Effects of different light intensities on the healing and growth of grafted seedlings in two-stage grafting of tomato seedlings
-
摘要:
为解决番茄两段式嫁接育苗中如何在高密度环境下快速愈合及扦插后快速生根的问题,该研究以番茄品种‘粉都153’为接穗、‘ 金钻’为砧木,对其进行双断根嫁接,研究嫁接苗在愈合期(1~2、3~4、5 d)不同光强梯度30-60-90(CK)、40-80-120(T1)、50-100-150(T2)、60-120-180(T3)、70-140-210 μmol/(m2·s)(T4)下的愈合情况,并将不同光强下的嫁接苗分别高密度愈合1、3和5 d后扦插,判断植株生长情况。结果表明,T1、T2处理的嫁接苗成活率较高,且与CK差异不显著(P>0.05);T1处理下嫁接苗的愈合最快,且切口处具有较高的抗氧化酶活性及光合色素含量,较低的超氧阴离子含量;不同光强处理3 d后扦插嫁接苗的成活率较高,其中T1和T2处理的最高,不同光强处理1 d后扦插各处理间无显著差异(P>0.05),处理5 d后扦插成活率降低;对扦插嫁接苗的生长进行综合评价,T1处理1、3、5 d后扦插,嫁接苗的根系及地上部生长均最好,其次为T2、T3在第5 天时扦插也表现出较好的效果。综合考虑,在番茄两段式嫁接的高密度愈合阶段,在1~2、3~4、5 d愈合期采用40-80-120 μmol/(m2·s)的光强管理模式对愈合最为有利,且最好在3 d内进行扦插,可更好地保证成活率及嫁接苗的质量。
Abstract:Tomato is one of the most popular vegetable crops with the largest facility cultivation in China. Succession barriers, soil-borne diseases, and environmental stresses can often occur in actual production, leading to decreasing quality and yield. Fortunately, grafting has been one of the most effective operations to control the major diseases for the high resistance in recent years. Among them, two-stage grafting of tomatoes can be expected to cultivate high-quality seedling resistance. It is of great significance to precise control the light environment for better grafting during the healing and cutting stages. However, it is unclear on the specific parameters of the light environment during two-stage grafting. This study aims to explore the effects of different light intensities on the healing and growth of grafted seedlings in the two-stage grafting of tomatoes. The double-cut grafted seedlings rapidly healed and then took root after cutting under a high-density environment. The strong seedlings were cultivated after optimization. The grafted seedlings were then placed in a self-developed container made of acrylic and high-density foam board. The light intensity was selected to regulate the light environment at the ratio of red, blue, and green light during the healing period. The tomato variety 'Fendu 153' was used as the scion, while the 'Jinzuan' was used as the rootstock. The healing status and root regeneration of grafted seedlings were investigated under different light intensity gradients of 30-60-90 (CK), 40-80-120 (T1), 50-100-150 (T2), 60-120-180 (T3), and 70-140-210 (T4) μmol/(m2·s) during the healing period (1-2, 3-4, and 5 d). The grafted seedlings were cut under different light intensities after high-density healing for 1, 3, and 5 d, respectively, in order to evaluate the growth of plants. The growth indexes were measured, such as the plant height, stem diameter, leaf area, shoot ratio, and length, as well as surface area, diameter, and volume of root. The results showed that a higher survival rate of grafted seedlings was achieved in the T1 and T2 treatments. There was no significant difference, compared with the CK. The grafted seedlings under T1 treatment shared the fastest healing, the higher activities of antioxidant enzymes, the content of photosynthetic pigment, and the lower content of superoxide anion at the incision. There was a higher survival rate of cuttings after 3 d of treatment with the different light intensities. Among them, T1 and T2 treatments presented the highest. There was no significant difference among the treatments at 1 d of treatment with different light intensities. But the survival rate of cuttings decreased after 5 d. After evaluation on the growth of cutting grated seedlings, the root and above-ground growth of grafted seedlings were the best after T1 treatment for 1, 3, and 5 d, followed by T2, T3 at 5 d. In summary, the most favorable healing was achieved in the light intensity mode of 40-80-120 μmol/ (m2·s) at 1-2, 3-4, and 5 d, respectively. The best performance was obtained to cut within 3 d during the high-density healing stage of two-stage grafted tomato, in terms of the survival rate and the quality of grafted seedlings. The finding can also provide technical support to the two-stage grafted seedling of tomatoes.
