-01/16/content_5668537.htm.
    [12] 袁波. 稻油轮作系统不同种植模式对水稻和油菜生长发育和周年产量的影响[D]. 武汉:华中农业大学,2020.

    YUAN Bo. Effects of Different Patterns on Growth and Annual Yield of Rice and Oilseed Rape in a Rice-oilseed Rape Rotation System[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese with English abstract)

    [13] 赵广才. 中国小麦种植区划研究(一)[J]. 麦类作物学报,2010,30(5):886-895. doi: 10.7606/j.issn.1009-1041.2010.05.019

    ZHAO Guangcai. Study on chinese wheat planting regionalization(I)[J]. Journal of Triticeae Crops, 2010, 30(5): 886-895. (in Chinese with English abstract) doi: 10.7606/j.issn.1009-1041.2010.05.019

    [14] 杜雪花,肖孟,张翔宇. 川东北地区小麦赤霉病重发原因及绿色防控对策[J]. 植物医学,2022,1(3):34-39.

    DU Xuehua, XIAO Meng, ZHANG Xiangyu. Causes and green prevention and control measures of wheat scab in northeast Sichuan[J]. Plant Health and Medicine, 2022, 1(3): 34-39. (in Chinese with English abstract)

    [15] 朱文华,任明见,张庆勤,等. 贵州小麦白粉菌毒性结构及品种抗性分析[J]. 西南农业学报,1998,11(2):73-79.

    ZHU Wenhua, REN Mingjian, ZHANG Qingqin, et al. Virulence constitution of Erysiphe graminis f. sp. tritici and cultivar resistance to powdery mildew in Guizhou[J]. Southwest China Journal of Agricultural Sciences, 1998, 11(2): 73-79. (in Chinese with English abstract)

    [16] 中国科学院地理科学与资源研究所. 东南沿海丘陵[EB/OL]. [2007-04-24]. http://www.igsnrr.cas.cn/cbkx/kpyd/zgdl/cndm/202009/t20200910_5692368.html.
    [17] 中华人民共和国中央人民政府. 第三次全国国土调查主要数据公报[EB/OL]. [2021-08-26]. https://www.gov.cn/xinwen/2021-08/26/content_5633490.htm.
    [18]

    CHAPAGAIN T, RAUZADA M N. Agronomic challenges and opportunities for smallholder terrace agriculture in developing countries[J]. Frontiers in Plant Science, 2017, 8: 331.

    [19] 水利电力出版社中国水利百科全书编辑部. 中国水利百科全书[M]. 北京:水利电力出版社,1991.
    [20]

    SINGH D, MISHRA A K, PATRA S, et al. Spatial variability of soil hydraulic and physical properties in erosive sloping agricultural fields[J]. Water Science and Engineering, 2023, 16(1): 57-66. doi: 10.1016/j.wse.2022.10.001

    [21]

    FENG Y Z, LIU Q, TAN C J, et al. Water and nutrient conservation effects of different tillage treatments in sloping fields[J]. Arid Land Research and Management, 2014, 28: 14-24. doi: 10.1080/15324982.2013.811446

    [22] 李帅祥,王炜翔,薛金林. 湿烂田地稻茬麦旋耕灭茬施肥播种复式作业机设计与试验[J]. 中国农机化学报,2020,41(10):28-34.

    LI Shuaixiang, WANG Weixiang, XUE Jinlin. Design and test of multiple operation machine for rotation tillage, fertilization and sowing for wheat following rice in rotten farmlands[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(10): 28-34. (in Chinese with English abstract)

    [23]

    KEEN A, HALL N, SONI P, et al. A review of the tractive performance of wheeled tractors and soil management in lowland intensive rice production[J]. Journal of Terramechanics. 2013, 50(1): 45-62.

    [24] 贵州人民政府. 贵州省第三次全国国土调查主要数据公报[EB/OL]. [2021-12-28]. https://www.guizhou.gov.cn/zwgk/zdlygk/jjgzlfz/zrzy/zrzydcjcgl/202201/t20220121_72378280.html.
    [25] 机械工业信息研究院. 中国农业机械工业年鉴2023[M]. 北京:机械工业出版社,2024.
    [26] 王晓文,袁寿其,贾卫东. 丘陵山区农业机械化现状与发展[J]. 排灌机械工程学报,2022,40(5):535-540.

    WANG Xiaowen, YUAN Shouqi, JIA Weidong. Current situation and development of agricultural mechanization in hilly and mountainous areas[J]. Journal of Drainage and Irrigation Machinery Engin, 2022, 40(5): 535-540. (in Chinese with English abstract)

    [27] 黄小毛,徐胡伟,张顺,等. 油菜成条飞播装置设计与试验[J]. 农业工程学报,2020,36(5):78-87. doi: 10.11975/j.issn.1002-6819.2020.05.009

    HUANG Xiaomao, XU Huwei, ZHANG Shun, et al. Design and experiment of a device for rapeseed strip aerial seeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 78-87. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2020.05.009

    [28] 张会娟,顾峰玮,吴峰,等. 江苏省稻茬麦机械化播种概况与发展[J]. 中国农机化学报,2021,42(11):186-192.

