• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

基于高光谱图像的黄瓜叶片叶绿素含量分布检测

邹小波, 张小磊, 石吉勇, 李志华, 申婷婷

邹小波, 张小磊, 石吉勇, 李志华, 申婷婷. 基于高光谱图像的黄瓜叶片叶绿素含量分布检测[J]. 农业工程学报, 2014, 30(13): 169-175. DOI: 10.3969/j.issn.1002-6819.2014.13.021
引用本文: 邹小波, 张小磊, 石吉勇, 李志华, 申婷婷. 基于高光谱图像的黄瓜叶片叶绿素含量分布检测[J]. 农业工程学报, 2014, 30(13): 169-175. DOI: 10.3969/j.issn.1002-6819.2014.13.021
Zou Xiaobo, Zhang Xiaolei, Shi Jiyong, Li Zhihua, Shen Tingting. Detection of chlorophyll content distribution in cucumber leaves based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(13): 169-175. DOI: 10.3969/j.issn.1002-6819.2014.13.021
Citation: Zou Xiaobo, Zhang Xiaolei, Shi Jiyong, Li Zhihua, Shen Tingting. Detection of chlorophyll content distribution in cucumber leaves based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(13): 169-175. DOI: 10.3969/j.issn.1002-6819.2014.13.021

基于高光谱图像的黄瓜叶片叶绿素含量分布检测

基金项目: 国家863项目(2011AA100807),江苏省杰出青年基金(BK20130010),新世纪优秀人才项目(NCET-11-0986),江苏特聘教授、全国优秀博士基金(200968),国家自然科学基金( 61301239),江苏省自然科学基金(BK20130505)

Detection of chlorophyll content distribution in cucumber leaves based on hyperspectral imaging

  • 摘要: 植物叶片叶绿素含量及分布是植物营养信息表达的重要指标。为了给大棚黄瓜营养元素的控制提供理论依据,该研究利用高光谱图像建立简单实用的光谱值和叶绿素含量关系的模型,从而实时、无损地检测叶片的叶绿素分布。选取黄瓜叶片的高光谱图像数据块中450~850 nm波段作为研究波段。选取8个具有代表性的植被指数,建立特征波长λ下相应的光谱反射值Rλ与黄瓜叶片叶绿素含量之间的关系模型。结果显示,基于最优指数(R695-705)?1?(R750-800)?1的模型可以很好地预测黄瓜叶片叶绿素的含量,校正集和预测集相关系数r分别为0.8410和0.8286,最小均方根误差RMSE分别为0.2045和0.2190 mg/g。最后根据最优模型预测叶片上任意位置叶绿素的含量,并通过伪彩手段描述叶绿素含量的分布。研究结果表明,利用高光谱图像技术分析黄瓜叶片叶绿素含量及其在叶面上的分布是可行的。另外,该研究确定的最优植被指数所包含的695~705和750~800 nm 2个波段可用于搭建更加简便实用的快速检测叶片叶绿素的便携式多光谱设备。
    Abstract: Abstract: The content and distribution of chlorophyll in leaves are important indicators of nutrition information in plants. The objective of this study was to investigate the spectral behavior of the relationship between reflectance and chlorophyll content and to develop a technique for non-destructive chlorophyll estimation and distribution in leaves by using hyperspectral images. The hyperspectral imaging data cube of cucumber (Cucumissativus) leaves in the range of 450-850 nm were selected and preprocessed. A rectangle mesophyll about 100×200 pixels between the second and the third branch left of the main vein was selected as the region of interest (ROI). Spectra information of characteristic bands was extracted and used to set a model with measured chlorophyll content (spectra region extracted corresponding to region chlorophyll measured). The existing modeling methods, such as artificial neural networks (ANN), support vector machines (SVM), etc., can be used to achieve better results but are inconvenient for online applications due to the introduction of sophisticated algorithms. As an operation result of multiple spectrum values (addition, subtraction, multiplication, and division, combined with linear or nonlinear ways), vegetation indices, which play a role in indicating growth and biomass of vegetation, are significant in simplifying the model. Eight representative optical indices (or signatures), which were proposed as a function of the associated reflectance (Rλ) at the special wavelength (λ) nm, were used to predict the total chlorophyll content in cucumber leaves. Finally, (R695-705)?1?(R750-800)?1was identified as an optimum index, predicting the content of chlorophyll fairly well. The correlation coefficients of each model for calibration data set (rc) and validation data set (rp) were 0.8410 and 0.8286, while RMSEC (root mean square error of calibration) and RMSEP (root mean square error of predication) were the smallest (0.2045 mg/g and 0.2190 mg/g). The optimal model showed good stability and robustness due to two major advantages, namely the effects of "red edge" and baseline removal. On one hand, two feature bands (695-705 and 750-800 nm) of the model can be used to develop a kind of portable multispectral device. On the other hand, according to the model, chlorophyll content of the leaf was estimated at every pixel. A pseudo-color map was used to describe the law of chlorophyll distribution. On the map, it is evident that the content of chlorophyll is more in the mesophyll around the veins than in the veins. The edge is seen as less than the middle of the leaf, which is consistent with the actual distribution in the leaf. That is to say, it is a feasible analysis of chlorophyll content and distribution in cucumber leaves via the technique of hyperspectral images. Our results indicated that hyperspectral imaging was considerable for predicting chlorophyll content in leaves, thus allowing the chlorophyll content to be non-destructively detected in situ in living plant samples. In addition, the distribution map can also be used to analyze the accumulation of chlorophyll in spatial plants. Besides, it is easy to facilitate monitoring distribution and variation of chlorophyll in the tissues of plants. Further studies will provide a reliable way for processes that use photosynthetic pigments to participate in such as biochemical pathway, plant growth, and mechanisms of aging.
  • [1] 王福民,黄敬峰,王秀珍,等. 水稻叶片叶绿素、类胡萝卜素含量估算的归一化色素指数研究[J]. 光谱学与光谱分析,2009,29(4):1064-1068.Wang Fumin, Huang Jingfeng, Wang Xiuzhen, et al. Normalized difference ratio pigment index for estimating chlorophyll and cartenoid contents in leaves of rice[J]. Spectroscopy and Spectral Analysis, 2009, 29(4): 1064-1068. (in Chinese with English abstract)
    [2] Gitelson A A, Kaufman Y J, Merzlya M N, et al. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment, 1996, 58(3): 289-298.
    [3] Wellburn A R. Using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology, 1994, 144(3): 307-313.
    [4] 姚付启,张振华,杨润亚,等. 基于主成分分析和BP神经网络的法国梧桐叶绿素含量高光谱反演研究[J]. 测绘科学,2010,35(1):109-112.Yao Fuqi, Zhang Zhenhua, Yang Runya, et al. Research on plat anus oriental is L1 chlorophyll concentration estimation with hyper spectral data based on BP-artificial neural network and principal component analysis[J]. Science of Surveying and Mapping, 2010, 35(1): 109-112. (in Chinese with English abstract)
    [5] 李鹏程,董合林,刘爱忠,等. 棉花上部叶片叶绿素SPAD值动态变化研究[J]. 中国农学通报,2012,28(3):121-126.Li Pengcheng, Dong Helin, Liu Aizhong, et al. A study on dynamic change of chlorophyll SPAD values of upper leaves[J]. Chinese Agricultural Science Bulletin, 2012, 28(3): 121-126. (in Chinese with English abstract)
    [6] 徐爽,何建国,马瑜,等. 高光谱图像技术在水果品质检测中的研究进展[J]. 食品研究与开发,2013,34(10):4-8.Xu Shuang, He Jianguo, Ma Yu, et al. Research progress of hyperspectral imaging technology for nondestructive detection of fruit quality[J]. Food Research And Development, 2013, 34(10): 4-8. (in Chinese with English abstract)
    [7] 石吉勇,邹小波,赵杰文,等. 高光谱图像技术检测黄瓜叶片的叶绿素叶面分布[J]. 分析化学,2011,39(2):243-247.Shi Jiyong, Zou Xiaobo, Zhao Jiewen, et al. Measurement of chlorophyll distribution in cucumber leaves based on hyper-spectral imaging technique[J]. Chinese Journal of Analytical Chemistry, 2011, 39(2): 243-247. (in Chinese with English abstract)
    [8] 邹小波,赵杰文. 农产品检测无损技术与数据分析方法[M]. 北京:中国轻工业出版社,2007:261-342.
    [9] 赵杰文,林颢. 食品、农产品检测中的数据处理和分析方法[M]. 北京:科学出版社,2012:78-139.
    [10] 刘秀英,熊建利,臧卓,等. 基于植被指数的马尾松叶绿素含量估算模型[J]. 西北林学院学报,2012,27(3):44-47.Liu Xiuying, Xiong Jianli, Zang Zhou, et al. Estimation modles chlorophyll content of pinusmassoniana based on vegetable indices[J]. Journal of Northwest Forestry University, 2012, 27(3): 44-47. (in Chinese with English abstract)
    [11] Chappelle E W, Kim M S, McMurtrey Iii J E, et al. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves[J]. Remote Sensing of Environment, 1992, 39(3): 239-247.
    [12] 邹红玉,郑红平. 浅述植被"红边"效应及其定量分析方法[J]. 遥感信息,2010(4):112-116.Zou Hongyu, Zhen Hongping. The effect and method of quantitative analysis of" red edge"of vegetation[J]. Remote Sensing Information, 2010(4): 112-116. (in Chinese with English abstract)
    [13] 宋开山,张柏,王宗明,等. 大豆叶绿素含量高光谱反演模型研究[J]. 农业工程学报,2006,22(8):16-21.Song Kaishan, Zhang Bo, Wang Zongming, et al. Inverse model for estimating soybean chlorophyll concentration using in-situ collected canopy hyperspectral data[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(8): 16-21. (in Chinese with English abstract)
    [14] 王伟,彭彦昆,马伟,等. 冬小麦叶绿素含量高光谱检测技术[J]. 农业机械学报,2010,41(5):172-177.Wang Wei,Peng Y K,Ma Wei,et al. Prediction of chlorophyll content of winter wheat using leaf-level hyperspectral data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(5): 172-177. (in Chinese with English abstract)
    [15] Zou X B, Zhao J W, Holmes M, et al. Independent component analysis in information extraction from visible/near-infrared hyperspectral imaging data of cucumber leaves[J]. Chemometrics and Intelligent Laboratory Systems, 2010, 104(2): 265-270.
    [16] 邹小波,陈正伟,石吉勇,等. 基于近红外高光谱图像的黄瓜叶片色素含量快速检测[J]. 农业机械学报,2012,43(5):152-156.Zou Xiaobo, Chen Zhengwei, Shi Jiyong, et al. Rapid detection of cucumber leaves pigments based on near infrared hyper-spectral image technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(5): 152-156. (in Chinese with English abstract)
    [17] 陈全胜,赵杰文,蔡健荣,等. 利用高光谱图像技术评判茶叶的质量等级[J]. 光学学报,2008,28(4):669-674.Chen Quansheng, Zhao Jiewen, Cai Jianrong, et al. Estimation of tea quality level using hyperspectral imaging technology[J]. Acta Optica Sinica,2008,28(4):669-674. (in Chinese with English abstract)
    [18] 李民赞. 光谱分析技术及其应用[M]. 北京:科学出版社,2006:45-48.
    [19] Schulz H, Baranska M, Baranski R, et al. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis[J]. Biopolymers, 2005, 74(4): 212-221.
    [20] 申晓慧,姜成,张敬涛,等. 不同氮肥水平下大豆叶片光谱反射率与叶绿素含量的相关性研究[J]. 大豆科学,2012,31(1):73-80.Shen Xiaohui, Jiang Cheng, Zhang Jingtao, et al. Correlation between spectrum reflectance and chlorophyll content of soybeanleaves under different nitrogen level[J]. Soybean Science, 2012, 31(1): 73-80. (in Chinese with English abstract)
    [21] Xue L H, Yang L Z. Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(1): 97-106.
    [22] Zou X B, Shi J Y, Zhao J W, et al. In.Vivo noninvasive detection of chlorophyll distribution in cucumber (Cucumis sativus) leaves by indices based on hyperspectral imaging[J]. AnalChimActa, 2011, 706(1): 105-120.
    [23] 唐延林,黄敬峰,王秀珍,等. 玉米叶片高光谱特征及与叶绿素、类胡萝卜素相关性的研究[J]. 玉米科学,2008,16(2):71-76.Tang Yanlin, Huang Jingfeng, Wang Xiuzhen, et al. Study on hyper spectral characteristics of corn leaves and their correlation to chrolophyll and carotenoid[J]. Journal of Maize Sciences, 2008, 16(2): 71-76. (in Chinese with English abstract)
    [24] 石吉勇,邹小波,赵杰文,等. 基于GA-ICA和高光谱图像技术的黄瓜叶叶绿素检测[J]. 江苏大学学报:自然科学版,2011,32(2):134-139.Shi Jiyong, Zou Xiaobo, Zhao Jiewen, et al. Measurement of chlorophyll content in cucumber leaves based on GA-ICA and hyper-spectral imaging technique[J]. Journal of Jiangsu University: Natural Science Edition, 2011, 32(2): 134-139. (in Chinese with English abstract)
    [25] 黄慧,王伟,彭彦昆,等. 利用高光谱扫描技术检测小麦叶片叶绿素含量[J]. 光谱学与光谱分析,2010,30(7):1811-1814.Huang Hui, Wang Wei, Peng Yankun, et al. Measurement of chlorophyll content in wheat leaves using hyperspectral scanning[J]. Spectroscopy and Spectral Analysis, 2010, 30(7): 1811-1814. (in Chinese with English abstract)
    [26] 石吉勇,邹小波,赵杰文,等. 黄瓜叶片叶绿素含量近红外光谱无损检测[J]. 农业机械学报,2011,42(5):178-182.Shi Jiyong, Zou Xiaobo, Zhao J W, et al. NIR spectra in non-invasive measurement of cucumber leaf chlorophylls content[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(5): 178-182. (in Chinese with English abstract)
    [27] 王红君,陈伟,赵辉,等. 基于遗传算法改进的神经网络在自然背景下对黄瓜彩色图像病斑的提取[J]. 广东农业科学,2013(7):173-174,185.Wang Hongjun, Chen Wei, Zhao Hui, et al. Extraction of color image of cucumber disease spot by improved neuralnetwork based on genetic algorithm under neural background[J]. Guangdong Agricultural Sciences, 2013(7): 173-174, 185. (in Chinese with English abstract)
    [28] Le M G, Fran?ois C, Dufrêne E T, et al. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements[J]. Remote Sensing of Environment, 2004, 89(1): 1-28.
    [29] Denison R F, Russotti R. Field estimates of green leaf area index using laser-induced chlorophyll fluorescence[J]. Field Crops Research, 1997, 52(1/2): 143-149.
    [30] Sekiya J, Kajiwara T, Munechika K, et al. Distribution of lipoxygenase and hydroperoxide lyase in the leaves of various plant species[J]. Phytochemistry, 1983, 22(9): 1867-1869.
    [31] Takahashi K, Mineuchi K, Nakamura T, et al. A system for imaging transverse distribution of scattered light and chlorophyll fluorescence in intact rice leaves[J]. Plant, Cell & Environment, 1994, 7(1): 105-110.
计量
  • 文章访问数:  2465
  • HTML全文浏览量:  1
  • PDF下载量:  1388
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-20
  • 修回日期:  2014-05-30
  • 发布日期:  2014-06-30

目录

    /

    返回文章
    返回