Design and experiment of paper chain pot nursery booklet making machine
-
摘要:
纸质链钵育苗移栽是一种起源于日本的轻简高效作物育苗移栽技术。针对国产链钵育苗册制册技术及设备缺乏、育苗册长期依赖进口的问题,该研究提出一种集涂胶、压痕、走纸、折叠等环节的链钵育苗册制册方案,在阐述六边形截面钵体链钵育苗册制册原理的基础上,运用电机与气动元件驱动各工作部件协调动作的方式,设计了一套能自动实现链式育苗钵成型及集合成册的小型链钵育苗册制册机样机。通过涂胶装置、压痕装置、走纸装置和折叠收纸装置等关键部件的设计分析,确定了相关结构参数,并进一步设计了自动化运行的控制系统。基于样机的完整制册试验结果表明,当制册效率为60册/h、链钵长度在12.16~21.28 m时,平均合格率为91.55% ;使用所制链钵育苗册育苗发芽率为96.21%,幼苗长势良好,可被轻松拖拽并展开成链,满足育苗与轻简化自动移栽的要求。
Abstract:Seedling transplanting with paper chain pots has been one of the most efficient and sustainable crop cultivations, in order to reduce the environmental impact, simple transplantation, and high seedling survival rate. The stronger seedling root system can be realized to promote multiple crop cultivation, land replanting index, and crop yield in high-yield and efficient agriculture, compared with traditional cultivation. However, it is still lacking in the equipment of paper chain pot, in order to fully meet the large-scale production in recent years. In this study, a booklet-making machine was developed to automatically fabricate the paper chain pots. Key processes were also integrated, such as gluing, indentation, paper feeding, and folding, in order to meet the agronomic needs of transplanting seedlings in various crops. A cost-effective solution was then provided for the production. Firstly, a prototype of a paper chain pot nursery booklet-making machine was designed, according to the hexagonal cross-section bowl chain seedling booklet. The motors and pneumatics were combined to drive the coordinated action of various working components. The formation and assembly of chain pots into booklets were realized to significantly reduce manual labor and production costs. Structural parameters were determined to optimize the key components. Among them, the glue coating device was used for the precise adhesive application; The indentation device was used to create the necessary indentation for folding and formation; The paper feeding device was to drive the movement of the paper through the machine; The folding paper collection device was assembled the chain pots into a booklet format. In addition, an operation control system was designed with various functions, such as one-touch start/stop, commissioning, cleaning, and operating instructions. An STM32 microcontroller was selected as the control core, in order to coordinate the movement of all components. As such, each device was optimized using the correct program during production. The working performance tests were carried out on the prototype of the machine using water-soluble adhesive, water-resistant adhesive, and nursery paper. The complete working test of making booklet results show that the average pass rate was 91.55% when the working efficiency was 60 copies/h and the chain bowl length was between 12.16 and 21.28 m. By contrast, the accuracy of paper feeding remained at a low level at different candidate job speeds, with a slip rate below 0.23%. The seedling experiment with the oilseed rape and tomato showed that the germination rate of seedlings with the made paper chain pot nursery booklet was 96.21%, indicating better seedlings growth. The paper chain pot nursery booklet can be easily dragged and unfolded into chains before transplanting, fully meeting the requirements of seedling cultivation and lightweight automatic transplantation. The performance indicators also met the requirements of the paper chain pot nursery booklet making, in order to effectively save manual labor and production costs for high efficiency. This research can provide new ways to realize mechanization and automation during transplanting.