    ZHANG Huijuan, GU Fengwei, WU Feng, et al. General situation and development on mechanized sowing of wheat after rice in Jiangsu Province[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 186-192. (in Chinese with English abstract)

    [29] 华中农业大学. 一种油麦兼用型播种机:中国专利,201210376952.4[P]. 2013-12-04.
    [30] 张青松,廖庆喜,肖文立,等. 油菜种植耕整地技术装备研究与发展[J]. 中国油料作物学报,2018,40(5):702-711. doi: 10.7505/j.issn.1007-9084.2018.05.013

    ZHANG Qingsong, LIAO Qingxi, XIAO Wenli, et al. Research process of tillage technology and equipment for rapeseed growing[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(5): 702-711. (in Chinese with English abstract) doi: 10.7505/j.issn.1007-9084.2018.05.013

    [31] 胡佩敏. 受渍指数构建及其在长江中下游小麦渍害风险评估中的应用[J]. 农业工程学报,2023,39(2):100-106. doi: 10.11975/j.issn.1002-6819.202207005

    HU Peimin. Constructing the wheat waterlogging damage index for risk assessment in the Middle and Lower Reaches of the Yangtze River[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(2): 100-106. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202207005

    [32] 中国人民共和国农业农村部. 2021-2022年度全国小麦秋冬种技术意见[EB/OL]. [2021-09-22]. https://www.moa.gov.cn/gk/nszd_1/2021/202109/t20210922_6377089.htm.
    [33] 中国人民共和国农业农村部. 2021-2022年度油菜秋冬种生产技术意见[EB/OL]. [2021-09-22]. https://www.moa.gov.cn/gk/nszd_1/2021/202109/t20210922_6377088.htm.
    [34] 孙景彬,刘志杰,杨福增,等. 丘陵山地农业装备与坡地作业关键技术研究综述[J]. 农业机械学报,2023,54(5):1-18. doi: 10.6041/j.issn.1000-1298.2023.05.001

    SUN Jingbin, LIU Zhijie, YANG Fuzeng, et al. Research review of agricultural equipment and slope operation key technologies in hilly and mountains region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(5): 1-18. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2023.05.001

    [35] 丛锦玲,余佳佳,曹秀英,等. 油菜小麦兼用型气力式精量排种器[J]. 农业机械学报,2014,45(1):46-52. doi: 10.6041/j.issn.1000-1298.2014.01.008

    CONG Jinling, YU Jiajia, CAO Xiuying, et al. Design of dual purpose pneumatic precision metering device for rape and wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 46-52. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2014.01.008

    [36] 丛锦玲,廖庆喜,曹秀英,等. 油菜小麦兼用排种盘的排种器充种性能[J]. 农业工程学报,2014,30(8):30-39. doi: 10.3969/j.issn.1002-6819.2014.08.004

    CONG Jinling, LIAO Qingxi, CAO Xiuying, et al. Seed filling performance of dual-purpose seed plate in metering device for both rapeseed & wheat seed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 30-39. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-6819.2014.08.004

    [37] 颜秋艳,廖宜涛,廖庆喜. 油麦气力式一器双行兼用型排种器的设计与功能分析[J]. 华中农业大学学报,2014,33(3):109-114. doi: 10.3969/j.issn.1000-2421.2014.03.019

    YAN Qiuyan, LIAO Yitao, LIAO Qingxi. Design and function analysis of dual-purpose rape-wheat pneumatic double-row metering device[J]. Journal of Huazhong Agricultural University, 2014, 33(3): 109-114. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-2421.2014.03.019

    [38] 廖庆喜,雷小龙,廖宜涛,等. 油菜精量播种技术研究进展[J]. 农业机械学报,2017,48(9):1-16. doi: 10.6041/j.issn.1000-1298.2017.09.001

    LIAO Qingxi, LEI Xiaolong, LIAO Yitao, et al. Research progress of precision seeding for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 1-16. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2017.09.001

    [39] 金颖. 油麦兼用气力辅助导种集排器设计与试验[D]. 武汉:华中农业大学,2024.

    JIN Ying. Design and Experiment of Pneumatic Assisted Seed Guiding Centralized Metering Device for Rapeseed and Wheat[D]. Wuhan: Huazhong Agricultural University, 2024. (in Chinese with English abstract)

    [40] 雷小龙. 油麦兼用型气送式集排器设计及其工作机理[D]. 武汉:华中农业大学,2017.

