Oscillating slide-cutting blade in shovel-type seedbed preparation machine for rapeseed direct seeding
-
摘要:
针对长江中下游稻油轮作区水稻收获后秸秆留茬高且覆盖量大的作业工况,为提高油菜机械直播铲锹式种床整备机的秸秆切割能力、秸秆与土壤混合一致性和作业后秸秆在耕层深度上的垂直分布均匀性,该研究研制了一种适配于铲锹式耕地装置的往复滑切刀,在铲锹作业前预先对未耕地表层土壤进行扰动与秸秆切割。首先基于往复滑切刀滑切秸秆的动力学模型,确定满足要求的往复滑切刀刃口滑切角范围为31°~59°;建立了往复滑切刀摆动作业的运动学模型,分析了刃口动态滑切角与静态滑切角、转速、前进速度等参数的变化关系,结合铲锹式耕地装置运动学模型得出的往复滑切刀角速度变化趋势,使用阿基米德螺线对其刃口曲线进行设计。进一步通过DEM-MBD耦合仿真,选取曲柄转速、前进速度和刃口角为试验因素,以往复滑切刀秸秆切割效果和平均作业阻力为评价指标进行单因素及三因素三水平正交试验,根据极差和方差分析结果得出较优参数组合。田间试验结果表明,安装往复滑切刀的铲锹式种床整备机与未安装时相比,机组作业后长度小于100 mm的秸秆质量占比增加了17.09个百分点,长度大于200 mm的秸秆质量占比降低了20.75个百分点,耕后秸秆在土壤中的垂直分布均匀性提升了39.68个百分点。研究可为该地区耕整地机具及关键部件的设计与改进提供参考。
Abstract:A large amount of straw and high stubble can often be remained after rice harvest in the rice-rapeseed rotation areas of the mid-lower Yangtze River. It is very necessary to enhance the straw cutting for the high consistency of straw-soil mixing. In this study, an oscillating slide-cutting blade was developed in the shovel-type plowing device. The uniform vertical distribution of straw was also realized within the plow layer for the shovel-type seedbed preparation machine during rapeseed mechanical direct seeding. This blade was used to pre-disturb the soil surface, and then cut the straw before the shovel operation. Thereby the frequency of straw cutting was improved during operation. The structure and working parameters were then optimized in the shovel-type seedbed preparation machine. The edge curve of oscillating slide-cutting blade was then proposed, according to the principle of slide cutting. The dynamic model of straw cutting was also constructed for the oscillating slide-cutting blade. The slide-cutting angles were determined to be 31° to 59°, fully meeting the operational requirements. A kinematic model was also established for the oscillating operation of the blade. A systematic analysis was implemented to clarify the relationship between the dynamic and static slide-cutting angles, crank rotational speed, and forward speed. The angular velocity was finally derived for the oscillating slide-cutting blade in the shovel-type plowing device. Taking the high forward speed (0.9 m/s) and low crank rotational speed (240 r/min) as the critical parameters, the blade edge curve was designed, according to the Archimedean spiral. A simulation was performed on the oscillating slide-cutting blade that installed on the shovel-type tillage device using discrete element method (EDEM) software and multibody dynamics software (ADAMS). Crank rotational speed, forward speed, and blade edge angle were selected as the experimental factors, while the effectiveness of straw cutting and average working resistance were used as the evaluation indicators. Single-factor and three-factor, three-level orthogonal experiments were conducted to analyze the influence of each factor on the test indicators. The optimal combination of parameters was obtained using range and variance analysis. Field experiments were conducted at the rice-rapeseed rotation test base of Huazhong Agricultural University in western China. The experimental conditions were set as the surface after rice harvest, and the soil type was the clay soil. The average content of soil moisture before the test was 26.75%, the bulk density was 1.76 g/mm3, and the average soil cone index at a depth of 0-200 mm was 1 225.3 kPa. The average height of rice straw stubble was 405 mm, with a straw coverage of 1 558 g/m2. Field experiment results indicated that all quality indicators of the shovel-type seedbed preparation machine reached the optimal levels after operation. The straw burial rate increased by 3.71 percental points using oscillating slide-cutting blade. There was no significant impact on the tillage depth, seedbed surface, and soil fragmentation rate. In the case of oscillating slide-cutting blade, the proportion of straw shorter than 100 mm increased by 17.09 percental points, while the proportion of straw longer than 200 mm decreased by 20.75%, and the uniformity of vertical straw distribution within the soil was improved by 39.68 percental points. This finding can provide a strong reference for the key components in the tillage machinery.
