• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

产甲烷复合菌剂的性能评价及中试试验产气效果

王渝昆, 袁月祥, 李东, 胡亚东, 黄显波, 文昊深, 刘晓风, 彭绪亚, 闫志英

王渝昆, 袁月祥, 李东, 胡亚东, 黄显波, 文昊深, 刘晓风, 彭绪亚, 闫志英. 产甲烷复合菌剂的性能评价及中试试验产气效果[J]. 农业工程学报, 2014, 30(16): 247-255. DOI: 10.3969/j.issn.1002-6819.2014.16.032
引用本文: 王渝昆, 袁月祥, 李东, 胡亚东, 黄显波, 文昊深, 刘晓风, 彭绪亚, 闫志英. 产甲烷复合菌剂的性能评价及中试试验产气效果[J]. 农业工程学报, 2014, 30(16): 247-255. DOI: 10.3969/j.issn.1002-6819.2014.16.032
Wang Yukun, Yuan Yuexiang, Li Dong, Hu Yadong, Huang Xianbo, Wen Haoshen, Liu Xiaofeng, Peng Xuya, Yan Zhiying. Performance of evaluation of methanogenic microbial inoculant and its effect of biogas production in pilot scale test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 247-255. DOI: 10.3969/j.issn.1002-6819.2014.16.032
Citation: Wang Yukun, Yuan Yuexiang, Li Dong, Hu Yadong, Huang Xianbo, Wen Haoshen, Liu Xiaofeng, Peng Xuya, Yan Zhiying. Performance of evaluation of methanogenic microbial inoculant and its effect of biogas production in pilot scale test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 247-255. DOI: 10.3969/j.issn.1002-6819.2014.16.032

产甲烷复合菌剂的性能评价及中试试验产气效果

基金项目: 国家重点基础研究发展计划(2013CB733502);四川省应用基础研究计划(2013JY0050);中国科学院重点部署项目(KGZD-EW-304-1);国家科技支撑计划资助项目(2006BAC06B02-01)

Performance of evaluation of methanogenic microbial inoculant and its effect of biogas production in pilot scale test