-
Keywords:
- tomato /
- light intensity /
- two-stage grafting /
- healing /
- growth
-
-
图 1 不同愈合期光强处理对番茄嫁接苗生根、愈合及成活率的影响
注:St为砧木;Sc为接穗;c为愈伤组织;NL为隔离层;Vt为维管组织;Vb为维管束桥。不同小写字母表示处理间差异显著(P<0.05),下同。
Figure 1. Effects of light intensities on the root regeneration, healing and survival rate of tomato grafted seedlings in different healing time
Note: St is rootstock; Sc is scion; c is callus cell; NL is separation layer; Vt is vascular tissue; Vb is vascular bridge. Different lowercase letters indicate significant differences among treatments (P<0.05), same as below.
图 2 不同光强处理后番茄嫁接苗接合处O2.-含量及抗氧化酶活性的变化
注:不同小写字母表示相同愈合时间下处理间差异显著(P<0.05),下同。
Figure 2. Changes of O2.- content and antioxidant enzymes at the junction of tomato grafted seedlings with different light intensities
Note: Different lowercase letters indicate significant differences among treatments in the same healing time (P<0.05), same as below.
表 1 不同愈合阶段光照强度
Table 1 Light intensity in different healing stages
(μmol·m−2·s−1) 处理Treatments 1~2 d 3~4 d 5 d CK 30 60 90 T1 40 80 120 T2 50 100 150 T3 60 120 180 T4 70 140 210 表 2 不同光强下高密度愈合1、3、5 d后扦插两段式培育番茄嫁接苗的形态指标
Table 2 Morphologic indices of two-stage grafted tomato seedlings after high density healing with different light intensities treating for 1, 3, 5 d
愈合时间
Healing time/d处理
Treatments株高
Plant height/
cm茎粗
Stem diameter/
mm叶面积
Leaf area/
cm2根冠比
Root shoot
ratio总根长
Total root
length/cm根面积
Root surface
area/cm2根体积
Root volume/
cm3根直径
Root diameter/cm1 CK 14.37+1.27a 4.97+0.11b 179.33±2.48b 0.19+0.012c 167.21+4.29b 42.06+0.26b 0.83+0.05a 3.36+0.14a T1 10.87+0.32c 5.52+0.35a 194.06±0.16a 0.28+0.004a 162.54+1.85c 43.37+1.51b 0.84+0.02a 3.47+0.09a T2 12.93+0.84b 5.07+0.16b 193.82±180a 0.21+0.004b 187.75+0.14a 47.76+1.36a 0.85+0.05a 3.47+0.14a T3 11.57+0.06c 4.99+0.09b 173.99±1.59c 0.20+0.008bc 146.94+0.12 d 33.59+0.74c 0.71+0.02b 3.47+0.10a T4 11.90+0.17bc 4.95+0.19b 175.96±2.13c 0.17+ 0.006 d147.95+0.13 d 33.65+1.59c 0.69+0.02b 3.34+0.06a 3 CK 13.20+0.31a 5.51+0.05b 229.92±1.66c 0.14+0.003a 223.47+3.52b 50.36+0.56b 0.96+0.05a 3.53+0.18a T1 11.60+0.08b 5.82+0.03a 240.66±1.64a 0.14+0.005a 235.31+1.85a 50.98+0.93ab 0.95+0.03a 3.45+0.10a T2 12.93+0.84a 5.53+0.02b 237.77±2.14b 0.14+0.008a 236.18+0.93a 51.80+0.16a 0.98+0.07a 3.56+0.02a T3 13.50+0.38a 5.52+0.19b 200.46±0.99d 0.13+0.009b 200.79+0.98c 42.32+0.38c 0.84+0.03b 2.71+0.12b T4 13.00+0.42a 5.57+0.19b 211.17±0.57e 0.13+0.0021b 200.98+3.39c 42.36+0.26c 0.86+0.02b 2.70+0.01b 5 CK 15.00+0.14b 5.51+0.05ab 209.87±1.53d 0.15+0.008b 209.80+3.95c 42.49+0.48d 0.72+0.06b 3.72+0.07c T1 13.50+0.19c 5.82+0.03a 222.05±1.64b 0.20+0.005a 221.96+2.95b 49.58+2.19b 0.85+0.02a 4.45+0.40a T2 13.66+0.20c 4.96+0.17b 234.39±0.34a 0.18+0.016a 232.20+3.29a 53.99+0.35a 0.87+0.08a 3.76+0.04c T3 15.60+0.39a 4.45+0.13c 215.36±2.19c 0.15+0.007b 231.72+1.21a 52.30+2.67ab 0.85+0.08a 4.38+0.06ab T4 15.60+0.03a 4.33+0.12c 181.09±0.26e 0.15+0.011b 214.77+4.16c 46.46+0.86c 0.72+0.06b 4.05+0.10bc F 值 F-value 愈合时间Healing time(T) 89.31** 63.08** 2590.96 **314.54** 2429.31 **4699.07 **34.47** 160.18** 光强处理 Light intensity treatments(Tr) 23.29** 38.14** 697.07** 74.94** 186.15** 250.28** 13.43** 10.76** T×Tr 8.67** 13.22** 121.81** 21.72** 54.4** 33.85** 3.77** 18.69** 注:表中数据为平均值±标准差。不同小写字母表示不同处理间差异显著性(P<0.05)。**,P<0.01。下同。 Note: Data in the table are average ± standard deviation. Different lowercase letters indicate significant differences (P<0.05). **,P<0.01. Same as below. 表 3 高密度愈合不同时间后扦插番茄嫁接苗成活率与植株生长指标间的相关系数