    LEI Xiaolong. Design and Working Mechanism of Air-assisted Centralized Metering Device for Rapeseed and Wheat[D]. Wuhan: Huazhong Agricultrual University, 2017. (in Chinese with English abstract)

    [41] 李晓冉,廖庆喜,王磊,等. 稻麦油兼用高速气送式集排器型孔轮设计与试验[J]. 农业工程学报,2023,39(14):35-48. doi: 10.11975/j.issn.1002-6819.202303044

    LI Xiaoran, LIAO Qingxi, WANG Lei, et al. Design and experiments of the type-hole wheel with high-speed air-assisted centralized metering device for rice, wheat and rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(14): 35-48. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202303044

    [42] 雷小龙,廖宜涛,李兆东,等. 油麦兼用型气送式集排器供种装置设计与试验[J]. 农业工程学报,2015,31(20):10-18. doi: 10.11975/j.issn.1002-6819.2015.20.002

    LEI Xiaolong, LIAO Yitao, LI Zhaodong, et al. Design and experiment of seed feeding device in air-assisted centralized metering device for rapeseed and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(20): 10-18. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2015.20.002

    [43] 雷小龙,廖宜涛,李兆东,等. 种层厚度对油麦兼用集排器供种装置充种性能的影响[J]. 农业工程学报,2016,32(6):11-19. doi: 10.11975/j.issn.1002-6819.2016.06.002

    LEI Xiaolong, LIAO Yitao, LI Zhaodong, et al. Effects of seed layer thickness on seed filling performance of seed feeding device for rapeseed and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 11-19. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2016.06.002

    [44] 雷小龙,廖宜涛,李兆东,等. 油菜小麦兼用气送式集排器搅种装置设计及充种性能试验[J]. 农业工程学报,2016,32(18):26-34. doi: 10.11975/j.issn.1002-6819.2016.18.004

    LEI Xiaolong, LIAO Yitao, LI Zhaodong, et al. Design of seed churning device in air-assisted centralized metering device for rapeseed and wheat and experiment on seed filling performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(18): 26-34. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2016.18.004

    [45]

    LEI X L, LIAO Y T, LIAO Q X. Simulation of seed motion in seed feeding device with DEM-CFD coupling approach for rapeseed and wheat[J]. Computers and Electronics in Agriculture, 2016, 131: 29-39. doi: 10.1016/j.compag.2016.11.006

    [46] 雷小龙,廖宜涛,张闻宇,等. 油麦兼用气送式集排器输种管道气固两相流仿真与试验[J]. 农业机械学报,2017,48(3):57-68. doi: 10.6041/j.issn.1000-1298.2017.03.007

    LEI Xiaolong, LIAO Yitao, ZHANG Wenyu, et al. Simulation and experiment of gas-solid flow in seed conveying tube for rapeseed and wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 57-68. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2017.03.007

    [47] 雷小龙,廖宜涛,王磊,等. 油麦兼用型气送式集排器增压管气固两相流仿真与参数优化[J]. 农业工程学报,2017,33(19):67-75. doi: 10.11975/j.issn.1002-6819.2017.19.009

    LEI Xiaolong, LIAO Yitao, WANG Lei, et al. Simulation of gas-solid two-phase flow and parameter optimization of pressurized tube of air-assisted centralized metering device for rapeseed and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 67-75. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2017.19.009

    [48]

    LEI X L, LIAO Y T, ZHANG Q S, et al. Numerical simulation of seed motion characteristics of distribution head for rapeseed and wheat[J]. Computers & Electronics in Agriculture, 2018, 150(6): 98-109.

    [49] 苑严伟,白慧娟,方宪法,等. 玉米播种与测控技术研究进展[J]. 农业机械学报,2018,49(9):1-18. doi: 10.6041/j.issn.1000-1298.2018.09.001

    YUAN Yanwei, BAI Huijuan, FANG Xianfa, et al. Research progress on maize seeding and its measurement and control technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9): 1-18. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2018.09.001

    [50] 廖庆喜,林建新,张青松,等. 稻油轮作区铲锹式油菜直播种床整备机设计与试验[J]. 农业机械学报,2022,53(10):26-35. doi: 10.6041/j.issn.1000-1298.2022.10.003

    LIAO Qingxi, LIN Jianxin, ZHANG Qingsong, et al. Design and experiment of shovel type seedbed preparation machine suitable for rapeseed direct seeding[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(10): 26-35. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2022.10.003

    [51] 万星宇,廖庆喜,廖宜涛,等. 油菜全产业链机械化智能化关键技术装备研究现状及发展趋势[J]. 华中农业大学学报,2021,40(2):24-44.

    WAN Xingyu, LIAO Qingxi, LIAO Yitao, et al. Situation and prospect of key technology and equipment in mechanization and intelligentization of rapeseed whole industry chain[J]. Journal of Huazhong Agricultural University, 2021, 40(2): 24-44. (in Chinese with English abstract)

    [52] 苏文泉,郑百义,王宜利,等. 试论黑土耕层土壤容重的自身调节作用[J]. 作物杂志,1993(4):20-22.
    [53] 魏国粱. 油菜直播机犁旋组合式扣垡工作机理及种床制备技术[D]. 武汉:华中农业大学,2021.