-
Keywords:
- rapeseed /
- rice-rapeseed rotation /
- shovel-type plowing device /
- rice straw /
- slide-cutting
-
0. 引 言
随着农业装备不断向现代化、智能化和规模化发展[1],工业机器人的应用范围扩展至农业装备领域是必然趋势。旋转矢量(rotate vector,RV)减速器具有体积小、传动比范围大、质量轻、精度保持稳定、效率高等特点,农业机械经常需要大比例减速的情况,常选用RV减速器[2]。RV减速器作为农业机器人及农业机械的核心传动部件,其健康状况直接决定了传动精度、可靠性、生产效率和农机寿命。然而,由于RV减速器结构复杂,且在实际工作中工况多变,作业环境恶劣,随时发生故障[3]。RV减速器故障严重时会导致生产停滞,造成巨大的经济损失。因此,研究农业机器人RV减速器的故障诊断方法,及早发现并处理故障,缩短维护时间,对保障机器人安全运行、提高企业生产效率和经济效益具有重大意义。
振动信号能够有效反映部件的健康状态,在故障诊断中得到广泛应用[4]。近年来,许多学者对此开展了研究,提出了神经网络[5]、深度学习[6]、时频分析[7]、盲反卷积[8]等方法。汪久根等[9]采用残差网络提高了RV减速器不同故障的分类准确率。YIN等[10]开发了一种基于知识和数据双驱动的传输网络用于RV减速器故障诊断。彭鹏等[11]提出了一种抗干扰的 RV 减速器故障识别卷积神经网络模型。韩特等[12]在深度特征嵌入空间下构建特征图,通过标签传播算法生成伪标签,利用信息熵评估健康状态概率的分布。上述关于RV减速器的故障诊断精度较高,主要采用神经网络、深度学习、机械学习等算法,但是此类算法的实现需要大量不同类型的数据支撑。而基于时域、频域或时频域的分析方法能够在少量数据的支撑下完成故障诊断。XIE等[13]提出了一种基于电流信号的瞬时频率趋势图与参数自适应变分模态分解算法相结合的RV减速器故障诊断方法,实现了RV减速器太阳轮故障特征提取。GUO等[14]将计算阶跟踪和同步平均相结合识别了RV减速器行星齿轮齿根裂纹故障。雷亚国等[15]利用脊线提取完成RV减速器振动信号的平稳数据截取,有效提取了RV减速器行星轮的故障信息。由于RV减速器因润滑、制造误差和不合理受力会引起各种机械故障,使得实际运行中裂纹、点蚀等故障往往同时或先后出现,传感器采集的信号往往是多个故障源相互耦合的结果,使故障诊断变得非常困难。文献[13-15]提出的故障诊断方法适于单一故障诊断,对RV减速器复合故障检测能力下降甚至失效。因此,如何在复合故障相互耦合以及往复运动、时变转速工况下,精确分离提取耦合故障特征是RV减速器故障诊断领域亟待攻克的难题。盲源分离(blind source separation,BSS)技术可以在传输通道未知的情况下,从混合信号中把多个信号源分离出来。独立成分分析(independent component analysis,ICA) [16]和稀疏分量分析(sparse component analysis,SCA) [17] 是常用的以信号处理技术求解BSS问题。ICA算法的前提是源信号是统计独立的,且每个独立分量必须符合非高斯分布。而现代机械设备难以满足统计独立性的假设,但SCA方法的稀疏性假设相对容易满足。
SCA算法中,聚类方法是混合矩阵估计的首选。WANG等[18]提出了一种两阶段的聚类算法,从而提高了混合矩阵的估计精度。NORSALINA等[19]引入自适应时频阈值提高混合矩阵估计的精度。DING等[20]利用同步压缩S变换估计含谐波传输阻抗的混合矩阵。密度峰值聚类算法(density peak clustering,DPC)考虑局部密度和相对距离绘制决策图,快速识别簇中心并完成聚类。 DPC具有唯一输入参数,无需先验知识和迭代[21]。在解决振动源数目估计方面有一定的潜力。SCA算法还包括了源信号的恢复,主流方法有两类:一是通过优化逼近L0范数的函数恢复源信号。BU等[22]使用光滑的连续函数来近似L0范数。ZHANG等[23]用复三角函数逼近L0范数。但是上述方法具有源信号射入方向越近恢复精度越低。二是压缩感知(compressed sensing,CS)重构算法[24],该方法使用L1范数优化取代L0范数优化恢复源信号,避免了L0范数优化的NP-Hard问题。正交匹配追踪算法(orthogonal matching pursuit,OMP)克服匹配追踪算法的缺陷,在算法迭代过程中,残差能够与已经选择的原子正交,保证相同索引不会被重复选择,迭代过程在有限的次数内收敛[25],在重构信号算法的研究中发挥了重要作用。
结合上述分析,本文提出一种基于时频图像脊线提取与改进稀疏分量分析相结合的RV减速器复合故障盲提取方法,旨在实现往复运动、时变转速、故障源数目未知工况下的RV减速器复合故障诊断。首先使用时频图像脊线提取(ridge extraction from time-frequency images,RETF)从时频图中提取脊线,完成对平稳信号的同步截取,然后利用sinC函数改进形态滤波(sinC-morphological filtering,SMF)、DPC和OPM相结合的盲源分离方法(SMF-DPC-OMP)实现平稳信号复合故障的分离提取,采用SMF对观测信号进行滤波降噪处理,在提高信噪比的同时突出信号的冲击分量,并对滤波后的信号进行密度峰值聚类处理,得到聚类中心,构建传感矩阵;接着将滤波后的信号转换到频域以满足SCA的稀疏性要求;最后利用OMP算法在频域重构源信号,在提高计算速度和适应性的同时,实现复合故障特征的提取。
1. 盲分离的数学模型
盲源分离是指在源信号和信号传输通道均未知的情况下,仅依赖传感器拾取的观测信号恢复和估计源信号的技术[26]。含噪声SCA的数学模型为
{{\boldsymbol{X}}_{m \times t}} = {{\boldsymbol{A}}_{m \times n}}{{\boldsymbol{S}}_{n \times t}} + {{\boldsymbol{V}}_{m \times t}} (1) 式中 {\boldsymbol{X}} 为观测矩阵,即采集到的振动信号; {\boldsymbol{A}} 为混合矩阵; {\boldsymbol{S}} 是具有稀疏性的未知源信号; {\boldsymbol{V}} 为噪声或其他随机干扰成分; m 为传感器数量; n 为源信号数量; t 为观测时间,s。
2. 基于时频图像的脊线提取
短时傅里叶变换(short-time fourier transform,STFT)是有效捕获时变频率的方法之一,其定义为[27]
Q\left( {t,f} \right) = \int\limits_R {x\left( \tau \right){h_\sigma }\left( {\tau - t} \right){{\text{e}}^{ - {j}_0 2{\text{π }}f\tau }}{\text{d}}\tau } (2) 式中x\left( \tau \right) 为多分量信号;Q\left( {t,f} \right)是信号的时频表达(time frequency representation,TFR);{h_\sigma }\left( {\tau - t} \right)是长度为\tau 的高斯窗;R为实数集;t为时间;f为频率;j表示复数。
从TFR中提取时频脊线估计瞬时频率(instantaneous frequency,IF)是完全非参数的,并且能适应不同的情况。有效的脊线提取方法是寻找TFR的最大位置[27],其定义如下:
\overline {{D}} (t) = \mathop {\arg \max }\limits_{f \in J} \left| {Q(t,f)} \right|,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} t = {t_0}, \ldots ,{t_{N - 1}} (3) 式中 \overline {{D}} (t) 表示得到的脊线,是理论 {{D}}(t) 的估计, J 是频率的集合,N 为信号截止时间。RETF算法的具体实现步骤如下:
1)初始化参数,并创建一个预存矩阵{{\boldsymbol{K}}_i};
2)对时域信号x\left( t \right)进行STFT变换,得到其时频分布Q\left( {t,f} \right);
3)寻找并标记最大能量点\left[ \begin{gathered} {t_0} \\ {f_0} \\ \end{gathered} \right],将该点存储为{\boldsymbol{K}}矩阵的第一列;
4)使Q\left( {{t_0},f} \right)在最大值点{t_0}附近时刻归0,即Q\left( {{t_0},f} \right) = 0,f \in \left[ {{f_0} - \Delta f,{f_0} + \Delta f} \right],其中\Delta f为滤波带宽惩罚参数,控制滤波带宽;
5)在Q\left( {{t_0},f} \right)的邻域内寻找下一个最大能量点 \left[ \begin{gathered} t_{0}' \\ f_{0}' \\ \end{gathered} \right] = \ {\mathrm{\max}} _{\left( {{t_\alpha },{f_\alpha }} \right)}Q\left( {t,f} \right) 。 {t_\alpha } \in \left[ {{t_0} - 1,{t_0} + 1} \right] ,{f_\alpha } \in \left[ {f_0} -F,{f_0} + F \right],H为选定的窗参数,控制迭代中 \overline {{D}} (t) 增量的平滑程度,H越小, \overline {{D}} (t) 增量越平滑;
6)将 \left[ \begin{gathered} t_0' \\ f_0' \\ \end{gathered} \right] 存储为{\boldsymbol{K}}矩阵的下一列;
7)使Q\left( {t_0',f} \right)在最大值点t_0'附近时刻归0,即Q\left( {t_0',f} \right) = 0,f \in \left[ {{f_0} - \Delta f,{f_0} + \Delta f} \right];
8)如果时间指标{t_\alpha }和频率指标{f_\alpha }未达到TFR矩阵的边界,返回步骤5);否则返回步骤1),并创建一个新的预存矩阵{{\boldsymbol{K}}_{i + 1}};
9)当剩余TFR能量小于阈值\varepsilon 时停止算法(每一个预存矩阵,即是一条时频脊线)。
3. 基于SMF-DPC-OMP的盲源分离
3.1 基于\sin C函数的改进形态滤波降噪
3.1.1 构建\sin C结构元素
\sin C函数又称辛格函数,定义如下:
\sin C\left( x \right) = \frac{{\sin \left( {{\text{π}}x} \right)}}{{{\text{π}}x}} (4) 本文选取 \sin C 函数作为结构元素时主要定义长度L和主瓣比p。长度是指整个图像的长度,主瓣比是指从中间截取整个图像的百分比。图1为L = 20、 p = 50\text{%} 的 {\mathrm{sin}} C 结构元素。
3.1.2 构建平均组合滤波器
形态滤波器的构建主要包括结构元素和形态算子。结构元素的选择包括结构元素的形状、长度、高度(振幅)等。在处理一维信号时 ,结构元素的形状一般有线形、三角形、半圆形、正弦等,本文选择 sin C函数作为结构元素 ,结合形态算子腐蚀Θ、膨胀\oplus 、形态开○和形态闭●,构建基于sinC函数的SMF平均组合滤波器。
设原信号f\left( n \right)和结构元素g\left( m \right)为分别定义在F\left( {1,2, \ldots ,n - 1} \right)和G = \left( {1,2, \ldots, m - 1} \right)上的离散函数, N \geqslant M。则f\left( n \right)关于g\left( m \right)的腐蚀运算、膨胀运算、开运算和闭运算[28]分别为
(f\Theta g)(n) = \min[f(n + m) - g(m)] (5) (f \oplus g)(n) = \max [f(n - m) + g(m)] (6) (f \circ g){\kern 1pt} (n) = (f\Theta g \oplus g)(n) (7) (f \bullet g){\kern 1pt} (n) = (f \oplus g\Theta g)(n) (8) 通常使用形态开和形态闭的级联形式去除信号中的正、负噪声。TANG[28]为了去除信号中的正、负噪声,定义了形态闭-开(closing-opening,CO)和开-闭(opening-closing,OC)滤波器:
{\mathrm{CO}}{\kern 1pt} (f(n)) = (f \bullet g \circ g)(n) (9) {\mathrm{OC}}{\kern 1pt} (f(n)) = (f \circ g \bullet g)(n) (10) 为了抑制统计偏倚,本文采用结合OC和CO的平均组合滤波器[28]:
y(n) = [{\mathrm{OC}}(f(n) + {\mathrm{CO}}(f(n)]/2 (11) 3.1.3 基于\sin C的平均组合滤波器效果验证
为了验证基于{\mathrm{sin}}\; C 函数的SMF滤波效果,生成模拟轴承外圈故障的仿真信号并添加信噪比(signal-to-noise ratio,SNR)为−3 dB的白噪声。图2为含噪声的仿真信号及滤波后的时域波形图,SMF降噪后的信噪比为0.7 dB,说明SMF较好的滤除干扰噪声,突显了信号的冲击特性。
将本文的SMF滤波器与文献[29]中的直线型滤波器(幅值为0,长度为10)进行对比,滤波器参数及滤波效果如图3所示。分析图3可知无论滤波器的参数如何选择,SMF的滤波后的信噪比总是要优于直线型滤波器。
3.2 基于DPC-OMP的盲源分离
3.2.1 DPC理论
DPC算法主要基于2个假设:1)聚类中心周围是低密度的点;2)聚类中心与密度较高的样本点之间的距离较大。设数据集U{{ = }}\left\{ {{u_1},{u_2}, \cdots, {u_R}} \right\}, {u_i}{{ = }}{\left( {{u_{i1}},{u_{i2}}, \cdots, {u_{io}}} \right)^{\mathrm{T}}} ,其中i = 1,2, \cdots ,R,{u_{ij}}表示数据点i的j维属性,j = 1,2, \cdots ,O;R为总体样本数。
1)计算局部密度\rho
对于每个数据点{u_i},i = 1,2, \cdots ,R,局部密度{\rho _i}可以被认为是距离点{u_i}较近的点的数量,{\rho _i}的定义如下[30]:
{\rho _i} = \sum\limits_{j,j \ne i} {\chi \left( {{d_{ij}} - {d_c}} \right)} (12) 式中\chi \left( x \right)为分段函数,x < 0时,\chi \left( x \right){\text{ = }}1,否则\chi \left( x \right){\text{ = 0}};{d_{ij}}表示i和j之间的距离(通常为欧氏距离),{d_c}表示截断距离。
2)计算最近邻距离\delta
每个点的最近邻距离{\delta _i} 为
{\delta _i} = \left\{ \begin{gathered} \mathop {\min \left( {{d_{ij}}} \right)}\limits_{j:{\rho_j} > {\rho_i}} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rho _i} < \max \left( \rho \right) \\ \mathop {\max \left( {{d_{ij}}} \right)}\limits_j ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rho _i} = \max \left( \rho \right) \\ \end{gathered} \right. (13) 对于密度较低的样本点,计算该样本点与高于其密度的最近样本点之间的距离;而对于密度最高的样本点,则计算该点与最远样本点之间的距离。
3)选取聚类中心 V
聚类中心定义为同时具有高密度{\rho _i}和较大距离{\delta _i}的点{x_i},令{V_i} = {\rho _i}{\delta _i},取 V > \dfrac{2}{N}\displaystyle\sum\limits_{i = 1}^N {{V_i}} 为聚类中心。由于聚类对象为RV故障信号,{V_i}大多为0。为保证不遗漏正确的聚类中心,因此选取大于均值2倍的数据点为聚类中心。
3.2.2 压缩感知重构算法
利用压缩感知重构算法中的OMP算法对源信号进行重构。将 m 个长度为 t 的观测信号表示为 {\boldsymbol{y}} = ({y_{11}}, {y_{12}}, \cdots {y_{1\;t}}, \cdots ,{y_{m1}},{y_{m2}}, \cdots {y_{mt}})^{\mathrm{T}} 。
利用聚类中心 {\boldsymbol{V}}(m \times n) 构造传感矩阵 {\boldsymbol{W}} 。根据压缩感知模型,当混合信号长度为 mt \times 1 ,其传感矩阵 {\boldsymbol{W}} 的长度为 mt \times nt 。利用傅里叶变换正交矩阵 {{\boldsymbol{E}}_{t \times t}} 扩充矩阵 {\boldsymbol{V}} 的元素值,变换关系为 {{\boldsymbol{B}}_{ij}} = {{\boldsymbol{E}}_{t \times t}}{{\boldsymbol{V}}_{ij}} ,具体变换如式(14)所示。
{\boldsymbol{y}} = \left[ \begin{gathered} {{\boldsymbol{{\boldsymbol{B}}}}_{11}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{12}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{1n}} \\ {{\boldsymbol{B}}_{21}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{21}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{2n}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots \\ {{\boldsymbol{B}}_{m1}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{m2}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{mn}} \\ \end{gathered} \right]{\boldsymbol{x}} (14) {\boldsymbol{x}} = {({x_{11}},{x_{12}}, \cdots ,{x_{1\;t}}, \cdots ,{x_{n1}},{x_{n2}}, \cdots ,{x_{nt}})^{\mathrm{T}}} 的长度是 (nt \times 1) 。至此,盲源分离的重构模型构建完成。
OMP是一种常用的压缩感知重构算法。首先在每次迭代过程中对所有选定的原子进行Schmidt正交化,以确保每次迭代的结果都是最优解。利用OMP算法进行重构的核心思想是构造频域感知矩阵。具体算法步骤如下:
1)初始化残差 {r_0} ,迭代次数 \ell ,傅立叶正交变换矩阵 {{\boldsymbol{E}}_{t \times t}} ,并根据 {{\boldsymbol{B}}_{ij}} = {{\boldsymbol{E}}_{t \times t}}{{\boldsymbol{V}}_{ij}} 构造传感矩阵 {\boldsymbol{W}}{\kern 1pt} {\kern 1pt} {\text{ = }}{\kern 1pt} {\kern 1pt} {\kern 1pt} \left[ \begin{gathered} {{\boldsymbol{B}}_{11}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{12}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{1n}} \\ {{\boldsymbol{B}}_{21}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{21}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{2n}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \vdots \\ {{\boldsymbol{B}}_{m1}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{m2}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\boldsymbol{B}}_{mn}} \\ \end{gathered} \right] ;
2)使用内积法计算传感矩阵 {\boldsymbol{W}} 的列向量与残差{r_i}的投影系数,并记录最大投影系数相对应的位置 {{\boldsymbol{\beta}} _i} ,随后将最大投影系数所对应的传感矩阵 {\boldsymbol{W}} 的列置0;
3)使用最小二乘法计算本次迭代的重构信号的估计值 {x_i} = {({{\boldsymbol{\beta}} _i}^{\mathrm{T}} \cdot {{\boldsymbol{\beta}} _i})^{ - 1}} \cdot {{\boldsymbol{\beta}} _i}^{\mathrm{T}} \cdot {{\boldsymbol{r}}_i} ;
4)更新残差 {r_{i + 1}} = {r_i} - {x_i} ,并重复步骤2),直到迭代结束;
5)使用 {E_{t \times t}} 做逆傅立叶变换得到维数为 (kt \times 1) 的时域信号 x ,并根据聚类中心的维数k,将维数为 (kt \times 1) 的时域信号 x 分割为k个维数为\left( {t \times 1} \right)的时域信号,从而完成信号的盲源分离。
3.3 本文算法总流程
1)平稳阶段截取:提取一组观测信号x\left( t \right)并进行STFT得到其时频表达Q\left( {t,f} \right)。随后提取时频脊线并截取恒速时段信号,获得平稳信号{x_1}\left( t \right);
2)信号预处理:构造基于 \sin C 结构元素的平均组合滤波器,并对平稳信号{x_1}\left( t \right)进行滤波降噪,得到滤波信号{x_2}\left( t \right);
3)估计混合矩阵:对滤波信号{x_2}\left( t \right)进行DPC得到聚类中心,即混合矩阵;
4)源信号重构:利用步骤3)的混合矩阵构造传感矩阵,使用OMP算法在频域重构源信号;
5)故障识别:对重构源信号进行快速傅里叶变换(fast Fourier transform,FFT)处理,根据分离信号频谱中的频率进行故障识别。
本文算法的总体流程图如图4所示。
4. 试验验证
4.1 试验介绍
试验信号来自于模拟农业机器人单关节臂往复运动的RV减速器试验台,如图5所示。将2个型号为333B30的PCB加速度传感器相互垂直安装于减速器保持架上拾取信号。水平方向为传感器1,垂直方向为传感器2。其中,试验台基座7上安装减速器保持架4,通过减速器保持架4装RV减速器5,型号为SV-X2MH100C-B2 LN的电机6输出轴通过RV减速器5连接关节臂1。图6为故障齿轮的实物图,图6a为太阳轮磨损图,图6b为行星轮磨损图。
试验选用RV40E型减速器并以针轮固定的方式固定于试验台,减速比121、行星齿轮数目为2,太阳轮齿数{Z_1} = 12,行星轮齿数{Z_2} = 42,摆线轮齿数{Z_3} = 39,针轮齿数{Z_4} = 40。采集系统包括NI-USB9234采集卡与单向加速度传感器,采样频率为25.6 kHz。试验预设摆臂运动范围为0°~90°(单次抬升或下降90°),运行速度为100°/s。RV减速器的各个特征频率计算式见表1。
表 1 RV减速器各零件的工作频率Table 1. Working frequency of each part of RV reducer名称Name 计算公式Calculation formula 电机主轴转速
Motor spindle speed {n_1}/(r·min−1){n_1} = 60f/P 太阳轮转频
Sun gear rotation frequency {f_1}/Hz{f_1} = {n_1}/60 行星轮转频