-
Keywords:
- transplanting /
- seedling /
- paper chain pot /
- nursery booklet /
- booklet making machine
-
0. 引 言
育苗移栽是一种重要的作物种植方式,具有克服作物苗期低温灾害、化解气候原因或连作种植模式造成的用地及生育期茬口矛盾等优点[1-2]。钵体苗移栽,更是具有种苗根系发达、移栽成活率高等优点[3]。育苗容器是育苗移栽过程中不可或缺的基础设施,是实现高效移栽的基础[4],可为作物幼苗提供独立适宜的生长环境,具有种苗根系健壮成团、定植成活率高、移栽后缓苗期短、生长快、苗相齐等优势[5],为农作物的健康生长和高效移栽提供了保障。
根据材质不同,常见育苗容器包括塑料育苗盘、纸质育苗钵、无纺布育苗钵与有机质育苗钵等[6]。塑料育苗钵具有成本低廉、质量轻、耐用性强、易于清洁和消毒等优势,其制造主要通过热压成型、吹塑成型等方法,如GTMSMART公司研制的塑料育苗盘制造机可实现送料、压制、成型、脱模和码垛等制钵过程全自动,但移栽过程需要将幼苗从育苗钵中脱模取出,易伤苗损根,影响作物生长,同时大量塑料废弃物对土壤造成严重影响,回收利用率低,且不易降解[7-8];无纺布育苗钵具有透水性好、毛细根系更密集,有效防止根腐病等优势,其制造通过热压封边或缝合技术,如浙江正信机械公司研制的ZX-350型育苗袋无纺布制袋机,制钵效率达30~150 个/min,但不易回收;有机质育苗钵材料来源广泛、成本低、透气性和保水性好、有机可降解,可使用稻壳、秸秆、牛粪等农副产品通过模压成型等技术制成,如刘德军等运用玉米秸秆、牛粪等原材料,经粉碎后混合压制行成育苗种坨,但机械强度低,湿润环境下容易软化分解,不适合长时间育苗[9-12]。纸质育苗钵具有环保可降解、透气性好等优势,东莞恩茁科技公司研制的AGIB纸钵机采用抽负压吸料方式将基质填充育苗纸腔内部,形成不同规格育苗钵[13-15]。然而上述研究制造的育苗钵彼此独立、材料复杂,造成育苗及移栽过程难运输、难供苗和易散落等问题从而限制该技术的发展。
不同于独立育苗钵,国外出现一种新型链式育苗钵,育苗后期可呈链状有序展开,实现连续高速供苗,为实现轻简高效自动化移栽提供了一种新思路。最具有代表性的有日本甜菜制糖株式会社开发研制的正六边形截面链式育苗钵,移栽时可拖拽成链状有序展开,适合株距较小且固定的大葱类作物与小型农户分散操作和碎片化土地的种植[16-17]。美国PlantTape公司则推出一种矩形截面链式钵体工厂化育苗技术,配合专用移栽机,可实现大株距作物的高速断链移栽,但链式钵体制备及育苗生产线仅适合大型农场的规模化种植[18]。国内学者也针对链式育苗钵进行了相关研究,如韩霞等[19-20]针对番茄链式纸钵苗设计了分离机构,可实现高速、有序、高效分离。综上,链式育苗钵为实现育苗移栽技术逐步向省力、无人化方向发展提供一种新思路,但国内针对其制造装置鲜有研究,自动化链式育苗钵制备装置仍是亟需攻克的核心技术。
基于上述分析,本文针对国产链钵育苗册制册技术及设备缺乏、育苗册长期依赖进口等问题,提出一种储运时聚合成册、育苗时成蜂巢状平面聚焦分布、移栽时可成链状连续有序分离的纸质育苗册制备技术,自主设计并试制验证一种小型纸质链钵育苗册制册机。
1. 链钵育苗册制册原理
链钵育苗移栽技术广泛应用于蔬菜等各类经济作物的种植[21-22]。日本的正六边形截面链钵育苗册,其聚合成册图和撑开及成链展开示意图如图1所示。
对展链过程中的纸张走势分析可知,该链钵育苗册由2条育苗纸经两种不同类型的环保胶水按一定规律粘合而成。因此制册机要实现的基本功能是:通过自动化手段运用耐水性胶(water-resistant glue,WRG)涂胶装置将2条高强度育苗纸粘合成双层育苗纸,再通过水溶性胶(instant-soluble glue,ISG)涂胶装置和折叠收纸装置将双层育苗纸进一步呈“Z”字型折叠压制,形成育苗前可折叠存储或运输,育苗时成蜂巢状平面聚集分布,移栽时可成链状有序展开的链钵育苗册,实现连续稳定高速供苗,钵体稳定不易散落,移栽后可自然降解。
制册前,首先根据作物幼苗根茎及农艺要求确定正六边形截面育苗钵外接圆半径和边长R、育苗册行数m及每行钵数n1,育苗册宽度w1=(4n1+1)×R,复合指数n2 = ⌊(W−2w2)/H⌋,其中W为育苗原纸宽度,H为链钵高度,w2为单侧预留宽度。运用链钵育苗册制册机耐水性胶(在湿润土壤中约60~80 d后逐步降解的环保型胶水)涂胶装置在距离育苗原纸A端头0.5× R +b∙w1、1.5× R +b∙w1、(1.5+4×1) × R +b∙w1、(1.5+4×2) × R +b∙w1、(1.5+4×3) × R +b∙w1、……、[1.5+4×(n1-1)] × R +b∙w1处涂制宽度为a的耐水性胶水,其中b = [0, 1, 2,…, (m-1)]。在育苗纸A表面覆盖相同宽度的育苗纸B并压紧粘合,得到耐水性胶粘合的双层育苗纸,运用水溶性胶(在湿润土壤中迅速溶、降解的环保型胶水)涂胶装置在双层育苗纸的上表面和下表面涂制水溶性胶水,并将耐水性胶粘合的双层育苗纸以链钵育苗册宽度w1呈“Z”字型折叠,压制获得复合指数为n2的链钵育苗册;最后,沿横向将链钵育苗册按链钵高度H均匀等分切割,获得n2个链钵育苗册。本文将以链钵高度为30 mm,外切正六边形边长为15.2 mm,每行钵数n1为6,育苗原纸宽度为450 mm为实例进行阐述。
2. 链钵育苗册制册机总体结构与工作原理
2.1 总体结构方案
链钵育苗册制册机运用电机与气动执行元件,自动化完成制册过程中的涂胶、压痕、走纸和折叠等工序,有效解决当前国内链钵育苗册制册所面临的劳动强度高、定位精度低、钵体规格不一致以及自动化制册技术与设备匮乏等难题。整机结构如图2所示,包括涂胶装置、压痕装置、走纸装置、折叠收纸装置等。
2.2 工作原理
链钵育苗册制册机启动后,育苗纸A在走纸装置驱动作用下从供纸辊处出发,在导向辊的作用下,运移至耐水性胶涂胶装置时暂停;耐水性胶涂胶装置沿垂直于走纸方向平面运动,回吸式点胶阀开始涂胶;耐水性胶涂胶完成后,育苗纸B从供纸辊出发,覆盖在育苗纸A表面,育苗纸A、B在走纸装置作用下经过压紧装置形成耐水性胶粘合的双层育苗纸;虚线切割刀随压痕桁架从育苗纸表面滚过,形成虚线穿孔式压痕;随即经两水溶性涂胶装置交替作业,分别在育苗纸B上表面及育苗纸A上表面进行水溶性胶涂胶;折叠导向装置在动力装置驱动下在水平方向做往复运动,与挡纸装置相互配合,使双层育苗纸呈“Z”形堆叠,并经压纸辊压制,使其于水溶性涂胶点粘合;重复上述工作直至制成目标规格宽幅链钵育苗册。走纸原理如图3所示。
图 3 链钵育苗册制册机走纸原理图1.挡纸装置 2.收纸装置 3.折叠导向装置 4.走纸装置 5.水溶性涂胶装置A 6.导向辊 7.水溶性胶涂胶装置B 8.压痕装置 9.耐水性胶涂胶装置 10.供纸辊A 11.整机机架 12.供纸辊BFigure 3. Schematic diagram of paper feeding principle of chain pots nursery booklet making machine1. Paper stopping device 2. Paper collection device 3. Direction-guiding device of folding 4. Paper feeding device 5. ISG coating device A 6. Guide roller 7. ISG coating device B 8. Indentation device 9. WRG coating device 10. Paper supply roller A 11. Machine frame 12. Paper supply roller B3. 关键部件设计
3.1 涂胶装置
涂胶装置是链钵育苗册制册机的重要组成部分,其作用是完成链钵育苗册制册过程中耐水性胶与水溶性胶的涂制。现有纸张涂胶装置多采用喷涂法与滚涂法,喷涂法涂胶具有涂胶精度高,易控制等优势,但仅适用于黏度较小的胶水;滚涂法具备涂胶均匀,效率高等优势,但难以实现间断式精准涂胶[23-24]。本文根据耐水性胶和水溶性胶的物理特性设计一种适用于中等黏度,易实现精准涂胶的涂胶装置。
3.1.1 涂胶装置工作原理
涂胶装置主要由空气压缩机、供胶桶、控制系统和回吸式点胶阀组成。涂胶作业前,空气压缩机启动,排气口通过管道与供胶桶连接,供胶桶内形成正压,将胶水压至与点胶阀连接的料管中。涂胶作业开始时,控制系统控制电磁阀作业驱动点胶阀活塞向下运动,胶水流出经过涂胶毛刷均匀涂至涂胶点位,涂胶作业结束时,活塞向上运动,胶水回吸精准停胶。
3.1.2 耐水性胶涂胶装置
耐水性胶涂胶装置结构如图4a所示,主要包括回吸式点胶阀、双孔排胶装置、涂胶毛刷、桁架。回吸式点胶阀固定于桁架上,制册过程中,耐水性胶涂胶装置沿垂直于走纸方向平面往复运动,胶水以一定流量沿供胶管路输送到胶刷,并通过刷毛均匀涂覆于耐水性胶涂胶点。
3.1.3 水溶性涂胶装置
水溶性涂胶装置结构如图4b所示,主要包括回吸式点胶阀、四孔排胶装置、涂胶毛刷、桁架、光轴。回吸式点胶阀固定于桁架上,制册过程中,桁架在直线推杆的驱动下上下往复运动,控制涂胶毛刷与育苗纸的接触与分离,实现水溶性胶间歇式精准涂胶。
3.2 压痕装置
链钵育苗册制册过程中育苗纸需在折叠位置精准折叠,且在使用过程中育苗册在外力作用下自然成钵。为提高制册过程的折叠精度及使用过程的成钵精度,设计如图5所示压痕装置,其主要由虚线切割刀、刀架、滚珠丝杆、光轴组成。压痕过程中,步进电机驱动滚珠丝杆作业带动压痕装置沿垂直走纸方向与耐水性胶涂胶装置同步往复移动,于双层育苗纸表面沿耐水性胶涂胶点两侧滚压形成虚线穿孔式压痕。
图 5 压痕装置结构示意图1. 光轴 2. 滚珠丝杆 3. 桁架 4. 虚线切割刀架 5. 虚线切割刀 6. 限位装置 7. 压痕底板1. Plain shaft 2. Ball screw 3. Truss 4. Blade holder 5. Dashed cutter blade 6. Limiting device 7. Indentation base plate注:W1为相邻压痕间距,mm;W2为压痕宽度,mm;W3为限位装置宽度,mm;H1为限位装置高度,mm。Figure 5. Schematic diagram of indentation device structureNote: W1 is the distance between adjacent indentations, mm; W2 is the width of the indentation, mm; W3 is the width of the limiting device, mm; H1 is the height of the limiting device, mm.压痕过程虚线切割刀刃口任意一点沿摆线运动(如图6所示),根据作业过程将压痕分为压入阶段与分离阶段,压入阶段纸张受力为
图 6 压痕过程育苗纸受力分析注:F1为压入阶段虚线切割刀对育苗纸的压力,N;F2为分离阶段虚线切割刀对育苗纸的粘附力,N;f1和f2为压痕底板对育苗纸的摩擦力,N;FN1和FN2为压痕底板对育苗纸的支持力,N;α1为F1与水平方向的夹角,(°);α2为F2与水平方向的夹角,(°);m1为受力点育苗纸质量,kg;w1为虚线切割刀角速度,rad·s−1。Figure 6. Force analysis of nursery paper during indentation processNote: F1 is the pressure of the dashed cutter blade on the nursery paper in the indentation stage, N; F2 is the adhesion force of the dashed cutter blade on the nursery paper in the separation stage, N; f1 and f2 are the friction force of the indentation base plate on the nursery paper, N; FN1 and FN2 are the support force of the indentation base plate on the nursery paper, N; α1 is the angle of F1 with the horizontal direction, (°); α2 is the angle of F2 with the horizontal direction, (°); m1 is the mass of nursery paper at the point of force, kg; w1 is angular speed dashed cutter blade, rad·s−1.{∑Fx=F1cosα1−f1=m1dvxdt∑Fy=FN1+F1sinα1−m1g=m1dvydt (1) 式中Fx和Fy分别为育苗纸在水平与竖直方向的合力,N; vx和vy分别为育苗纸在水平方向与竖直方向的速度,m·s−1。
分离阶段纸张受力为
{∑Fx=F2sinα2−f2=m1dvxdt∑Fy=FN2−F2cosα2−m1g=m1dvydt (2) 压痕过程中压入阶段育苗纸受压痕刀预压力F1随压痕深度增加逐步增大,当压痕刀施加的水平方向分力大于压痕底板施加的摩擦力f1时,育苗纸易发生滑移现象,因此在压痕底板两侧安装限位装置,其宽度与育苗原纸宽度相同,即W3 = 450 mm;压痕结束后,当压痕刀与育苗纸分离时的粘附力F2垂直分力大于育苗纸自身重力时,育苗纸易发生垂直方向运移而造成褶皱现象,因此在压痕底板上方安装限位装置,限位高度H1 = 2 mm。
链钵育苗册撑开成型过程中,育苗纸沿耐水性胶水外边缘折弯形成正六边形截面,故设置压痕宽度与涂胶宽度相等,本文压痕宽度W2 = 15.2 mm,两压痕间距W1 = 45.6 mm。
3.3 走纸装置
走纸装置是制册过程中育苗纸前进的动力装置,制册过程走纸装置间歇停顿式运行实现定距走纸,控制耐水性胶涂胶装置与水溶性胶涂胶装置落胶点,其稳定性直接影响制册精度。现有走纸装置多采用纸带直接围绕驱动辊圆周,驱动辊旋转拖动纸带前进,因工作过程中驱动辊直径不断增加,难以实现恒速定距走纸[25]。本文设计一种对置走纸辊夹持进给式恒速定距走纸装置。
3.3.1 走纸装置工作原理
走纸装置结构如图7所示,主要由链轮、防粘走纸辊和轴承座等组成。两个对置的防粘走纸辊相互挤压,链轮驱动防粘走纸辊转动,以育苗纸与防粘走纸辊之间的摩擦力为动力,驱动育苗纸前进。
图 7 走纸装置结构示意图1.链轮 2.防粘走纸辊 3.轴承座 4.水溶性胶水 5.育苗纸1. Sprocket 2. Anti-stick paper feeding roller 3. Bearing seat 4. ISG 5. Nursery paper注:W4、W5、H2分别为防粘走纸辊凸起宽度、凹陷宽度和凸起高度,mm。Figure 7. Structure diagram of paper feeding deviceNote: W4, W5 and H2 are the convex width, the concave width and the convex height of the anti-stick paper feeding roller, respectively, mm;3.3.2 走纸装置结构设计与参数分析
走纸装置置于水溶性胶涂胶装置之后,走纸装置对胶水挤压易使双层粘合育苗纸表面胶水运移导致涂胶点位胶水量不足,非涂胶点位有残留胶水,本文根据涂胶特点及成册要求设计一种防粘走纸辊,其特点是防粘走纸辊由排列整齐的凸起装置均匀分布,走纸过程中,凸起装置作用于非涂胶点位,驱动育苗纸前进。根据成册后链钵高度为30 mm,胶水落在育苗纸上的宽度为15.2 mm,高度为0.8~1.5 mm,确定凸起部分间距W4 = 30 mm;凸起部分宽度W5 = 30 mm,高度H2 = 4 mm。
走纸装置作业精度直接影响涂胶位置与压痕位置精度[26],为确保其在作业过程中不与育苗纸发生相对滑动,对其进行动力学分析,以驱动走纸辊中心为坐标原点,建立直角坐标系,忽略育苗纸自身重力,其简化模型如图8所示。
图 8 走纸装置受力分析注:Ff1、Ff2为AB段走纸辊为育苗纸提供的摩擦力,N;Ft1、Ft2为育苗纸所受的拉力,N;m3为育苗纸质量,kg;H3为两个走纸辊之间的中心距,mm;β为AB段所对应的圆心角,rad;θ为OA与水平方向夹角,rad;A、B点为走纸辊变形区临界位置;C点为育苗纸与走纸辊接触临界位置;w2为链轮转动角速度,rad·s−1。Figure 8. Force analysis of paper feeding deviceNote: Ff1 and Ff2 are the friction force provided by the paper feeding rollers for the nursery paper in section AB, N; Ft1 and Ft2 are the tension force applied to the paper tape, N; m3 is the quality of the paper tape, kg; H3 is the center distance between the two paper-walking rollers, mm; β is the angle of the circle corresponding to the AB segment, rad; θ is the angle between the OA/OB and the horizontal direction, rad; A and B are the critical position of the deformation zone of the paper feeding roller; C is the critical position of the contact between the nursery paper and the paper feeding roller; w2 is the angular speed of the sprocket wheel, rad•·s−1.{F=m3dvdtF=Ff1+Ff2+Ff3−Ft1 (3) 式中 F为育苗纸在走纸过程中所受的合力,N;v为育苗纸运动速度,m·s-1;Ff3为BC段走纸辊为育苗纸提供的摩擦力,N。
AB段走纸辊为育苗纸提供的摩擦力为
Ff1=Ff2=∫μδ2Bdx=2μEBR1sinβ2∫0√R12−x2−R1cosβ2√R12−x2dx (4) 式中μ为走纸辊与育苗纸之间的摩擦系数;E为走纸辊弹性模量,Pa;δ2为走纸辊垂直方向的应力,Pa;B为走纸辊长度,mm;R1为防粘走纸辊半径,mm;dx为AB段任意微元水平方向长度,mm。
BC段下走纸辊为育苗纸提供的摩擦力计算过程为
{sindθ12=dN(T+dT)cosdθ12=Tcosdθ12+μdN (5) 式中θ1为BC段任意微元上所对应的角度,(°);T为BC段任意微元受到靠近C端一侧的张力,N;T+dT为BC段任意微元受到靠近B端一侧的张力,N。
因dθ1很小,有:
sindθ12≈dθ12cosdθ12≈1 (6) 忽略高阶无穷小量,消去dN,积分求解得:
T=Ft2eμθ1 (7) 式中θ1指任意微元位置,θ1=θ时,式(7)表示B端的拉力TB,θ1=0时,式(7)表示C端的拉力TC。
Ff3=TB−TC=Ft2(eμθ−1) (8) 整理得:
F=4μEBR1(sinβ2−β2cosβ2)+Ft2eμθβ=arctanlABH3 (9) 式中lAB为AB段长度,mm;R1为防粘走纸辊半径,mm。
由式(9)可得,走纸装置提供的驱动力与防粘走纸棍表面摩擦系数、弹性模量、走纸辊长度成正比。由于Ft2由育苗纸重力提供,Ff1远大于Ff3,优先考虑β对驱动力的影响,即驱动力与防粘走纸棍安装中心距成反比。静摩擦系数μ通过斜面法测得,取0.5。通过计算与预试验,确定防粘走纸棍表面材料为聚氨酯,弹性模量为18 GPa,走纸辊长度为450 mm,对置防粘走纸棍安装中心距为44 mm。
为验证不同走纸速度下的走纸精度,以滑移率Δh为评价指标[27],计算式为
Δh=(l1−l2)l1×100% (10) 式中l1为理论走纸长度,mm;l2为实际走纸长度,mm。
拟定5组不同走纸速度,并通过驱动电机理论转速计算防粘走纸辊理论转速与理论走纸长度,通过试验测量得到不同速度下实际走纸长度,每次试验时长60 s,每个速度水平重复3次试验取平均值,结果如图9所示。
由图9可知在多种工作速度下,走纸滑移率低于0.23%,满足链钵育苗册制册机走纸要求。
3.4 折叠收纸装置
折叠收纸装置将表面粘有水溶性胶水的双层育苗纸呈“Z”字型有序堆叠并固定于收纸底板上形成宽幅链钵育苗册。其结构如图10所示,主要包括防粘走纸棍、轴承座、柔性伸缩杆、收纸板和挡纸装置,其中挡纸装置由纵向移动装置、横向移动压纸片、直线推杆等组成,挡纸装置分别固定于收纸板前端与后端两侧。
图 10 折叠收纸装置结构示意图1.防粘走纸辊 2.光轴组件 3. 柔性伸缩杆 4.压纸辊 5.收纸板 6.挡纸装置 7.机架 8.柔性伸缩杆 9.横向移动压纸片 10.固定板 11.直线推杆 12. 纵向移动装置 13.直线滑轨组件 14.无杆气缸Figure 10. Structure diagram of paper folding and collecting device1. Anti-adhesive paper feeding roller 2. Optical axis 3. Flexible telescopic rod 4. Paper pressure roller 5. Paper collection base plate 6. Stopping paper device 7. Frame 8. Flexible telescopic rod 9. Laterally moving paper plate 10. Fixed plate 11. Linear actuator 12. Longitudinal moving device 13. Linear slide rail 14. Rodless cylinder工作过程如图11所示,电机驱动滚珠丝杆带动折叠导向装置在光轴上水平往复运动,表面附着有水溶性胶的双层育苗纸从防粘导向辊之间穿过,在折叠导向装置的带动下呈“Z”形堆叠在收纸板上,前端两侧挡纸装置与后端两侧挡纸装置交替运行,在耐水性胶粘合的双层育苗纸两端折弯处对向伸出横向移动压纸片,使耐水性胶粘合的双层育苗纸两端沿折弯处固定于收纸板上,收纸板随链钵育苗册厚度增加沿柔性伸缩杆向下移动。固定于柔性伸缩杆末端的压纸辊沿链钵育苗册上表面随折叠导向装置滚动,使堆叠的双层育苗纸沿水溶性涂胶点粘合形成链钵育苗册。
图 11 折叠收纸装置工作原理与受力分析图注:Fa为压纸辊所受前进方向的阻力,N;Fb为垂直方向载荷,N;Fc为收纸板所受向上的弹力,N;δ为压纸辊单位面积所受的径向育苗纸反作用力,N;Z为育苗纸压缩量,mm;Z0为育苗纸最大压缩量,mm;r0为压纸辊半径,mm;α和α0分别为育苗纸压缩量Z和Z0对应的圆心角,(°);x为压纸辊δ作用点的x轴方向坐标。Figure 11. Working principle and force analysis diagram of paper folding and collecting deviceNote: Fa is the resistance in the forward direction of the pressure roller, N; Fb is the vertical load, N; Fc is the upward elastic force of the paper take-up paper, N; δ is the radial nursery paper force per unit area of the pressure roller. Reaction force, N; Z is the compression amount of nursery paper, mm; Z0 is the maximum compression amount of nursery paper, mm; r0 is the radius of the paper roller, mm; α and α0 are the central angles corresponding to the compression amount Z and Z0 of the nursery paper, respectively. (°); x is the x-axis coordinate of the platen roller δ action point.为确定折叠收纸装置工作参数,对压纸辊作业模型进行动力学分析[28],其作业过程受力如图11b所示。
压纸辊所受前进方向的阻力为
Fa=α0∫0δsinαdα (11) 其中:
δ=B0pr0dα=B0kznr0dα (12) sinα=dz/r0dα (13) 式中z为任意微元的压缩量,mm;p为被作业区域抗压强度,kPa。
整理得:
Fa=kB0∫Z00zndz=kB0Zn+10n+1 (14) 式中B0为压纸辊的宽度,mm;k为被作业区域的弹性模量,Pa;n为被作业区域变形指数。
同理,压纸辊所受垂直方向的阻力为
Fb=∫α00δcosαdα+Fc=kB0∫x0zndx+Fc (15) 其中:
x=√r20−[r0−(Z1−z)]2 (16) Fc=ΔlsGsd4sNn8D3mNs (17) 式中∆ls 为弹簧变形量,mm;Gs为弹簧钢剪切模量,Pa;ds为弹簧线径,mm;Dm为弹簧中径,mm;Ns为弹簧有效圈数。Nn为弹簧个数。
整理得:
Fb=√2r0kB0(3−n3Z2n+120)+ΔlsGsd4sNn8D3mNs (18) 根据上述分析,压纸辊作业过程中所受阻力与压纸辊宽度、压纸辊直径和弹簧弹性参数有关,综合考虑制册要求及加工工艺,确定压纸辊直径为38 mm,宽度为400 mm,带入计算并根据弹簧加工工艺确定弹簧线径为2.0 mm,中径为35 mm,有效圈数为12圈。
3.5 链钵育苗册制册机控制系统设计
3.5.1 控制系统总体结构
控制系统的硬件主要包括微控制器、人机交互模块、步进电机驱动器、步进电机、电磁阀、气缸、继电器和直线推杆等,如图12所示。选用STM32F103单片机作为主控芯片,YSHM1SC1074触摸屏为人机交互界面。
用户可根据作业需求,在人机交互界面上切换4种运行模式:工作模式、调试模式、清洁模式和操作指南。工作模式界面可进行设备启停、复位和暂停等操作,制册作业启动后控制系统协调各装置,实现链钵育苗册的自动生产。清洁模式界面用户可独立控制各个涂胶设备启停,在制册工作结束后清洁供胶管路和点胶阀。在调试界面,各装置都可被独立控制,以实现对各装置的调试达到最佳工作状态。同时,用户可在操作指南界面中根据农艺和链钵育苗册制作要求输入每行的钵数等信息,系统可输出耐水性胶水和水溶性胶水涂胶位置等信息,指导用户调试设备,以实现不同规格链钵育苗册的制作。
工作模式下,链钵育苗册制册机可实现一键启停,完成自动涂胶、压痕、走纸和折叠等工序,降低人工劳动强度,提高制册精度。工作模式的控制流程图如图13 所示。用户在启动链钵育苗册制册机时,根据农艺要求输入链钵行数,每行钵数等信息,并按照操作指南调试涂胶位置等。切换至工作界面后各个装置自动运行至初始位置。按下启动按钮时耐水性胶涂胶装置、压痕装置和折叠导向装置的步进电机正向转动,耐水性胶涂胶装置电磁阀同步启动。完成涂胶和压痕任务,步进电机停转自锁,电磁阀关闭。随后,走纸装置的步进电机启动,水溶性胶涂胶装置直线推杆收缩带动涂胶毛刷下降与育苗纸接触完成水溶性胶水涂制,折叠收纸装置的电磁阀同步启动,无杆气缸驱动挡纸板退回,直线推杆向上运动,随即挡纸板复位,直线推杆向下运动,挡纸板作用于育苗纸折叠处使其固定于收纸板,走纸和水溶性胶水涂胶完成后,各装置停止。控制系统调整工作装置或运动方向,重复上述过程,直至完成宽幅链钵育苗册。
3.5.2 气动系统设计
如图14所示,气动系统由空气压缩机、压力调节装置、电磁阀、供胶桶、点胶阀和无杆气缸组成。供胶桶与空气压缩机之间通过管道连接,产生正压,空气压力调节装置可调节点胶阀的排胶量,确保胶水供应稳定可靠。涂胶作业时,控制系统操作电磁阀控制点胶阀启停,使胶水流经涂胶刷,均匀地刷涂至各涂胶点。无杆气缸通过电磁阀与空气压缩机相连,无杆气缸的运动速度和动力可通过调节器来控制气压。利用电磁阀控制无杆气缸,带动挡纸装置伸缩,从而实现育苗纸的自动折叠。
气动系统所需气量Q为[28]
Q=1.57×10−3NQD2Sp+0.10.1 (19) 式中NQ为气动元件每分钟往复次数;D为缸体直径,cm;S为气缸行程,cm;p为工作压力,MPa。
点胶阀工作气压为0.4~0.7 MPa,缸径为24 mm,气缸行程为6 mm;无杆气缸工作气压0.6~0.9 MPa,缸径10 mm,气缸行程200 mm。根据式(19)计算出总耗气量,选择S550W-40型空气压缩机,压力为0.7 MPa,排气量为40 L/min。
4. 整机工作性能验证
以前述各关键部件为基础,设计如图15所示链钵育苗册制册机样机。
以淀粉胶(水溶胶)、聚乙烯醇(耐水胶)、育苗纸为试验材料,设定制册效率为60册/h,开展制册试验。
4.1 评价指标
鉴于目前国内对链式育苗钵研究较少,尚未有对链式育苗钵的制册效果进行评价的指标或标准,因此本文参考文献[29-30],对撑开后育苗册的每穴钵体的实际容积进行检验,将实际容积处于理论容积的0.8~1.2倍之间的视为合格钵体,并进一步将合格钵体占比定义为链钵育苗册的合格率,以此作为制册机制册效果的评价指标,合格率P1计算如下:
P1=n3n4×100% (20) 式中n3为合格育苗钵数量;n4为育苗钵总数量。
检验时,采用3D打印技术建立0.8和1.2倍理论容积的育苗钵模型并分别对每一穴钵体空间进行预填装测试,可放置0.8倍理论容积育苗钵模型、不可放置1.2倍理论容积育苗钵模型的育苗钵,即实际容积为0.8~1.2倍理论容积的育苗钵体视为合格苗钵。
4.2 制册试验结果与分析