    WEI Guoliang. Mechanism and Seed Bed Preparation Technology of Plowing and Rotary Combined[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese with English abstract)

    [54] 廖庆喜,卜祥利,孙文成,等. 构建油菜种床合理耕层的驱动型犁旋联合耕整机研究[J]. 农业机械学报,2020,51(11):74-84. doi: 10.6041/j.issn.1000-1298.2020.11.008

    LIAO Qingxi, BU Xiangli, SUN Wencheng, et al. Development of driven plow-rotary combined tillage machine for construction of rational tillage in rape seedbeds[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 74-84. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2020.11.008

    [55] 刘晓鹏,张青松,肖文立,等. 稻油轮作区驱动圆盘犁对置组合式耕整机设计与试验[J]. 农业机械学报,2017,48(12):33-41. doi: 10.6041/j.issn.1000-1298.2017.12.004

    LIU Xiaopeng, ZHANG Qingsong, XIAO Wenli, et al. Design and experiment on symmetrical driven disc plows combined tillage machine for rice-rapeseed rotation area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 33-41. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2017.12.004

    [56] 包攀峰,吴明亮,官春云,等. 犁旋组合式油菜播种开沟起垄装置设计[J]. 农业工程学报,2017,33(20):23-31. doi: 10.11975/j.issn.1002-6819.2017.20.003

    BAO Panfeng, WU Mingliang, GUAN Chunyun, et al. Design of plow-rotary style ditching and ridging device for rapeseed seeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 23-31. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2017.20.003

    [57] 魏国梁,张青松,刘立超,等. 犁旋组合式油菜直播机扣垡装置设计与试验[J]. 农业机械学报,2020,51(6):38-46. doi: 10.6041/j.issn.1000-1298.2020.06.004

    WEI Guoliang, ZHANG Qingsong, LIU Lichao, et al. Design and experiment of plowing and rotary tillage buckle device for rapeseed direct seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 38-46. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2020.06.004

    [58] 廖庆喜,谢昊明,张青松,等. 驱动圆盘犁与双刃型旋耕刀组合式耕整机设计与试验[J]. 农业机械学报,2023,54(7):99-110,195. doi: 10.6041/j.issn.1000-1298.2023.07.010

    LIAO Qingxi, XIE Haoming, ZHANG Qingsong, et al. Design and experiment of driven disc plow and double-edged rotary tillage combined tiller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 99-110,195. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2023.07.010

    [59] 郝建军,占志国,侯俊英,等. 旋耕刀Fe/WC/CeO2等离子堆焊层制备及其组织性能[J]. 农业工程学报,2021,37(24):1-8. doi: 10.11975/j.issn.1002-6819.2021.24.001

    HAO Jianjun, ZHAN Zhiguo, HOU Junying, et al. Preparation and microstructure properties of Fe/WC/CeO2 plasma surfacing layer for rotary blades[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(24): 1-8. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.24.001

    [60]

    MATIN M A, HOSSAIN M I, GATHALA M K, et al. Optimal design and setting of rotary strip-tiller blades to intensify dry season cropping in Asian wet clay soil conditions[J]. Soil & Tillage Research, 2021, 207: 104854.

    [61] 郑侃,李宇飞,夏俊芳,等. 开沟旋耕机渐变螺旋升角轴向匀土刀辊设计与试验[J]. 农业机械学报,2021,52(5):63-73. doi: 10.6041/j.issn.1000-1298.2021.05.007

    ZHENG Kan, LI Yufei, XIA Junfang, et al. Design and experiment of land leveling blade roller of ditching and rotary tiller with gradual spiral angle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 63-73. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2021.05.007

    [62] 刘国阳,夏俊芳,郑侃,等. 振动横挡阻隔式旋耕防粘结刀辊设计与试验[J]. 农业工程学报,2022,38(23):29-40. doi: 10.11975/j.issn.1002-6819.2022.23.004

    LIU Guoyang, XIA Junfang, ZHENG Kan, et al. Design and experiments of the barrier type rotary anti-adhesion blade roller with vibration crosspiece[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(23): 29-40. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.23.004

    [63] 刘尚坤,刘超,张秀花,等. 联合整地机匀土旋平刀辊设计与试验[J]. 农业工程学报,2022,38(17):1-9. doi: 10.11975/j.issn.1002-6819.2022.17.001

    LIU Shangkun, LIU Chao, ZHANG Xiuhua, et al. Design and tests of the soil moving and leveling blade roller for combined tilling machines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(17): 1-9. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.17.001

    [64] 徐高明,丁启朔,汪小旵,等. 秸秆-土壤-旋耕机交互下秸秆位移与埋覆效果研究[J]. 农业机械学报,2022,53(7):23-29. doi: 10.6041/j.issn.1000-1298.2022.07.002

    XU Gaoming, DING Qishuo, WANG Xiaochan, et al. Analysis of straw displacement and burying effect in straw-soil-rotary tiller interaction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 23-29. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2022.07.002

    [65] 郝志豪,郑恩来,李勋,等. 免耕播种机旋耕刀耕作性能分析与结构优化[J]. 农业工程学报,2023,39(2):1-13. doi: 10.11975/j.issn.1002-6819.202209196

    HAO Zhihao, ZHENG Enlai, LI Xun, et al. Performance analysis of the soil contacting parts for no-tillage planters and optimization of blade structure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(2): 1-13. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202209196

    [66] 梁方,邓玮鸿,罗历强,等. 油菜秸秆对置双螺旋埋覆还田装置设计与优化[J]. 农业工程学报,2023,39(21):10-17. doi: 10.11975/j.issn.1002-6819.202309087

    LIANG Fang, DENG Weihong, LUO Liqiang, et al. Optimizing double-screw burying device for rape straw returning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(21): 10-17. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202309087