Table 3 Correlation coefficients between survival rate and growth indexes of cutting tomato grafted seedlings under different time of high density healing
愈合时间
Healing time/d株高
Plant height茎粗
Stem diameter叶面积
Leaf area根冠比
Root shoot ratio总根长
Total root length根面积
Root surface area根体积
Root volume根直径
Root diameter3 −0.669 0.583 0.734 0.700 0.845 0.743 0.649 0.675 5 −0.902* 0.789 0.904* 0.774 0.307 0.311 0.605 −0.099 注:*显著相关(P<0.05)。
Note: * significant correlation (P<0.05). -
[1] 周杰,师恺,夏晓剑,等. 中国蔬菜栽培科技60年回顾与展望[J]. 园艺学报,2022,49(10):2131-2142. ZHOU Jie, SHI Kai, XIA Xiaojian, et al. Vegetable cultivation technology in China: A sixty-year review and prospect[J]. Acta Horticulturae Sinica, 2022, 49(10): 2131-2142. (in Chinese with English abstract)
[2] 周杰,夏晓剑,胡璋健,等. “十三五”我国设施蔬菜生产和科技进展及其展望[J]. 中国蔬菜,2021(10):20-34. ZHOU Jie, XIA Xiaojian, HU Zhangjian, et al. Technological development and production of protected vegetable in China during ‘The Thirteenth Five-year Plan’ and future prospect[J]. China Vegetables, 2021(10): 20-34. (in Chinese with English abstract)
[3] 李天来. 设施蔬菜产业发展(一)我国设施蔬菜产业发展现状及展望[J]. 中国蔬菜,2023(9):1-6. LI Tianlai. Development status of China’s facility vegetable industry and outlook[J]. China Vegetables, 2023(9): 1-6. (in Chinese with English abstract)
[4] 孙小武,武占会,冯一新,等. “十三五”我国蔬菜育苗技术研究进展[J]. 中国蔬菜,2021(8):18-26. SUN Xiaowu, WU Zhanhui, FENG Yixin, et al. Research progress on vegetables seedling culture technique during ‘The Thirteenth Five-year Plan’ in China[J]. China Vegetables, 2021(8): 18-26. (in Chinese with English abstract)
[5] 李胜利,吴帼秀. 河南省蔬菜集约化育苗企业现状、存在问题及建议[J]. 中国蔬菜,2023(6):1-5. LI Shengli, WU Guoxiu. Current situation, existing problems and suggestions for intensive vegetable seedling culture enterprises in Henan Province[J]. China Vegetables, 2023(6): 1-5. (in Chinese with English abstract)
[6] 李胜利,李 阳,周利杰,等. 豫西高山夏季番茄育苗温度适宜度定量评价[J]. 农业工程学报,2019,35(4):194-202. doi: 10.11975/j.issn.1002-6819.2019.04.024 LI Shengli, LI Yang, ZHOU Lijie, et al. Quantitative assessment of temperature suitability of alpine summer tomato seedling in west of Henan province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 194-202. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2019.04.024
[7] 陈同强,陈奎,田永强,等. 贮运时间和温度对黄瓜双断根嫁接苗质量的影响[J]. 江苏农业科学,2018,46(15):90-93. [8] 陈同强,李娟起,田永强,等. 贮藏时间对黄瓜双断根嫁接苗质量的影响[J]. 中国蔬菜,2015(9):39-43. doi: 10.3969/j.issn.1000-6346.2015.09.011 CHEN Tongqiang, LI Juanqi, TIAN Yongqiang, et al. Effects of storage time on quality of root-cutting grafted cucumber seedling[J]. China Vegetables, 2015(9): 39-43. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6346.2015.09.011
[9] 喻景权,周 杰. “十二五”我国设施蔬菜生产和科技进展及其展望[J]. 中国蔬菜,2016(9):18-30. YU Jingquan, ZHOU Jie. Progress in protected vegetable production and research during ‘China’s 12th Five-Year Plan’[J]. China Vegetables, 2016(9): 18-30. (in Chinese with English abstract)