Planetary gear rotation frequency {f_2}/Hz{f_2} = \dfrac{{{z_1}{z_4}}}{{({z_3} - {z_4})\left( {{z_1} + {z_2}{z_4}} \right)}}{f_1} 一级啮合频率
First stage engagement frequency {f_{1c}}/Hz{f_{1c}} = \dfrac{{{z_1}{z_2}{z_4}}}{{{z_1} + {z_2}{z_4}}}{f_1} 注:P为伺服电机磁极对数,{{\textit{z}}_1}为太阳轮齿数,{{\textit{z}}_2}为行星轮齿数,{{\textit{z}}_3} 为摆线轮齿数,{{\textit{z}}_4} 为针轮齿数。
Note: P is the number of magnetic poles of the servo moto, {{\textit{z}}_1} is the number of solar gear, {{\textit{z}}_2} is the number of planetary gear, {{\textit{z}}_3} is the number of cycloidal gear, and {{\textit{z}}_4} is the number of needle gear.行星轮故障频率{f_p}为行星轮相对于行星架的旋转频率,{f_p} = {f_2} - {f_3};太阳轮故障频率{f_s}为太阳轮相对于行星架的旋转频率,{f_s} = {f_1} + {f_3}。由于摆臂转速=100(°)/s =0.27 Hz,即支撑盘转频{f_3}=0.27 Hz。根据表1及太阳轮故障频率计算式计算可得太阳轮故障频率{f_s}为38.34 Hz,行星轮故障频率{f_p}为10.83 Hz。
4.2 试验信号分析
由传感器1和传感器2采集的2组信号都具有相同的运动状态,即同时加速或同时减速。因此本文在平稳阶段选取水平方向传感器1的振动信号用以分析机械臂的运动状态。图7为选取的振动信号进行STFT获得的时频图。可以看出,由于RV减速器的瞬时冲击过大,无法通过时频图区分出机械臂的3种运动状态,即启动加速阶段,恒速运动阶段以及减速停滞阶段。
时频图中的脊线对应时频域中能量最大的路径,可以近似看作设备瞬时频率的时频轨迹。对时频图进行脊线提取,结果如图8所示。分析脊线走势能够较为清楚地区分机械臂的不同运行阶段,包括启动加速阶段,平稳运行阶段以及减速停滞阶段(后续分析均为此阶段)。图9a为水平方向传感器1采集信号的时域波形,图9b为垂直方向传感器2采集信号的时域波形。图9时域波形体现了机械臂启动、平稳到停止整个工作过程幅值的变化。依据图8中脊线的平稳阶段区间,在图9中标注同步截取相应时段的时域振动信号(后续分析皆是截取后的振动信号)。
图10a为截取平稳阶段传感器1的信号波形,图10b为截取平稳阶段传感器2信号波形。对图10振动信号进行SMF处理,对图10振动信号进行SMF处理,传感器2的滤波前后的信号波形对比如图11所示,从图11b中能够观测到故障所导致的冲击更加明显。
对滤波后的信号进行包络谱分析,如图12所示,传感器1和传感器2滤波信号的频谱分别如图12a、12b所示。分析图12a、12b发现,太阳轮与行星轮的故障特征频率成分完全混合在一起,故障类型判断困难。
经SMF-DPC-OMP算法处理的频谱如图13所示,图13a的频率谱线集中在37.5 Hz及其倍频,与太阳轮理论计算故障频率38.34 Hz接近,故可推断图13a为太阳轮故障。图13b的频率谱线分布在10.94 Hz及其倍频,与行星轮理论计算故障频率10.83 Hz逼近,故识别其为行星轮故障。相比图12,图13中的频率混合现象已经完全被消除,说明本文方法可实现复合故障的完全分离。采用文献[29]提出的结合形态滤波与稀疏分量分析(MF-SCA)的盲分离算法进行对比进一步验证本文方法的有效性,结果如图14所示,分析可见,图14a、14b均存在太阳轮和行星轮故障特征频率,说明MF-SCA方法无法有效实现RV减速器复合故障的分离。与MF-SCA方法相比,SMF-DPC-OMP算法能够节省约75%的时间运行成本。
5. 结 论
本文结合时频图像脊线提取、\sin C函数改进形态滤波和密度峰值聚类改进的稀疏分量分析各算法的优点,提出一种新的往复运动、变转速工况的RV减速器复合故障盲分离方法。通过RETE算法提取的脊线解决旋转机械变转速的问题,利用SMF-DPC-OMP实现了RV减速器复合故障的分离提取。试验台采集的RV减速器的太阳轮和行星轮磨损复合故障信号的分析结果显示,本文方法能够有效地完成复合故障的盲分离任务,主要结论如下:
1)RETE算法能够在变转速工况导致时频图较为模糊的情况下,识别出RV减速器的运动状态;
2)SMF-DPC-OMP算法能够在故障源数目未知的情况下,有效完成复合故障的盲分离任务;
3)与MF-SCA方法比较,SMF-DPC-OMP算法能够节省约75%的时间运行成本,使得频谱更为简洁,抑制精细侧频和干扰分量。
本文今后的工作将重点放在欠定条件下的故障提取上,或者进一步将该算法推广到旋转机械声信号的故障诊断中。
-
图 1 铲锹式种床整备机结构示意图
1.机架 2.齿轮箱 3.铲锹式耕地装置 4.组合式开畦沟犁 5. 平土拖板6.拦土耙 7.罩壳 8.铲锹 9.往复滑切刀 10下切刃11上切刃
Figure 1. Schematic diagram of the shovel-type seedbed preparation machine
1. Frame 2. Gearbox 3. Shovel type plowing device 4. Plow for furrowing 5. Flat soil pallet 6. Soil harrow 7. Retaining plate 8. Shovel 9. Oscillating slide-cutting blade 10. Downward cutting edge 11. Upward cutting edge
图 4 往复滑切刀切割秸秆受力图
注:质点J、J1为刃口与地面交接处的秸秆;ss'、s1s1'分别为该点刃口曲线的切线方向;BB' 、B1B1' 分别为该点刃口绝对运动轨迹;ae、ae1分别为质点J、J1的牵连加速度,m·s–2;at、at1分别为质点J、J1的相对加速度,m·s–2;Fn、Fn1分别为质点J受到往复滑切刀下切刃的法向力,N;Fs为土壤对质点J的作用力,方向与其牵连加速度ae方向相反,N;Fa为质点J1所受空气阻力,N;Ff、Ff1分别秸秆质点J、J1受到沿下切刃刃口切线方向的摩擦力,N;τk为下切刃刃口滑切角,(°)。
Figure 4. Force diagram of the oscillating slide-cutting blade cutting straw
Note: Particle J, J1 are the straw at the junction of the cutting edge of the lower cutting edge and the ground; ss', s1s1' are the tangent direction of the edge curve at this point, respectively; BB', B1B1' are the absolute movement track of the cutting edge at this point, respectively; ae, ae1 are the implicated acceleration of particle J, J1, m·s–2; at, at1 are the relative acceleration of particle J, J1, m·s–2; Fn, Fn1 are the normal force of the particle J, J1 subjected to the lower cutting edge of the reciprocating sliding cutter, N; Fs is the acting force of soil on particle J, and the direction is opposite to the direction of its implicated acceleration ae, N; Fa is the air resistance of particle J1, N; Ff, Ff1 are the friction force of straw particle J, J1 along the tangent direction of the lower cutting edge, N; τk is the cutting angle of the lower cutting edge, (°).
图 5 下切刃处点K速度分析图
注:点K为下切刃刃口曲线任一点;aa'为点K切线;点K绕动坐标系原点D的旋转为相对运动,vr为点K的相对运动速度,m·s–1;机组前进速度vm为牵引速度,m·s–1;绝对运动速度va为相对运动速度vr与牵引速度vm的矢量和,m·s–1;δ为初始位置时刃口曲线上点K与动系原点D连线与x轴夹角,(°);λk为刃口曲线的动态切割角,(°);τ为刃口静态滑切角,(°)。
Figure 5. Velocity analysis diagram of point K on the downward cutting edge
Note: Point K is any point on the edge curve of the lower cutting edge; aa' is tangent to point K; the rotation of point K around the origin D of the coordinate system is relative motion, vr is the relative motion speed of point K, m·s–1; the forward speed vm of the unit is the traction speed, m·s–1; absolute motion speed va is the vector sum of relative motion speed vr and traction speed vm, m·s–1; δ is the included angle between the connecting line between the point K on the edge curve and the origin D of the dynamic system and the x axis at the initial position, (°); λk is the dynamic cutting angle of the cutting edge curve, (°); τ is the static sliding angle of the cutting edge, (°).
图 6 铲尖点绝对运动轨迹及参数
注:原点O为初始时刻机架AD的延长线与地面的交点;l1为主动杆曲柄AB长度,mm;l2为连杆BC长度,mm;l3为摇杆CD长度,mm;l4为机架AD长度,mm;l5为连杆向下延伸形成带有铲锹的工作臂CE长度,mm;l6为摇杆与机架铰接点D与地面的距离,mm;l7为BD连线的长度,mm;S为切土节距,mm;fm为最大切土厚度,mm;θ为连杆BC与竖直方向所夹锐角,(°);θ1为连杆BC与BD连线所夹锐角,(°);φ为BD连线与机架AD所夹锐角,(°)。
Figure 6. Absolute motion trajectory and parameters of the shovel tip point
Note: The origin O is the intersection point between the extension line of the rack AD and the ground at the initial moment; l1 is the length of the driving lever crank AB, mm; l2 is the length of connecting rod BC, mm; l3 is the length of rocker CD, mm; l4 is the length of rack AD, mm; l5 is the length CE of the working arm with shovel formed by the downward extension of the connecting rod, mm; l6 is the distance between the articulated point D between the rocker and the frame and the ground, mm; l7 is the length of BD connection line, mm; S is the soil cutting pitch, mm; fm is the maximum cutting thickness, mm; θ is the acute angle between the connecting rod BC and the vertical direction, (°); θ1 is the acute angle between connecting rod BC and BD, (°); φ is the acute angle between BD connecting line and rack AD, (°).
表 1 刀具下切刃各角度数值
Table 1 Various angle values of the downward cutting edge
(°) 极径
Polar radius r/mm静态滑切角τ
Static slide-cutting angle动态滑切角τk
Dynamic slide-cutting angleΔτ=τ-τk 144.6 44.2 — — 157.2 46.5 35.0 11.5 169.8 48.7 35.4 13.3 182.4 50.8 36.8 14.0 195.0 52.6 38.6 14.0 207.6 54.3 40.5 13.8 220.2 55.9 42.4 13.5 232.8 57.4 44.1 13.3 245.4 58.7 45.5 13.2 258.0 60.0 46.8 13.2 表 2 离散元仿真模型参数
Table 2 Parameters of discrete element simulation model
项目 Items 参数 Parameter 数值 Value 土壤
Soil密度/(kg·m−3) 2650 泊松比 0.37 剪切模量/Pa 1.82×106 接触半径/mm 6.5 粘结半径/mm 6.77 秸秆
Straw密度/(kg·m−3) 241 泊松比 0.4 剪切模量/Pa 7×107 几何体
Geometry密度/(kg·m−3) 7850 泊松比 0.3 剪切模量/Pa 7.9×1010 土壤-土壤
Soil-soil恢复系数 0.363 静摩擦系数 0.422 滚动摩擦系数 0.282 土壤-秸秆
Soil-straw恢复系数 0.5 静摩擦系数 0.5 滚动摩擦系数 0.01 土壤-几何体
Soil- geometry恢复系数 0.422 静摩擦系数 0.584 滚动摩擦系数 0.266 秸秆-秸秆
Straw-straw恢复系数 0.28 静摩擦系数 0.54 滚动摩擦系数 0.05 秸秆-几何体
Straw- geometry恢复系数 0.3 静摩擦系数 0.6 滚动摩擦系数 0.01 表 3 试验因素水平
Table 3 Factor and levels table for test
水平
Levels曲柄转速
Crank rotation speed ω/ (r·min−1)前进速度
Forward speed vm/ (m·s−1)刃口角
Blade edge angle γ / (°)1 255 0.5 30 2 270 0.6 40 3 285 0.7 50 表 4 正交试验方案与结果
Table 4 Orthogonal experimental scheme and results
序号
No.A B C 空列Null Q1 Q2/N 1 1 1 1 1 331.50 483.43 2 1 2 2 2 276.25 479.28 3 1 3 3 3 232.74 538.28 4 2 1 2 3 351.00 462.38 5 2 2 3 1 287.50 520.30 6 2 3 1 2 246.43 507.36 7 3 1 3 2 370.50 508.47 8 3 2 1 3 308.75 491.12 9 3 3 2 1 262.38 486.09 Q1 k1 280.16 351.00 295.56 293.79 k2 294.98 290.83 296.54 297.73 k3 313.88 247.18 296.91 297.50 R 33.71 103.82 1.35 3.93 Q2 k1 500.33 484.76 493.97 496.61 k2 496.68 496.90 475.92 498.37 k3 495.23 510.58 522.35 497.26 R 5.11 25.82 46.44 1.76 注:A、B、C分别为曲柄转速ω、前进速度vm、刃口角γ的水平值。
Note: A, B and C are the levels of crank speed ω, forward speed vm and blade angle γ respectively.表 5 模型方差分析
Table 5 Model variance analysis
项目
Items方差
来源Source平方和
Sum of
squares自由度
Degree of
freedom均方
Mean
squareF P Q1 A 1713.33 2 856.67 58.62 0.0168 B 16303.48 2 8151.74 557.85 0.0018 C 2.94 2 1.47 0.10 0.9087 误差 29.23 2 14.61 综合 18048.98 8 Q2 A 41.57 2 20.78 8.751 0.1026 B 1000.90 2 500.45 210.73 0.0047 C 3287.94 2 1643.97 692.25 0.0014 误差 4.75 2 2.37 综合 4335.15 8 注:P<0.05为显著。
Note: P<0.05 is significant.表 6 田间试验结果
Table 6 Result of field test
试验指标
Experimental indicators安装往复
滑切刀Installed未安装往
复滑切刀
Not installed平均耕深Tillage depth/mm 201.2 200.7 耕深稳定性系数