    [67] 李蒙良,廖庆喜,裴立民,等. 油菜直播机旋切式微垄种床制备装置设计与试验[J]. 农业机械学报,2023,54(5):47-58. doi: 10.6041/j.issn.1000-1298.2023.05.005

    LI Mengliang, LIAO Qingxi, Pei Limin, et al. Design and experiment of rotary-cut micro-ridge seedbed device for rapeseed direct seeding machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(5): 47-58. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2023.05.005

    [68] 吴崇友. 稻油(麦)轮作机械化技术[M]. 北京:中国农业出版社,2013.
    [69] 刘海,张青松,廖宜涛,等. 小白菜复式播种机犁旋辊压驳岸型种床起垄装置研究[J]. 农业机械学报,2021,52(11):40-48,77. doi: 10.6041/j.issn.1000-1298.2021.11.004

    LIU Hai, ZHANG Qingsong, LIAO Yitao, et al. Design of plow-rotary and roll-forming revetment style seed bed ridging device of combined precision seeder for Brassica chinensis[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(11): 40-48,77. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2021.11.004

    [70] 罗海峰,官春云,汤楚宙,等. 稻茬田油菜免耕播种机开沟部件的研究[J]. 农业工程学报,2007,23(11):153-157. doi: 10.3321/j.issn:1002-6819.2007.11.027

    LUO Haifeng, GUAN Chunyun, TANG Chuzhou, et al. Ditching parts of no-tillage sower in paddy stubble field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(11): 153-157. (in Chinese with English abstract) doi: 10.3321/j.issn:1002-6819.2007.11.027

    [71] 杨文敏,邬备,彭智,等. 基于离散元法立式螺旋开沟器开沟质量的评价[J]. 西南大学学报(自然科学版),2019,41(12):1-7.

    YANG Wenmin, WU Bei, PENG Zhi, et al. Estimation of the operation quality of vertical helix furrow openers based on the discrete element method[J]. Journal of Southwest University (Natural Science Edition), 2019, 41(12): 1-7. (in Chinese with English abstract)

    [72] 张青松,汲文峰,廖宜涛,等. 油菜直播机铧式开畦沟前犁曲面分析与阻力特性试验[J]. 农业机械学报,2014,45(2):130-135. doi: 10.6041/j.issn.1000-1298.2014.02.022

    ZHANG Qingsong, JI Wenfeng, LIAO Yitao, et al. Surface analysis and resistance characteristics experiment on ditch plow ahead of direct rapeseed seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 130-135. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2014.02.022

    [73] 张青松,廖庆喜,汲文峰,等. 油菜直播机开沟犁体曲面优化与试验[J]. 农业机械学报,2015,46(1):53-59. doi: 10.6041/j.issn.1000-1298.2015.01.008

    ZHANG Qingsong, LIAO Qingxi, JI Wenfeng, et al. Surface optimization and experiment on ditch plow of direct rapeseed seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 53-59. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2015.01.008

    [74] 刘晓鹏,肖文立,马磊,等. 油菜联合直播机组合式船型开沟器设计与开沟质量试验[J]. 农业机械学报,2017,48(11):79-87. doi: 10.6041/j.issn.1000-1298.2017.11.010

    LIU Xiaopeng, XIAO Wenli, MA Lei, et al. Design and ditching quality experiment on combined ship type opener of direct rapeseed seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 79-87. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2017.11.010

    [75] 张青松,齐涛,敖倩,等. 油菜机械直播开沟浅旋装置设计与试验[J]. 农业机械学报,2023,54(10):58-67,104. doi: 10.6041/j.issn.1000-1298.2023.10.005

    ZHANG Qingsong, QI Tao, AO Qian, et al. Design and experiment of rapeseed direct seeding machine with furrow opener and shallow plowing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(10): 58-67,104. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2023.10.005

    [76]

    HCKANSSON I, ARVIDSSON J, KELLER T, et al. Effects of seedbed properties on crop emergence: 1. temporal effects of temperature and sowing depth in seedbeds with favourable properties[J]. Acta Agriculture Scandinavica, Section B—Plant Soil Science, 2011, 61(5): 458-468.

    [77]

    KUHLING I, REDOZUBOV D, BROLL G, et al. Impact of tillage, seeding rate and seeding depth on soil moisture and dryland spring wheat yield in Western Siberia[J]. Soil and Tillage Research, 2017, 170: 43-52. doi: 10.1016/j.still.2017.02.009

    [78]

    BERTI M T, JOHNSON B L, HENSONRA. Seeding depth and soil packing affect pure live seed emergence of cuphea[J]. Industrial Crops and Products, 2008, 27(3): 272-278. doi: 10.1016/j.indcrop.2007.10.004

    [79] 杨丽,颜丙新,张东兴,等. 玉米精密播种技术研究进展[J]. 农业机械学报,2016,47(11):38-48. doi: 10.6041/j.issn.1000-1298.2016.11.006

    YANG Li, YAN Bingxin, ZHANG Dongxing, et al. Research progress on precision planting technology of maize[J]. Transaction of the Chinese Society for Agricultural Machinery, 2016, 47(11): 38-48. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2016.11.006

    [80]

    LIU L, WANG X L, ZHANG X C, et al. The impact of ‘T’-shaped furrow opener of no-tillage seeder on straw and soil based on discrete element method[J]. Computers and Electronics in Agriculture, 2023, 213: 108278.

    [81]

    Collins B A, Fowler D B. Effect of soil characteristics, seeding depth, operating speed, and opener design on draft force during direct seeding[J]. Soil and tillage Research, 1996, 39(3-4): 199-211. doi: 10.1016/S0167-1987(96)01062-8

    [82] 赵淑红,刘汉朋,侯磊涛,等. 基于离散元法的免耕深施肥分段式玉米播种开沟器研制[J]. 农业工程学报,2021,37(13):1-10. doi: 10.11975/j.issn.1002-6819.2021.13.001

    ZHAO Shuhong, LIU Hanpeng, HOU Leitao, et al. Development of deep fertilizing no-tillage segmented maize sowing opener using discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(13): 1-10. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.13.001

    [83] 马云海,马圣胜,贾洪雷,等. 仿生波纹形开沟器减黏降阻性能测试与分析[J]. 农业工程学报,2014,30(5):36-41. doi: 10.3969/j.issn.1002-6819.2014.05.005

    MA Yunhai, MA Shengsheng, JIA Honglei, et al. Test and analysis of viscosity and resistance reduction performance of bionic corrugated opener[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 36-41. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-6819.2014.05.005

    [84] 张志丰,张峻霞,张琰. 基于仿生设计方法的开沟器优化设计[J]. 计算机集成制造系统,2022,28(4):1143-1149. doi: 10.13196/j.cims

    ZHANG Zhifeng, ZHANG Junxia, ZHANG Yan. Optimization design of furrow opener based on bionics design[J]. Computer Integrated Manufacturing Systems, 2022, 28(4): 1143-1149. (in Chinese with English abstract) doi: 10.13196/j.cims

    [85]

    VAMERALI T, BERTOCCO M, SARTORI L. Effects of a new wide-sweep opener for no-till planter on seed zone properties and root establishment in maize (Zea mays, L. ): A comparison with double-disk opener[J]. Soil and Tillage Research, 2006, 89(2): 196-209. doi: 10.1016/j.still.2005.07.011

    [86]

    BUFTON L P, Richardson P, O'DOGHERTY M J. Seed displacement after impact on a soil surface[J]. Journal of Agricultural Engineering Research, 1974, 19(4): 327-338. doi: 10.1016/0021-8634(74)90071-7

    [87] 赵淑红,杨罗罗,张鑫,等. 大豆垄上双行免耕播种机锯齿式开沟器设计与试验[J]. 农业机械学报,2022,53(1):74-84. doi: 10.6041/j.issn.1000-1298.2022.01.008

    ZHAO Shuhong, YANG Luoluo, ZHANG Xin, et al. Design and experiment of zigzag opener for double-row no-tillage seeding on soybean ridge[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 74-84. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2022.01.008

    [88] 颜丙新,武广伟,付卫强,等. 基于EDEM的玉米精播高位投种着床位置影响因素研究[J]. 农业机械学报,2020,51(S2):47-54. doi: 10.6041/j.issn.1000-1298.2020.S2.006

    YAN Bingxin, WU Guangwei, FU Weiqiang, et al. Influencing factors of corn implantation distribution for high-height planting based on EDEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 47-54. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2020.S2.006

    [89]

    CHAUDHURI D. Performance evaluation of various types of furrow openers on seed drills: A review[J]. Journal of Agricultural Engineering Research, 2001, 79(2): 125-137. doi: 10.1006/jaer.2000.0688

    [90]

    KARAYEL D, OZMERZI A. Evaluation of three depth-control components on seed placement accuracy and emergence for a precision planter[J]. Applied Engineering in Agriculture, 2008, 24(3): 271-276. doi: 10.13031/2013.24494

    [91] 高原源,翟长远,杨硕,等. 播种单体对地下压力测量方法和数学模型[J]. 农业工程学报,2020,36(5):1-9. doi: 10.11975/j.issn.1002-6819.2020.05.001

    GAO Yuanyuan, ZHAI Changyuan, YANG Shuo, et al. Measurement method and mathematical model for the seeding downforce of planter row unit[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 1-9. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2020.05.001

    [92] 赵淑红,蒋恩臣,闫以勋,等. 小麦播种机开沟器双向平行四杆仿形机构的设计及运动仿真[J]. 农业工程学报,2013,29(14):26-32. doi: 10.3969/j.issn.1002-6819.2013.14.004

    ZHAO Shuhong, JIANG Enchen, YAN Yixun, et al. Design and motion simulation of opener with bidirectional parallelogram linkage profiling mechanism on wheat seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(14): 26-32. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-6819.2013.14.004

    [93] 王磊,廖宜涛,张青松,等. 油麦兼用型精量宽幅免耕播种机仿形凿式开沟器研究[J]. 农业机械学报,2019,50(11):63-73. doi: 10.6041/j.issn.1000-1298.2019.11.007

    WANG Lei, LIAO Yitao, ZHANG Qingsong, et al. Design on profiling chisel opener of precision broad width no-tillage planter for rapeseed and wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 63-73. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2019.11.007

    [94]

    NIELSEN S K, NØRREMARK M, GREEN O. Sensor and control for consistent seed drill coulter depth[J]. Computers and Electronics in Agriculture, 2016, 127: 690-698. doi: 10.1016/j.compag.2016.07.029

    [95] 姜鑫铭. 玉米免耕播种机精确播种关键技术研究[D]. 长春:吉林大学,2017.