[10] 闵腾辉,杨中敏,玛依热·麦图隼,等. LED光质配比对香菇菌丝生长及转色期生理活性的影响[J]. 农 业工程学报,2024,40(9):219-226. MEN Tenghui, YANG Zhongmin, MAYIRE·MAITUSUN, et al. Influence of LED light quality ratios on the physiological regulation of Lentimula edodes mycelial growth and color conversion stage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(9): 219-226. (in Chinese with English abstract)
[11] 刘新颖,郑胤建,李清明,等. 嫁接苗愈合人工光环境调控策略研究进展[J]. 照明工程学报,2022,33(5):192-199. LIU Xinying, ZHENG Yinjian, LI Qingming, et al. Research progress of artificial light environment regulation strategies during graft healing[J]. China Illuminating Engineering Journal, 2022, 33(5): 192-199. (in Chinese with English abstract)
[12] LEE K M, LIM C S, MNEER S, et al. Functional vascular connections and light quality effects on tomato grafted unions[J]. Scientia Horticulturae, 2016, 201: 306-317. doi: 10.1016/j.scienta.2016.02.013
[13] MIAO L, LI S Z, BAI L Q, et al. Effect of grafting methods on physiological change of graft union formation in cucumber grafted onto bottle gourd rootstock[J]. Scientia Horticulturae, 2019, 244: 249-256. doi: 10.1016/j.scienta.2018.09.061
[14] MIAO L, LI Q, SUN T S, et al. Sugars promote graft union development in the heterograft of cucumber ontopumpkin[J]. Horticulture Research, 2021, 8(1): 146. doi: 10.1038/s41438-021-00580-5
[15] 赵渊渊. 温光环境因子对茄果类蔬菜套管嫁接苗愈合的影响[D]. 北京:中国农业科学院,2015. ZHAO Yuanyuan. Effects of Temperature and Light on Healing of Tube Grafted Solanaceous Vegetable Seedlings[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese with English abstract)
[16] SUN F Q, MA S, GAO L H, et al. Enhancing root regeneration and nutrient absorption in double-rootcutting grafted seedlings by regulating light intensity and photoperiod[J]. Scientia Horticulturae, 2020, 264: 109192. doi: 10.1016/j.scienta.2020.109192
[17] VAN G K, KANG C, PIERIK R. Light signaling, root development, and plasticity[J]. Plant Physiology, 2018, 176: 1049-1060. doi: 10.1104/pp.17.01079
[18] LI F, LI Y, LI S, et al. Green light promotes healing and root regeneration in double-root-cutting grafted tomato seedlings[J]. Scientia Horticulturae, 2021, 289: 110503. doi: 10.1016/j.scienta.2021.110503
[19] 李忠光,龚明. 植物中超氧阴离子自由基测定方法的改进[J]. 云南植物研究,2005(2):211-216. LI Zhongguang‚ GONG Ming. Improvement of measurement method for superoxide anion radical in plant[J]. Acta Botanica Yunnanica, 2005(2): 211-216. (in Chinese with English abstract)
[20] 施海涛. 植物逆境生理学实验指导[M]. 北京:科学出版社,2016. [21] MUNEER S, KO C H, SOUNDARARAJAN P, et al. Proteomic study related to vascular connections in watermelon scions grafted onto bottle-gourd rootstock under different light intensities[J]. PLoS One, 2015, 10(3): 1-19.
[22] 刘方园. 西瓜和甜瓜嫁接苗高效愈合环境参数优化研究[D]. 武汉:华中农业大学,2016. LIU Fangyuan. Optimizing Efficient Healing Environmental Parameters of Watermelon and Melon Grafted Seedlings[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese with English abstract)
[23] 储玉凡,翟挺楷,林碧英,等. 愈合期不同光照强度对黄瓜嫁接苗的影响[J]. 中国瓜菜,2021,34(1):49-54. CHU Yufan, ZHAI Tingkai, LIN Biying, et al. Effects of different light intensity on cucumber grafted seedling in the healing stage[J]. China Cucurbits and Vegetables, 2021, 34(1): 49-54. (in Chinese with English abstract)
[24] JANG Y, CHO Y, RHEE H, et al. Effects of rootstock and night temperature on the growth and yield of grafted pepper (Capsicum amum L.)[J]. Horticulture Environment and Biotechnology, 2008, 49(2): 63-71.