  • 摘要: 产甲烷菌对环境变化的敏感性很容易导致厌氧发酵失败,如何保证产甲烷菌的活性是厌氧发酵稳定进行的关键。在考察RY3、SH4、G1、G2和G3产甲烷菌株主要生理生化特征和拮抗作用的基础上,构建了产甲烷复合菌剂,并对产甲烷复合菌剂的pH值耐受性、温度耐受性和不同接种量进行了性能评价。结果表明:5株互补共生构建的产甲烷复合菌剂可在pH值5.5~10.5的范围内生长,且在pH值5.5~9.5的范围内培养3 d后甲烷总产量在1 706.7~2 026.7 ?mol之间,具有较优良的耐酸碱性能;产甲烷复合菌剂的生长温度范围在15~70℃,且在30~55℃范围内培养3d后甲烷总产量在1 906.9~2 028 ?mol之间,温度适应范围宽泛。产甲烷复合菌剂接种量试验表明,在低温20℃下,接种产甲烷合菌剂的试验组比未接种复合菌剂对照组在产甲烷的时间上平均缩短14 d,在高温50℃下,接种产甲烷复合菌剂的试验组比未接种产甲烷复合菌剂的对照组在产甲烷的时间上平均缩短5 d,无论低温还是高温下,复合菌剂的接种均可明显促进产甲烷过程的启动,缩短启动时间。中试产气效果及动力学分析表明,20℃低温下,接种10%复合菌剂的试验组21 d内沼气总产量和甲烷总产量均为接种10%活性污泥试验组的1.6倍;50℃高温下,接种10%复合菌剂的试验组21 d内沼气总产量为接种10%活性污泥试验组的2.7倍,甲烷总产量为2.8倍,无论低温20℃还是高温50℃下,接种复合菌剂的可显著提高厌氧发酵产沼气效率,缩短产甲烷进程,为厌氧发酵系统优化调控提供一种新的技术途径。
    Abstract: Abstract: The biogas fermentation is easy to fail resulting from high sensibility of methanogens to environmental change. So how to ensure the activity of methanogens is the key for anaerobic fermentation stability. A methanogenic microbial inoculant was constructed based on the physiological, biochemical characteristics and antagonisms of strain RY3, SH4, G1, G2 and G3. The performances of the inoculant under different pH values, temperatures and application rates of the methanogenic microbial inoculant were evaluated. It showed that the 5 strains had different physiological and biochemical characteristics as well as complementary roles. There were no antagonisms among 5 strains. The methanogenic microbial inoculant grew at pH value 5.5-10.5. Methane productions were 1 706.7-2 026.7 ?mols at pH value 5.5-9.5 after 3 days' culture, that of different pH values showed no significant difference respectively. The results indicated that the methanogenic microbial inoculant is resistant to acid and alkali changes. The inoculant grew at 15-70℃ and methane productions were 1906.9- 2028 ?mols at 30-60℃ after 3 days' culture, that of different temperatures treatment showed no significant difference respectively. The results indicated that the methanogenic microbial inoculant is adapted to a wide temperature range. At 20℃, total biogas yield of treatments 2%, 5%, 10% before 14 day were 234, 422 and 950 mL, and the methane concentration of treatments 2%, 5%, 10% on the 14th day were 46.9%, 51.2% and 58.9% respectively corresponding the treatments with 2%, 5% and 10% inoculation dosages of the methanogenic microbial inoculant. At 50℃, total biogas yield before 14 d were 2728, 3291 and 3 832 mL and the methane concentration on 14th day were 62.7%, 63.1% and 63.8% respectively corresponding the treatments with 2%, 5% and 10% inoculation dosages of the methanogenic microbial inoculant. The results indicated that the inoculation could shorten the starting time for methane production compared to the controls without inoculant at 20 and 50℃. Pilot tests by kinetic analysis indicated that inoculant could still shorten the starting time for methane production compared to the control using anaerobic active sludge as inoculant. At 20℃, total biogas and methane yields of 21 day of the treatment with 10% inoculation dosages of the methanogenic microbial inoculant were both 1.6 times of the control group with 10% inoculation dosages of anaerobic active sludge. At 50℃, total biogas and methane yields of 21 d of the treatment with 10% inoculation dosages of the methanogenic microbial inoculant were 2.7 and 2.8 times of control group with 10% inoculation dosages of anaerobic active sludge, respectively. Overall, this study showed that the methanogenic microbial inoculant could significantly improve the efficiency of biogas production at low temperature and high temperature, and it will provide a new technical way for optimal control on biogas fermentation.
  • [1] Angelidaki I, Alves M, Bolzonella D, et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays[J]. Water Science and Technology, 2009, 59: 927-934.
    [2] Appels L, Lauwers J, Degre`ve J, et al. Anaerobic digestion in global bioenergy production: Potential and research challenges[J]. Renewable & Sustainable Energy Reviews, 2011, 15: 4295-4301.
    [3] Ferrer I, Ponsá S, Vázquez F, et al. Increasing biogas production by thermal (70℃) sludge pre-treatment prior to thermophilic anaerobic digestion[J]. Biochemical Engineering Journal, 2008, 42: 186-192.
    [4] Zeng X Y, Ma Y T, Ma L R. Utilization of straw in biomass energy in China[J]. Renewable and Sustainable Energy Reviews, 2007, 11(5): 976-987.
    [5] Lastella G, Testa C, Cornacchia G, et al. Anaerobic digestion of semi-solid organic waste: Biogas production and its purification[J]. Energy Conversion and Management, 2002, 43(1): 63-75.
    [6] Liu H, Jiang G M, Zhuang H Y, et al. Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues[J]. Renewable and Sustainable Energy Reviews, 2008, 12: 1402-1418.
    [7] Garcial J L, Patel B K C, Ollivier B. Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea[J]. Anaerobe, 2000, 6(4): 205-226.
    [8] Ward Alastair J, