• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

添加剂提高燕麦片贮藏稳定性

石启龙, 赵 亚, 林雯雯, 范 勇

石启龙, 赵 亚, 林雯雯, 范 勇. 添加剂提高燕麦片贮藏稳定性[J]. 农业工程学报, 2014, 30(2): 278-285. DOI: 10.3969/j.issn.1002-6819.2014.02.036
引用本文: 石启龙, 赵 亚, 林雯雯, 范 勇. 添加剂提高燕麦片贮藏稳定性[J]. 农业工程学报, 2014, 30(2): 278-285. DOI: 10.3969/j.issn.1002-6819.2014.02.036
Shi Qilong, Zhao Ya, Lin Wenwen, Fan Yong. Different additives improving storage stability of oatmeal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 278-285. DOI: 10.3969/j.issn.1002-6819.2014.02.036
Citation: Shi Qilong, Zhao Ya, Lin Wenwen, Fan Yong. Different additives improving storage stability of oatmeal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 278-285. DOI: 10.3969/j.issn.1002-6819.2014.02.036

添加剂提高燕麦片贮藏稳定性

基金项目: 国家自然科学基金资助项目(31171708);山东理工大学青年教师发展支持计划项目。

Different additives improving storage stability of oatmeal

  • 摘要: 为提高燕麦片的贮藏稳定性和优化贮藏条件,基于水分活度保藏理论和玻璃化转变理论,探讨了不同添加剂对燕麦片吸附等温线和玻璃化转变温度的影响。采用静态称量法研究了纯燕麦片(PO)、添加纯燕麦片总固形物质量10%麦芽糊精(PO-10% MD)、10%乳清分离蛋白(PO-10% WPI)和5%麦芽糊精+5%乳清分离蛋白(PO-5% MD-5% WPI)等4种燕麦片在不同温度(15、25和35℃)下的吸附等温线。采用GAB和BET模型拟合试验数据,得到描述燕麦片水分吸附特性的数学模型。采用差示扫描量热法测定了PO、PO-10% MD、PO-10% WPI和PO-5% MD-5% WPI的玻璃化转变温度(glass transition temperature,Tg),采用Gordon-Taylor方程拟合Tg数据,探讨添加剂对燕麦片临界水分活度(critical water activity,CWA)和临界干基含水率(critical water content,CWC)的影响。结果表明,燕麦片的水分吸附等温线呈S型,GAB模型为描述燕麦片水分吸附特性的适宜模型。燕麦片的平衡干基含水率随着水分活度的增加而增加,随着温度的升高而降低。燕麦片的Tg随着湿基含水率的增加而降低,添加麦芽糊精和乳清分离蛋白显著提高了燕麦片的Tg。温度25℃时,PO、PO-10% MD、PO-10% WPI和PO-5% MD-5% WPI的CWC和CWA分别为0.054 g/g、0.126;0.060 g/g、0.175;0.056 g/g、0.138和0.056 g/g、0.139。因此,添加总固形物质量10% 麦芽糊精能显著增加纯燕麦片的CWC和CWA,从而提高燕麦片的贮藏稳定性。研究结果为燕麦片适宜包装材料的筛选和适宜贮藏条件的确立提供参考。
    Abstract: Abstract: To improve the storage stability and optimize the storage condition, the effects of different additives on the moisture adsorption isotherms and glass transition temperature of oatmeal were investigated based on the water activity (aw) concept and glass transition theory. Moisture adsorption isotherms of pure oatmeal (PO), oatmeal added with 10% (dry basis, d.b.) maltodextrin (PO-10%MD), 10% (d.b.) whey protein isolate (PO-10%WPI), and a combination of 5% (d.b.) maltodextrin and 5% (d.b.) whey protein isolate (PO-5%MD-5%WPI) were determined at different temperatures (15, 25 and 35oC) using a static gravimetric method. Equilibrium moisture content (EMC) data were fitted with GAB and BET models to select an optimal adsorption isotherms model. Meanwhile, differential scanning calorimetry was used to determine the glass transition temperature (Tg) of PO, PO-10%MD, PO-10%WPI, PO-5%MD-5%WPI and the Tg data were fitted to Gordon-Taylor equation. The effect of maltodextrin (MD) and whey protein isolate (WPI) on the critical water activity (CWA) and critical water content (CWC) of oatmeal was investigated. The results showed that the adsorption curves of oatmeal followed a typical type II (sigmoid) shape, which could be best fitted by GAB model. The EMC of PO, PO-10%MD, PO-10%WPI, and PO-5%MD-5%WPI increased with increasing aw and decreased with increasing temperature. Tg decreased with increasing water content. Addition of MD and WPI significantly increased the Tg of oatmeal. At 25oC, the CWC of PO, PO-10%MD, PO-10%WPI, and PO-5%MD-5%WPI were 0.054 g/g, 0.060 g/g, 0.056 g/g and 0.056 g/g, while the CWA of PO, PO-10%MD, PO-10%WPI, and PO-5%MD-5%WPI were 0.126, 0.175, 0.138, and 0.139, respectively. Therefore, the oatmeal with addition of 10% MD can significantly increase the CWC and CWA, thereby improving the storage stability of oatmeal. The results will provide valuble information for selecting suitable packing materials and establishing optimum storage conditions of oatmeal.
  • [1] 路长喜,王岸娜,周素梅,等. 燕麦片加工品质评价及其品种相关性研究[J]. 中国粮油学报,2009,24(8):42-46,51.Lu Changxi, Wang Anna, Zhou Sumei, et al. Oats flake quality evaluation and oat variety selection[J]. Journal of the Chinese Cereals and Oils Association, 2009, 24(8): 42-46, 51. (in Chinese with English abstract)[2] 闫金婷,郑建梅,刘变芳,等. 国内市场纯燕麦片及复合麦片营养和微生物指标分析[J]. 中国粮油学报,2013,28(3):23-28.Yan Jinting, Zheng Jianmei, Liu Bianfang, et al. Comparison of the nutrition quality and microbiologic characters of the flakes from Chinese market[J]. Journal of the Chinese Cereals and Oils Association, 2013, 28(3):23-28. (in Chinese with English abstract)[3] 刘红英,高瑞昌,戚向阳. 食品化学[M]. 北京:中国质检出版社,2013.[4] Yazdani M, Sazandehchi P, Azizi M, et al. Moisture sorption isotherms and isosteric heat for pistachio[J]. European Food Research and Technology, 2006, 223(5): 577-584.[5] Rahman M S. State diagram of foods: Its potential use in food processing and product stability[J]. Trends in Food Science & Technology, 2006, 17(3): 129-141.[6] Shi Q L, Zhao Y, Chen H H, et al. Glass transition and state diagram for freeze-dried horse mackerel muscle[J]. Thermochimica Acta, 2009, 493(1/2): 55-60.[7] Sablani S S, Syamaladvi R M, Swanson B G. A review of methods, data, and application of state diagrams of food systems[J]. Food Engineering Reviews, 2010, 2(3): 168-203.[8] Sablani S S, Kasapis S, Rahman M S. Evaluating water activity and glass transition concepts for food stability[J]. Journal of Food Engineering, 2007, 78(1): 266-271.[9] Syamaladevi R M, Sablani S S, Tang J M, et al. State diagram and water sorption isotherm of raspberry (Rubus idaeus)[J]. Journal of Food Engineering, 2009, 91(3): 460-467.[10] Rahman M S. Food stability determination by macro-micro region concept in the state diagram and by defining a critical temperature[J]. Journal of Food Engineering, 2010, 99(4): 402-416.[11] Fabra M J, Talens P, Moraga G, et al. Sorption isotherm and state diagram of grapefruit as a tool to improve product processing and stability[J]. Journal of Food Engineering, 2009, 93(1):52-58.[12] Sablani S S, Kasapis S, Rahman M S, et al. Sorption isotherms and the state diagram for evaluating stability criteria of abalone [J]. Food Research International, 2004, 37(10): 915-924.[13] Rahman M S, Al-Belushi R M, Guizani N, et al. Fat oxidation in freeze-dried grouper during storage at different temperatures and moisture contents[J]. Food Chemistry, 2009, 114(4): 1257-1264.[14] Yu H N, Li Y F. State diagrams of freeze dried colostral whey powders: Effects of additives on the stability of colostral whey powders[J]. Journal of Food Engineering, 2012, 110(1): 117-126.[15] Shi Q L, Wang X H, Zhao Y, et al. Glass transition and state diagram for freeze-dried Agaricus bisporus[J]. Journal of Food Engineering, 2012, 111(4): 667-674.[16] 包慧彬. 燕麦片基于温度变化的贮藏期预测[J]. 农产品加工,2012,12(7):64-65,67.Bao Huibin. Prediction of shelf life of oat based on temperature variation[J]. Farm products Processing, 2012, 12(7): 64-65, 67. (in Chinese with English abstract)[17] Greenspan L. Humidity fixed points of binary saturated aqueous solutions[J]. Journal of Research of the National Bureau of Standards: Physics and Chemistry, 1977, 81(1): 89-96.[18] van den Berg C, Bruin S. Water activity and its estimation in food systems: theoretical aspects. In: Rockland L B, Stewart G F. Water Activity: Influences on Food Quality[M]. Academic Press, New York, 1981.[19] Brunauer S, Emmett P, Teller E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319.[20] Telis V R N, Sobral P J A. Glass transitions and state diagram for freeze-dried pineapple[J]. LWT-Food Science and Technology, 2001,34(4): 199-205.[21] Gordon M, Taylor J S. Ideal copolymers and the second-order transitions of synthetic rubbers. 1. Non-crystalline copolymers[J]. Journal of Applied Chemistry, 1952, 2(9): 493-500.[22] Wang X H, Shi Q L, Zhao Y, et al. Moisture adsorption isotherms and heat of sorption of Agaricus bisporus[J]. Journal of Food Processing and Preservation, 2013, 37(4): 299-305.[23] Shivhare U S, Arora S, Ahmed J, et al. Moisture adsorption isotherms for mushroom[J]. LWT-Food Science and Technology, 2004, 37(1): 133-137.[24] Iglesias H A, Chirife J. Prediction of the effect of temperature on water sorption isotherms of food material[J]. International Journal of Food Science and Technology, 1976, 11(2): 109-116.[25] Brett B, Figueroa M, Sandoval A J, et al. Moisture sorption characteristics of starchy products: oat flour and rice flour[J]. Food Biophysics, 2009, 4(3): 151-157.[26] McMinn W A M, McKee D J, Magee T R A. Moisture adsorption behaviour of otameal biscuit and oat flakes[J]. Journal of Food Engineering, 2007, 79(2): 481-493.[27] Rahman M S, Sablani S S, Al-Habsi N, et al. State diagram of freeze-dried garlic powder by differential scanning calorimetry and cooling curve methods[J]. Journal of Food Science, 2005, 70(2): 135-141.[28] Bhandari B R, Howes T. Implication of glass transition for the drying and stability of dried foods[J]. Journal of Food Engineering, 1999, 40(1/2): 71-79.[29] Roos Y H, Karel M. Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrates solutions[J]. Journal of Food Science,1991, 56(6): 1676-1681.[30] Matveev Y I, Grinberb V Y, Sochava I. V, et al. Glass transition temperature of proteins. Calculation based on the additive contribution method and experimental data[J]. Food Hydrocolloids, 1997, 11(2): 125-133.[31] Sandoval A J, Nu?ez M, Müller A J, et al. Glass transition temperatures of a ready to eat breakfast cereal formulation and its main components determined by DSC and DMTA[J]. Carbohydrate Polymers, 2009, 76(4): 528-534.
计量
  • 文章访问数:  1866
  • HTML全文浏览量:  0
  • PDF下载量:  1025
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-27
  • 修回日期:  2013-12-19
  • 发布日期:  2014-01-14

目录

    /

    返回文章
    返回