[25] CHEN Z, ZHAO J, QIN Y, et al. Study on the graft compatibility between ‘Jingganghongnuo’ and other litchi cultivars[J]. Scientia Horticulturae, 2016, 199: 56-62. doi: 10.1016/j.scienta.2015.12.020
[26] XU Q, GUO S R, LI H, et al. Physiological aspects of compatibility and incompatibility in grafted cucumber seedlings[J]. Journal of the American Society for Horticultural Science, 2015, 140(4): 299-307. doi: 10.21273/JASHS.140.4.299
[27] IRISARRI P, BINCZYCKI P, ERREA P, et al. Oxidative stress associated with rootstock-scion interactions in pear/quince combinations during early stages of graft development[J]. Journal of Plant Physiology, 2015, 176: 25-35. doi: 10.1016/j.jplph.2014.10.015
[28] MUN B, JANG Y, GOTO E, et al. Measurement system of whole-canopy carbon dioxide exchange rates in grafted cucumber transplants in which scions were exposed to different water regimes using a semi-open multi-chamber[J]. Scientia Horticulturae, 2011, 130(3): 607-614. doi: 10.1016/j.scienta.2011.08.017
[29] STRASSER R J, TSIMILLI-MICHAEL M, QIANG S, et al. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis[J]. Biochimica et Biophysica Acta, 2010, 1797: 1313-1326. doi: 10.1016/j.bbabio.2010.03.008
[30] 刘柿良,马明东,潘远智,等. 不同光环境对桤木幼苗生长和光合特性的影响[J]. 应用生态学报,2013,24(2):351-358. LIU Shiliang, MA Mingdong, PAN Yuanzhi, et al. Effects of light regime on growth and photosynthetic characteristics of Alnus formosana and A. cremastogyne seedlings[J]. Chinese Journal of Applied Ecology, 2013, 24(2): 351-358. (in Chinese with English abstract)
[31] HE Z S, TANG R, LI M J, et al. Response of photosynthesis and chlorophyll fluorescence parameters of Castanopsis kawakamii seedlings to forest gaps[J]. Forests, 2019, 11(1): 21. doi: 10.3390/f11010021
[32] WEI C, LUO G, JIN Z, et al. Physiological and structural changes in leaves of Platycrater arguta seedlings exposed to increasing light intensities[J]. Plants, 2024, 13(9): 1263. doi: 10.3390/plants13091263
[33] XU Y F, CHEN S Y, ZHAO S Y, et al. Effects of light intensity on the photosynthetic characteristics of Hosta genotypes differing in the glaucousness of leaf surface[J]. Scientia Horticulturae, 2024, 327: 112834. doi: 10.1016/j.scienta.2023.112834
[34] 谭佐军,蔡霞,阿克拜尔江·卡德尔,等. 高光谱荧光示踪无损检测瓜类作物嫁接苗愈合状态[J]. 农业工程学报,2023,39(16):276-282. TAN Zuojun, CAI Xia, AKEBAIERJIANG·KADEER, et al. Nondestructive detection of healing melon crops by hyperspectral fluorescence tracer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(16): 276-282. (in Chinese with English abstract)
[35] 崔晓晗,潘璐,崔世茂,等. 高温、CO2加富对黄瓜光合作用及气孔运动日变化的影响[J]. 北方园艺,2022(24):11-17. CUI Xiaohan, PAN Lu, CUI Shimao, et al. Effects of high temperature and CO2 enrichment on diurnal variation of photosynthesis and stomatal movement in cucumber[J]. Northern Horticulture, 2022(24): 11-17. (in Chinese with English abstract)
[36] CAMERON R W F, HARRISON-MURRAY R S, JUDD H L, et al. The effects of photoperiod and light spectrum on stock plant growth and rooting of cuttings of Cotinus coggygria 'Royal Purple'[J]. Journal of Pomology & Horticultural Science, 2005, 80(2): 245-253.
-
期刊类型引用(3)
1. 郭银萍,杨菲,王婉婉. 膜电解法中铜与硫酸的高效回收技术. 辽宁化工. 2025(03): 434-436 . 百度学术
2. 张军 ,张鸿宇 ,周婷 ,晏水平 ,贺清尧 . 直接接触式膜蒸馏结晶回收沼液氨氮性能. 农业工程学报. 2024(05): 239-245 . 本站查看
3. 邓龙,司泽田,李卓豪,张永发. 机械蒸汽再压缩耦合中空纤维真空膜蒸馏系统试验. 工业水处理. 2024(07): 150-155 . 百度学术
其他类型引用(0)