    JIANG Xinming. Study on Key Technologies of Precision Seeding for Maize No-tillage Planter[D]. Changchun: Jilin University, 2017. (in Chinese with English abstract)

    [96] 张春岭,吴晓庆,谢东波,等. 电液混合调控式大蒜播种机设计与试验[J]. 农业机械学报,2021,52(10):166-174. doi: 10.6041/j.issn.1000-1298.2021.10.017

    ZHANG Chunling, WU Xiaoqing, XIE Dongbo, et al. Design and experiment of electro-hydraulic mixed garlic planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 166-174. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2021.10.017

    [97] 高原源,翟长远,杨硕,等. 精密播种机下压力和播深CAN总线监控与评价系统研究[J]. 农业机械学报,2020,51(6):15-28. doi: 10.6041/j.issn.1000-1298.2020.06.002

    GAO Yuanyuan, ZHAI Changyuan, YANG Shuo, et al. Development of CAN-based downforce and sowing depth monitoring and evaluation system for precision planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 15-28. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2020.06.002

    [98]

    WEN L, FAN X, LIU Z, et al. The design and development of the precision planter sowing depth control system[J]. Sensors & Transducers, 2014, 162(1): 53-58.

    [99] 王淞,衣淑娟,赵斌,等. 基于IWHO-EKF的高速免耕播种机播种深度监测系统研究[J]. 农业机械学报,2024,55(3):75-84. doi: 10.6041/j.issn.1000-1298.2024.03.007

    WANG Song, YI Shujuan, ZHAO Bin, et al. High-speed no-till seeder seeding depth monitoring system based on IWHO-EKF[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(3): 75-84. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2024.03.007

    [100]

    WEATHERLY E T, BOWERS C G. Automatic depth control of a seed planter based on soil drying front sensing[J]. Transactions of the ASAE, 1997, 40(2): 295-305. doi: 10.13031/2013.21429

    [101]

    SUOMI P, OKSANEN T. Automatic working depth control for seed drill using ISO 11783 remote control messages[J]. Computers and Electronics in Agriculture, 2015, 116: 30-35. doi: 10.1016/j.compag.2015.05.016

    [102]

    NIELSEN S K, MUNKHOLM L J, LAMAND M, et al. Seed drill depth control system for precision seeding[J]. Computers and Electronics in Agriculture, 2018, 144: 174-180. doi: 10.1016/j.compag.2017.12.008

    [103] 赵金辉,刘立晶,杨学军,等. 播种机开沟深度控制系统的设计与室内试验[J]. 农业工程学报,2015,31(6):35-41.

    ZHAO Jinhui, LIU Lijing, YANG Xuejun, et al. Design and laboratory test of control system for depth of furrow opening[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 35-41. (in Chinese with English abstract)

    [104] 黄东岩,朱龙图,贾洪雷,等. 基于压电薄膜的免耕播种机播种深度控制系统[J]. 农业机械学报,2015,46(4):1-8. doi: 10.6041/j.issn.1000-1298.2015.04.001

    HUANG Dongyan, ZHU Longtu, JIA Honglei, et al. Automatic control system of seeding depth based on piezoelectric film for no-till planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 1-8. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2015.04.001

    [105] 白慧娟,方宪法,王德成,等. 玉米播种机播深和压实度综合控制系统设计与试验[J]. 农业机械学报,2020,51(9):61-72. doi: 10.6041/j.issn.1000-1298.2020.09.008

    BAI Huijuan, FANG Xianfa, WANG Decheng, et al. Design and test of control system for seeding depth and compaction of corn precision planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 61-72. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2020.09.008

    [106] 杜兆辉,和贤桃,杨丽,等. 玉米精准变量播种技术与装备研究进展[J]. 农业工程学报,2023,39(9):1-16. doi: 10.11975/j.issn.1002-6819.202303118

    DU Zhaohui, HE Xiantao, YANG Li, et al. Research progress on precision variable-rate seeding technology and equipment for maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(9): 1-16. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202303118

    [107] 刘成良,林洪振,李彦明,等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报,2020,51(1):1-18. doi: 10.6041/j.issn.1000-1298.2020.01.001

    LIU Chengliang, LIN Hongzhen, LI Yanming, et al. Analysis on status and development trend of intelligent control technology for agricultural equipment[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 1-18. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2020.01.001

    [108] 沈跃,张亚飞,刘慧,等. 农业装备自动控制技术研究综述[J]. 农业机械学报,2023,54(8):1-18. doi: 10.6041/j.issn.1000-1298.2023.08.001

    SHEN Yue, ZHANG Yafei, LIU Hui, et al. Research review of agricultural equipment automatic control technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8): 1-18. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2023.08.001

    [109] 张朝宇,董万静,熊子庆,等. 履带式油菜播种机模糊自适应纯追踪控制器设计与试验[J]. 农业机械学报,2021,52(12):105-114. doi: 10.6041/j.issn.1000-1298.2021.12.011

    ZHANG Chaoyu, DONG Wanjing, XIONG Ziqing, et al. Design and experiment of fuzzy adaptive pure pursuit control of crawler-type rape seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 105-114. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2021.12.011

    [110] 李云伍,徐俊杰,王铭枫,等. 丘陵山区田间道路自主行驶转运车及其视觉导航系统研制[J]. 农业工程学报,2019,35(1):52-61. doi: 10.11975/j.issn.1002-6819.2019.01.007

    LI Yunwu, XU Junjie, WANG Mingfeng, et al. Development of autonomous driving transfer trolley on field roads and its visual navigation system for hilly areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 52-61. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2019.01.007

    [111] 丁幼春,王凯阳,刘晓东,等. 中小粒径种子播种检测技术研究进展[J]. 农业工程学报,2021,37(8):30-41. doi: 10.11975/j.issn.1002-6819.2021.08.004

    DING Youchun, WANG Kaiyang, LIU Xiaodong, et al. Research progress of seeding detection technology for medium and small-size seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(8): 30-41. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.08.004

    [112] 王雪玲. 油菜精量排种器漏播检测及补种系统设计与试验[D]. 武汉:华中农业大学,2016.

    WANG Xueling. Design and Experiment on Loss Sowing Detection and Reseeding System of Precision Metering Device For Rapeseed[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese with English abstract)

    [113] 李道亮,杨昊. 农业物联网技术研究进展与发展趋势分析[J]. 农业机械学报,2018,49(1):1-20. doi: 10.6041/j.issn.1000-1298.2018.01.001

    LI Daoliang, YANG Hao. State-of-the-art review for internet of things in agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 1-20. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2018.01.001

    [114] 丁友强,杨丽,张东兴,等. 基于GPS测速的电驱式玉米精量播种机控制系统[J]. 农业机械学报,2018,49(8):42-49. doi: 10.6041/j.issn.1000-1298.2018.08.005

    DING Youqiang, YANG Li, ZHANG Dongxing, et al. Control system of motor-driving maize precision planter based on GPS speed measurement[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 42-49. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2018.08.005

    [115] 施彬彬,郑娟,王磊,等. 小粒径种子气力自适应排种系统设计与试验[J]. 农业机械学报,2023,54(8):30-41. doi: 10.6041/j.issn.1000-1298.2023.08.003

    SHI Binbin, ZHENG Juan, WANG Lei, et al. Design and experiment of pneumatic adaptive seeding system for small particle size seeds[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8): 30-41. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2023.08.003

    [116] 丁永前,陈冲,余洪锋,等. 小麦播种机播量控制参数自校正方法[J]. 农业机械学报,2023,54(4):31-37,275. doi: 10.6041/j.issn.1000-1298.2023.04.003

    DING Yongqian, CHEN Chong, YU Hongfeng, et al. Self-correcting method for application rate control parameters of wheat seed drill machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(4): 31-37,275. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2023.04.003

    [117]

    HE X, CUI T, ZHANG D, et al. Development of an electric-driven control system for a precision planter based on a closed-loop PID algorithm[J]. Computers and Electronics in Agriculture, 2017, 136: 184-192. doi: 10.1016/j.compag.2017.01.028

  • 期刊类型引用(6)

    1. 叶长红,袁玲丽,谭军,龚莉,刘芮麟,邓祥平. 中低水头混流式水轮机涡带区压力脉动研究. 人民长江. 2025(02): 158-166+182 . 百度学术
    2. 熊必文,王渊博,许海洋,宫傲,闫文峰,刘成杰. 沙沱水电站机组振动特性研究. 水电与新能源. 2024(06): 8-11+43 . 百度学术
    3. 汤国和,闫晓彤,何腾,张志兵,郑源,阚阚. 抽蓄系统抽水快转发电过渡过程的水力不稳定性. 南水北调与水利科技(中英文). 2024(04): 821-832 . 百度学术
    4. 郑文超,杨建刚,周浩,沈德明. 水力脉动下水泵水轮机轴系扭振及疲劳寿命分析. 水电能源科学. 2024(07): 174-178 . 百度学术
    5. 赵亚萍,郑小波,张欢,郭鹏程. 多能互补条件下转轮优化对水轮机低负荷区稳定性能的影响. 农业工程学报. 2023(07): 67-76 . 本站查看
    6. 周玉国,王浩博,董钟明,李秘,王彦龙,邹双喜,邹顺,周大庆,于安,郭俊勋. 巨型混流式水轮机尾水管涡带CFD研究. 水力发电学报. 2023(12): 87-95 . 百度学术

    其他类型引用(0)

图(18)  /  表(1)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  33
  • PDF下载量:  149
  • 被引次数: 6
出版历程
  • 收稿日期:  2024-06-20
  • 修回日期:  2024-12-24
  • 网络出版日期:  2024-12-25
  • 刊出日期:  2025-01-14

目录

/

返回文章
返回