制册效果如图16所示,确定合格育苗钵数量,根据式(20)计算合格率,试验结果如表1所示。
表 1 制册试验结果Table 1. Test results of booklet making育苗钵总数
Total number of nursery pots链钵长度
Chain pots length/m合格育苗钵数量
Qualified number of nursery pots合格率
Qualification rate /%192 12.16 179 93.23 228 14.44 214 93.86 264 16.72 241 91.29 300 19.00 273 90.67 336 21.28 298 88.69 由表1可知,当单册育苗钵总数在336以下、链钵总长度为12.16~21.28 m时,平均合格率为91.55% ,并且当链钵长度较长时,合格率随长度增加而呈现下降趋势。分析发现,造成合格率下降的主要原因是在“Z”形折叠收纸时相邻两层折叠位置存在误差,且该误差存在累积效应,当链钵长度较长、折叠次数较多时,造成育苗册正六边形截面的准确率下降。因此,应适当控制制册长度,当需要较多钵体数时,可选择重复制册,提高育苗钵合格率。
4.3 育苗试验
2024年7月20日,在华中农业大学育苗实验室使用自制链钵育苗册开展番茄和油菜苗育苗试验。链钵育苗册撑开后放置于规格为600 mm×300 mm育苗盘中,钵数为264,番茄种子经65 ℃温水泡制0.5 h后放置于温度为30 ℃的温箱中催芽24 h,待露芽后播种,油菜采用直接播种。育苗基质由泥炭土、珍珠岩和蛭石混合而成,混合前用孔径2 mm的筛网对泥炭土和蚯蚓粪清杂处理,处理后基质颗粒小于2 mm,泥炭土:珍珠岩:蛭石按3:1:1混合[31]。基质含水率为30%,播种完成后放置于恒温25 ℃,恒湿90%的育苗实验室内,育苗期间每日定时对育苗盘均匀喷洒清水0.5 L,保持幼苗生长所需水分,播后30 d后出苗与成链效果如图17所示。结果表明,使用所制链钵育苗册育苗出苗率为96.21%,作物长势良好,当育苗期低于45 d时,链钵育苗册可保持较优的完整性,且根系包裹性较好,可被轻松拖拽并展开成链,满足育苗要求。
5. 结 论
本文基于链钵育苗册制册工艺流程及农艺要求,运用机械化装置将2组育苗纸原纸稳定运移过程中,在合适点位涂制水溶性与耐水性胶,并呈“Z”字形堆叠实现链钵育苗册连续制册作业,在融合链钵育苗册成册原理及农艺要求的基础上,研制了一种链钵育苗册制册机。主要结论如下:
1)整机由涂胶装置、压痕装置、走纸装置、折叠导向装置等组成,可一次性完成涂胶、压痕、走纸、折叠等作业环节。对压痕、走纸、折叠导向作业过程中育苗纸受力进行分析,确定了各装置关键参数,在不同备选作业速度下,走纸精度均维持在较低水平,其滑移率不超过0.23%。设计了具备一键启停、调试、清洗和操作指南等功能的控制系统。
2)整机制册试验显示,在制册效率为60册/h,链钵长度为12.16 ~21.28 m条件下,平均合格率为91.55%,当链钵长度较长时,合格率呈现下降趋势。造成合格率下降的主要原因是由于折叠过程中两端不能够保持在一条直线上,且由于制册长度增加,会出现误差累积情况。故当制册长度较长时,可以选择重复制册,提高育苗钵合格率。育苗试验表明:使用所制链钵育苗册育苗出苗率为96.21%,作物长势良好,当育苗期低于45 d时,链钵育苗册可保持较优的完整性,且根系包裹性较好,可被轻松拖拽并展开成链,满足育苗及轻简化移栽要求。
-
图 3 链钵育苗册制册机走纸原理图
1.挡纸装置 2.收纸装置 3.折叠导向装置 4.走纸装置 5.水溶性涂胶装置A 6.导向辊 7.水溶性胶涂胶装置B 8.压痕装置 9.耐水性胶涂胶装置 10.供纸辊A 11.整机机架 12.供纸辊B
Figure 3. Schematic diagram of paper feeding principle of chain pots nursery booklet making machine
1. Paper stopping device 2. Paper collection device 3. Direction-guiding device of folding 4. Paper feeding device 5. ISG coating device A 6. Guide roller 7. ISG coating device B 8. Indentation device 9. WRG coating device 10. Paper supply roller A 11. Machine frame 12. Paper supply roller B
图 5 压痕装置结构示意图
1. 光轴 2. 滚珠丝杆 3. 桁架 4. 虚线切割刀架 5. 虚线切割刀 6. 限位装置 7. 压痕底板1. Plain shaft 2. Ball screw 3. Truss 4. Blade holder 5. Dashed cutter blade 6. Limiting device 7. Indentation base plate注:W1为相邻压痕间距,mm;W2为压痕宽度,mm;W3为限位装置宽度,mm;H1为限位装置高度,mm。
Figure 5. Schematic diagram of indentation device structure
Note: W1 is the distance between adjacent indentations, mm; W2 is the width of the indentation, mm; W3 is the width of the limiting device, mm; H1 is the height of the limiting device, mm.
图 6 压痕过程育苗纸受力分析
注:F1为压入阶段虚线切割刀对育苗纸的压力,N;F2为分离阶段虚线切割刀对育苗纸的粘附力,N;f1和f2为压痕底板对育苗纸的摩擦力,N;FN1和FN2为压痕底板对育苗纸的支持力,N;α1为F1与水平方向的夹角,(°);α2为F2与水平方向的夹角,(°);m1为受力点育苗纸质量,kg;w1为虚线切割刀角速度,rad·s−1。
Figure 6. Force analysis of nursery paper during indentation process
Note: F1 is the pressure of the dashed cutter blade on the nursery paper in the indentation stage, N; F2 is the adhesion force of the dashed cutter blade on the nursery paper in the separation stage, N; f1 and f2 are the friction force of the indentation base plate on the nursery paper, N; FN1 and FN2 are the support force of the indentation base plate on the nursery paper, N; α1 is the angle of F1 with the horizontal direction, (°); α2 is the angle of F2 with the horizontal direction, (°); m1 is the mass of nursery paper at the point of force, kg; w1 is angular speed dashed cutter blade, rad·s−1.