Stability coefficient of tillage depth /%92.33 92.54 厢面平整度Seedbed surface evenness /mm 20.42 21.13 碎土率Clod crushing rate /% 85.33 84.79 秸秆埋覆率Straw burial rate /% 86.83 83.12 不同深度层秸秆质量占比
Proportion of straw quality
in each layers /%0~80 mm 55.21 74.35 80~160 mm 28.69 19.60 160~240 mm 16.10 6.05 不同长度范围的秸秆质量占比
Proportion of straw quality
in different length ranges /%<100 mm 38.42 21.33 100~200 mm 38.22 34.56 >200 mm 23.36 44.11 -
[1] 方放,王飞,石祖梁,等. 京津冀秸秆养分资源及秸秆焚烧气体污染物排放定量估算[J]. 农业工程学报,2017,33(3):1-6. doi: 10.11975/j.issn.1002-6819.2017.03.001 FANG Fang, WANG Fei, SHI Zuliang, et al. Quantitative estimation on straw nutrient resources and emission of pollutants from straw burning in Beijing-Tianjin-Hebei region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 1-6. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2017.03.001
[2] 张景源,杨绪红,涂心萌,等. 2014-2018年中国田间秸秆焚烧火点的时空变化[J]. 农业工程学报,2019,35(19):191-199. ZHANG Jingyuan, YANG Xuhong, TU Xinmeng, et al. Spatio-temporal change of straw burning fire points in field of China from 2014 to 2018[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(19): 191-199. (in Chinese with English abstract)
[3] LIU N, LI Y, CONG P, et al. Depth of straw incorporation significantly alters crop yield, soil organic carbon and total nitrogen in the North China Plain[J]. Soil and Tillage Research, 2021, 205: 104772. doi: 10.1016/j.still.2020.104772
[4] LI Y, SONG D, DANG P, et al. Combined ditch buried straw return technology in a ridge–furrow plastic film mulch system: Implications for crop yield and soil organic matter dynamics[J]. Soil and Tillage Research, 2020, 199: 104596. doi: 10.1016/j.still.2020.104596
[5] ZHANG S, REN T, YANG X, et al. Biochar return in the rice season and straw mulching in the oilseed rape season achieve high nitrogen fertilizer use efficiency and low greenhouse gas emissions in paddy-upland rotations[J]. European Journal of Agronomy, 2023, 148: 126869
[6] 康艳,廖庆喜,林建新,等. 基于联合收获机平台的覆秸式油菜联合播种机研制[J]. 农业工程学报,2024,40(9):15-25. KANG Yan, LIAO Qingxi, LIN Jianxin, et al. Development of the rapeseed direct seeding machine with stubble covering based on combined harvesting machine platform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(9): 15-25. (in Chinese with English abstract)
[7] 刘国阳,夏俊芳,郑侃,等. 振动横挡阻隔式旋耕防粘结刀辊设计与试验[J]. 农业工程学报,2022,38(23):29-40. LIU Guoyang, XIA Junfang, ZHENG Kan, et al. Design and experiments of the barrier type rotary anti-adhesion blade roller with vibration crosspiece[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(23): 29-40. (in Chinese with English abstract)
[8] 魏国粱,张青松,刘立超,等. 犁旋组合式油菜直播机扣垡装置设计与试验[J]. 农业机械学报,2020,51(6):38-46. WEI Guoliang, ZHANG Qingsong, LIU Lichao, et al. Design and experiment of plowing and rotary tillage buckle device for rapeseed direct seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 38-46. (in Chinese with English abstract)
[9] 廖庆喜,林建新,张青松,等. 稻油轮作区铲锹式油菜直播种床整备机设计与试验[J]. 农业机械学报,2022,53(10):26-35. doi: 10.6041/j.issn.1000-1298.2022.10.003 LIAO Qingxi, LIN Jianxin, ZHANG Qingsong, et al. Design and experiment of shovel type seedbed preparation machine suitable for rapeseed direct seeding[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(10): 26-35. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2022.10.003
[10] 林建新,廖庆喜,张青松,等. 油菜机械直播铲锹式种床整备机振动特性分析与结构改进[J]. 农业工程学报,2023,39(19):39-48. LIN Jianxin, LIAO Qingxi, ZHANG Qingsong, et al. Vibration characteristics analysis and structural improvement of the shovel type seedbed preparation machine suitable for rapeseed mechanical direct seeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(19): 39-48. (in Chinese with English abstract)
[11] 何瑞银,段庆飞,陈信信,等. 旋耕还田秸秆空间分布质量离散元分析[J]. 农业机械学报,2022,53(6):44-53. HE Ruiyin, DUAN Qingfei, CHEN Xinxin, et al. DEM analysis of spatial distribution quality of rotary tillage straw returning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 44-53. (in Chinese with English abstract)
[12] 徐高明,汪小旵,何瑞银,等. 基于复合指标与测试技术的旋耕秸秆还田质量评价研究[J]. 农业机械学报,2022,53(2):58-67. XU Gaoming, WANG Xiaochan, HE Ruiyin, et al. Performance evaluation of rotary tillage straw returning based on composite indicators and measurement techniques[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 58-67. (in Chinese with English abstract)
[13] LATIFMANESH H, DENG A, LI L, et al. How incorporation depth of corn straw affects straw decomposition rate and C&N release in the wheat-corn cropping system[J]. Agriculture, Ecosystems & Environment, 2020, 300: 107000.
[14] 宋洁,李志洪,赵小军,等. 秸秆还田对土壤微团聚体特征的影响[J]. 水土保持学报,2018,32(5):116-120. SONG Jie, LI Zhihong, ZHAO Xiaojun, et al. Effects of straw returning on soil micro-aggregate characteristics[J]. Journal of Soil and Water Conservation, 2018, 32(5): 116-120. (in Chinese with English abstract)
[15] 周华,李栋,刘政源,等. 秸秆旋埋还田后空间分布效果仿真与试验[J]. 农业机械学报,2019,50(9):69-77. ZHOU Hua, LI Dong, LIU Zhengyuan, et al. Simulation and experiment of spatial distribution effect after straw incorporation into soil by rotary burial[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9): 69-77. (in Chinese with English abstract)
[16] 徐高明,丁启朔,汪小旵,等. 秸秆-土壤-旋耕机交互下秸秆位移与埋覆效果研究[J]. 农业机械学报,2022,53(7):23-29. XU Gaoming, DING Qishuo, WANG Xiaochan, et al. Analysis of straw displacement and burying effect in straw-soil-rotary tiller interaction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 23-29. (in Chinese with English abstract)
[17] ZHOU H, ZHANG C L, ZHANG W L, et al. Evaluation of straw spatial distribution after straw incorporation into soil for different tillage tools[J]. Soil and Tillage Research, 2020, 196: 104440.
[18] 王金峰,张鑫,唐汉,等. 水稻秸秆反旋深埋滑切还田刀优化设计与试验[J]. 农业机械学报,2021,52(11):28-39. WANG Jinfeng, ZHANG Xin, TANG Han, et al. Optimal design and experiment of deep-buried reverse rotating sliding cutting straw returning blade[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(11): 28-39. (in Chinese with English abstract)
[19] 廖庆喜,谢昊明,张青松,等. 驱动圆盘犁与双刃型旋耕刀组合式耕整机设计与试验[J]. 农业机械学报,2023,54(7):99-110. LIAO Qingxi, XIE Haoming, ZHANG Qingsong, et al. Design and experiment of driven disc plow and double-edged rotary tillage combined tiller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 99-110. (in Chinese with English abstract)
[20] 曾熠,蒋啸虎,吴明亮,等. 基于DEM-MBD的油茶林分层切抛式开沟刀组研制[J]. 农业工程学报,2024,40(8):30-42. ZENG Yi, JIANG Xiaohu, WU Mingliang, et al. Development of the layered cut and throw ditching blade groups for oil tea forest based on DEM-MBD[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(8): 30-42. (in Chinese with English abstract)
[21] 赵淑红,刘佳明,赵国鹏,等. 侧深施肥直斜偏置式免耕播种开沟器设计与试验[J]. 农业工程学报,2024,40(11):26-37. ZHAO Shuhong, LIU Jiaming, ZHAO Guopeng, et al. Design and experiment of the straight oblique offset no-tillage sowing furrow opener with side deep fertilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(11): 26-37. (in Chinese with English abstract)
[22] 赵智豪,吴明亮,谢双鹏,等. 土壤-水稻前茬离散元仿真参数标定及其旋耕轨迹分析[J]. 农业工程学报,2024,40(7):72-82. ZHAO Zhihao, WU Mingliang, XIE Shuangpeng, et al. Parameter calibration for the discrete element simulation of soil-preceding rice stubble and its rotary tillage trajectory[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(7): 72-82. (in Chinese with English abstract)
[23] 西涅阿科夫,潘诺夫,李清桂. 土壤耕作机械的理论和计算[M]. 北京:中国农业机械出版社,1981. [24] 张学宁,尤泳,王德成,等. 基于离散元法的板结草地破土切根刀优化设计与试验[J]. 农业机械学报,2022,53(11):176-187. doi: 10.6041/j.issn.1000-1298.2022.11.017 ZHANG Xuening, YOU Yong, WANG Decheng, et al. Design and experiment of soil-breaking and root-cutting cutter based on discrete element method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(11): 176-187. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2022.11.017
[25] 钱君,马少春,徐杨,等. 滑剪组合式甘蔗根切装置的设计与试验[J]. 农业工程学报,2023,39(10):37-47. doi: 10.11975/j.issn.1002-6819.202302124 QIAN Jun, MA Shaochun, XU Yang, et al. Design and test of sliding shear combined sugarcane basecutter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(10): 37-47. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202302124
[26] WANG X Z, ZHANG S, PAN H B, et al. Effect of soil particle size on soil-subsoiler interactions using the discrete element method simulations[J]. Biosystems Engineering, 2019, 182: 138-150. doi: 10.1016/j.biosystemseng.2019.04.005
[27] CHENG J, XIA J F, ZHENG K, et al. Construction and analysis of a discrete element model for calculating friction resistance of the typical rotary blades[J]. Computers and Electronics in Agriculture, 2023, 214: 108303. doi: 10.1016/j.compag.2023.108303
[28] DU J, HENG Y, ZHENG K, et al. Investigation of the burial and mixing performance of a rotary tiller using discrete element method[J]. Soil and Tillage Research, 2022, 220: 105349. doi: 10.1016/j.still.2022.105349
[29] ZHAO W J, CHEN M, XIE J, et al. Discrete element modeling and physical experiment research on the biomechanical properties of cotton stalk[J]. Computers and Electronics in Agriculture, 2022, 204: 107502.
[30] LIU Y B, LI Y M, ZHANG T, et al. Effect of concentric and non-concentric threshing gaps on damage of rice straw during threshing for combine harvester[J], Biosystems Engineering, 2022, 219: 1-10.
[31] TANG H, XU W L, ZHAO J L, et al. Comparison of rice straw compression characteristics in vibration mode based on discrete element method[J]. Biosystems Engineering, 2023, 230: 191-204. doi: 10.1016/j.biosystemseng.2023.04.009
[32] 郝志豪,郑恩来,李勋,等. 免耕播种机旋耕刀耕作性能分析与结构优化[J]. 农业工程学报,2023,39(2):1-13. doi: 10.11975/j.issn.1002-6819.202209196 HAO Zhihao, ZHENG Enlai, LI Xun, et al. Performance analysis of the soil-contacting parts for no-tillage planters and optimization of blade structure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(2): 1-13. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202209196
-
期刊类型引用(4)
1. 郭俊杰,郭正红. 基于深度置信网络的旋转机械在线故障诊断. 计算机测量与控制. 2025(01): 60-68 . 百度学术
2. 刘喜庆,张文豪,潘真真. 基于DAL的工业机器人RV齿轮箱故障识别分析. 现代工业经济和信息化. 2024(09): 217-219 . 百度学术
3. 高国泽,郭瑜,赵博涵,王红伟. 基于瞬时角速度信号窄带解调的RV减速器针齿故障检测. 振动与冲击. 2024(22): 155-161+208 . 百度学术
4. 孙长胜,曹浩男. 基于VMD和CNN方法的电机传动系统故障诊断研究. 机械管理开发. 2024(12): 75-77 . 百度学术
其他类型引用(1)