图 7 走纸装置结构示意图
1.链轮 2.防粘走纸辊 3.轴承座 4.水溶性胶水 5.育苗纸1. Sprocket 2. Anti-stick paper feeding roller 3. Bearing seat 4. ISG 5. Nursery paper注:W4、W5、H2分别为防粘走纸辊凸起宽度、凹陷宽度和凸起高度,mm。
Figure 7. Structure diagram of paper feeding device
Note: W4, W5 and H2 are the convex width, the concave width and the convex height of the anti-stick paper feeding roller, respectively, mm;
图 8 走纸装置受力分析
注:Ff1、Ff2为AB段走纸辊为育苗纸提供的摩擦力,N;Ft1、Ft2为育苗纸所受的拉力,N;m3为育苗纸质量,kg;H3为两个走纸辊之间的中心距,mm;β为AB段所对应的圆心角,rad;θ为OA与水平方向夹角,rad;A、B点为走纸辊变形区临界位置;C点为育苗纸与走纸辊接触临界位置;w2为链轮转动角速度,rad·s−1。
Figure 8. Force analysis of paper feeding device
Note: Ff1 and Ff2 are the friction force provided by the paper feeding rollers for the nursery paper in section AB, N; Ft1 and Ft2 are the tension force applied to the paper tape, N; m3 is the quality of the paper tape, kg; H3 is the center distance between the two paper-walking rollers, mm; β is the angle of the circle corresponding to the AB segment, rad; θ is the angle between the OA/OB and the horizontal direction, rad; A and B are the critical position of the deformation zone of the paper feeding roller; C is the critical position of the contact between the nursery paper and the paper feeding roller; w2 is the angular speed of the sprocket wheel, rad•·s−1.
图 10 折叠收纸装置结构示意图
1.防粘走纸辊 2.光轴组件 3. 柔性伸缩杆 4.压纸辊 5.收纸板 6.挡纸装置 7.机架 8.柔性伸缩杆 9.横向移动压纸片 10.固定板 11.直线推杆 12. 纵向移动装置 13.直线滑轨组件 14.无杆气缸
Figure 10. Structure diagram of paper folding and collecting device
1. Anti-adhesive paper feeding roller 2. Optical axis 3. Flexible telescopic rod 4. Paper pressure roller 5. Paper collection base plate 6. Stopping paper device 7. Frame 8. Flexible telescopic rod 9. Laterally moving paper plate 10. Fixed plate 11. Linear actuator 12. Longitudinal moving device 13. Linear slide rail 14. Rodless cylinder
图 11 折叠收纸装置工作原理与受力分析图
注:Fa为压纸辊所受前进方向的阻力,N;Fb为垂直方向载荷,N;Fc为收纸板所受向上的弹力,N;δ为压纸辊单位面积所受的径向育苗纸反作用力,N;Z为育苗纸压缩量,mm;Z0为育苗纸最大压缩量,mm;r0为压纸辊半径,mm;α和α0分别为育苗纸压缩量Z和Z0对应的圆心角,(°);x为压纸辊δ作用点的x轴方向坐标。
Figure 11. Working principle and force analysis diagram of paper folding and collecting device
Note: Fa is the resistance in the forward direction of the pressure roller, N; Fb is the vertical load, N; Fc is the upward elastic force of the paper take-up paper, N; δ is the radial nursery paper force per unit area of the pressure roller. Reaction force, N; Z is the compression amount of nursery paper, mm; Z0 is the maximum compression amount of nursery paper, mm; r0 is the radius of the paper roller, mm; α and α0 are the central angles corresponding to the compression amount Z and Z0 of the nursery paper, respectively. (°); x is the x-axis coordinate of the platen roller δ action point.
表 1 制册试验结果
Table 1 Test results of booklet making
育苗钵总数
Total number of nursery pots链钵长度
Chain pots length/m合格育苗钵数量
Qualified number of nursery pots合格率
Qualification rate /%192 12.16 179 93.23 228 14.44 214 93.86 264 16.72 241 91.29 300 19.00 273 90.67 336 21.28 298 88.69 -
[1] YANG Q, XU L, SHI X, et al. Design of seedlings separation device with reciprocating movement seedling cups and its controlling system of the full-automatic plug seedling transplanter[J]. Computers and Electronics in Agriculture, 2018, 147: 131-145. doi: 10.1016/j.compag.2018.02.004
[2] 胡乔磊,王磊,李心志,等. 油菜基质块苗移栽机对辊式取苗装置设计与试验[J]. 农业工程学报,2022,38(9):12-23. HU Qiaolei, WANG Lei, LI Xinzhi, et al. Design and experiment of the counter roll seedling taking equipment for rapeseed substrate block seedlings transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(9): 12-23. (in Chinese with English abstract)
[3] SUN L, XU H, ZHOU Y, et al. Kinematic synthesis and simulation of a vegetable pot seedling transplanting mechanism with four exact task poses[J]. International Journal of Agricultural and Biological Engineering, 2023, 16(2): 85-95. doi: 10.25165/j.ijabe.20231602.6739
[4] 冯世杰. 基于活动苗盘的油菜钵苗取苗系统及钵体破损机理研究[D]. 长沙:湖南农业大学,2020. FENG Shijie. Study on Pick-up System and Pot Body Damage Mechanism of Rape Pot Seedling Based on Movable Tray[D]. Changsha: Hunan Agricultural University, 2020. (in Chinese with English abstract)
[5] TIAN N, FANG S, YANG W, et al. Influence of container type and growth medium on seedling growth and root morphology of cyclocarya paliurus during nursery culture[J]. Forests, 2017, 8(10): 387.
[6] GALLEGOS-CEDILLO V M, NÁJERA C, SIGNORE A, et al. Analysis of global research on vegetable seedlings and transplants and their impacts on product quality[J]. Journal of the Science of Food and Agriculture, 2024, 104(9): 4950-4965
[7] 蒋希芝,赵永富,曲萍,等. 纸及秸秆基可降解营养钵的降解性能试验[J]. 农业工程学报,2016,32(21):235-239. JIANG Xizhi, ZHAO Yongfu, QU Ping, et al. Degradation performance experiment of paper and straw-based seedling pot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 235-239. (in Chinese with English abstract)
[8] 李润锋. 育苗盘热压成型装置设计与试验研究[D]. 大庆:黑龙江八一农垦大学,2021. LI Runfeng. Design and Experimental Study of Hot Press Forming Device for Seedling Tray[D]. Daqing: Heilongjiang Bayi Agricultural University, 2021. (in Chinese with English abstract)
[9] 杨龙元,袁巧霞,刘志刚,等. 牛粪好氧和蚯蚓堆肥腐熟料成型基质块制备及育苗试验[J]. 农业工程学报,2016,32(24):226-233. YANG Longyuan, YUAN Qiaoxia, LIU Zhigang, et al. Experiment on seedling of compressed substrates with cow dung aerobic composting and earthworm cow dung composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 226-233. (in Chinese with English abstract)
[10] 刘德军,周艳吉,刘坤,等. 玉米秸秆育苗种坨成型工艺试验研究[J]. 农业工程学报,2020,36(5):241-248. LIU Dejun, ZHOU Yanji, LIU Kun, et al. Experimental study on molding technology for making seedling block based on maize stovers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 241-248. (in Chinese with English abstract)
[11] 陈立华,姚宇阗,尚辉,等. 河道淤泥和堆肥蛭石混合发酵制备基质及其育苗效果[J]. 农业工程学报,2018,34(22):228-234. CHEN Lihua, YAO Yutian, SHANG Hui, et al. Producing substrate by fermentation of rural river sludge mixed with compost and roseite and its seedling effect[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 228-234. (in Chinese with English abstract)
[12] MANAFI-DASTJERDI M, EBRAHIMI-NIK M, ROHANI A, et al. Production of biodegradable pots from cattle manure and wood waste: Effects of natural binders on mechanical performances and biodegradability[J].Environmental Science Pollution Research, 2022, 29: 20265-20278.
[13] 钟昆恒,叶炳华. 育苗钵生产设备:CN112913637A[P]. 2021-06-08. [14] PARADKAR V, RAHEMAN H K R. Development of a metering mechanism with serial robotic arm for handling paper pot seedlings in a vegetable transplanter[J]. Artificial Intelligence in Agriculture, 2021, 5: 52-63.
[15] RAHUL K, RAHEMAN H, PARADKAR V. Design and development of a 5R 2DOF parallel robot arm for handling paper pot seedlings in a vegetable transplanter[J]. Computers and Electronics in Agriculture. 2019, 166: 105014
[16] 寺泽秀和,尹藤纯雄,山崎敬三,等. 育苗移植用连续集合钵盘及其制造方法:CN101090628A[P]. 2007-12-09. [17] HONJO M, OTAKE T, SAITO M, et al. Studies of power farming systems of welsh onion cultivation (Part 2) -Field test of new cropping type of welsh onion using chain paper pots[C]//. ASABE International Meeting. American Society of Agricultural and Biological Engineers, New Orlean, Louisina, 2015.
[18] HENRIK A P. A seed tape including successively arranged germinating units: WO2005002318A1[P]. 2004-07-02.
[19] 韩霞,陈海涛. 番茄链式纸钵苗移栽机分离机构设计与优化试验[J]. 农业机械学报,2018,49(5):161-168. HAN Xia, CHEN Haitao. Design and optimization experiment of separation device for tomato chain paper pot seeding transplanter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 161-168. (in Chinese with English abstract)
[20] 赖庆辉. 链式纸钵苗甜菜自动高速移栽机关键技术研究[D]. 长春:吉林大学,2011. LAI Qinghui. Research of Key Technologies on Automatic High-speed Chain Paper Pot Seedling Transplanter for Sugar Beet[D]. Changchun: Jinlin University, 2011. (in Chinese with English abstract)
[21] TATSUNO J, TAJIMA K, KATO M, et al. Automatic transplanting equipment for chain pot seedlings in shaft tillage cultivation[J]. Journal of Robotics and Mechatronics, 2022, 34(1): 10-17. doi: 10.20965/jrm.2022.p0010
[22] 韩霞. 番茄链式纸钵苗移栽机关键技术研究[D]. 哈尔滨:东北农业大学,2018. HAN Xia. Research of Key Technology on Chain Paper Pot Seedling Transplanter for Tomato[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese with English abstract)
[23] 刘志国. 纸纱复合袋糊底机控制系统改进设计[D]. 兰州:兰州交通大学,2020. LIU Zhiguo. Improved Design of Control System for Paper and Yarn Compounding Bag Bottom-pasting Machine[D]. Lanzhou: Lanzhou Jiaotong University, 2020. (in Chinese with English abstract)
[24] PAGANO S, RUSSO R, SAVINO S. A vision guided robotic system for flexible gluing process in the footwear industry[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65: 101965
[25] 黄小毛,兰朝伟,马丽娜,等. 油麦混编景观种子带编织机研制[J]. 农业工程学报,2021,37(3):9-18. HUANG Xiaomao, LAN Chaowei, MA Lina, et al. Development of landscape seed tape mixed weaving machine for rape and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(3): 9-18. (in Chinese with English abstract)
[26] 王方艳,李凤刚,张鹏程,等. 对辊式干辣椒脱帽装置设计与试验[J]. 农业机械学报,2024,55(7):191-199. WANG Fangyan, LI Fenggang, ZHANG Pengcheng, et al. Design and experiment of double roller dried pepper pedicel removal device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(7): 191-199. (in Chinese with English abstract)
[27] 黄小毛,朱恒,张顺,等. 基于振动盘供种的混编景观种子带编织机设计[J]. 农业工程学报,2022,38(7):10-19. HUANG Xiaomao, ZHU Heng, ZHANG Shun, et al. Design of a mixed seed tape knitting machine based on the vibrating disk for seed feeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(7): 10-19. (in Chinese with English abstract)
[28] 张仕林,赵武云,戴飞,等. 全膜双垄沟起垄覆膜机镇压作业过程仿真分析与试验[J]. 农业工程学报,2020,36(1):20-30. doi: 10.11975/j.issn.1002-6819.2020.01.003 ZHANG Shilin, ZHAO Wuyun, DAI Fei, et al. Simulation analysis and test on suppression operation process of ridging and film covering machine with full-film double-furrow[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 20-30. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2020.01.003
[29] GALLEGOS J, ÁLVARO J E, URRESTARAZU M. Container design affects shoot and root growth of vegetable plant[J]. Hort Science, 2020, 55(6): 787-794. doi: 10.21273/HORTSCI14954-20
[30] MAGAR A P, NANDEDE B M, CHILUR R, et al. Optimization of growing media and pot size for vegetable seedlings grown in cylindrical paper pots using response surface methodology[J]. Journal of Plant Nutrition, 2022, 45(11), 1712-1721
[31] 刘洋,毛罕平,徐静云,等. 机械移栽黄瓜穴盘苗育苗品质评价与试验[J]. 农业机械学报,2018,49(S1):75-82,163. LIU Yang, MAO Hanping, XU Jingyun, et al. Seedling quality evaluation and experiments of cucumber plug seedlings for mechanical transplantation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 75-82, 163. (in Chinese with English abstract)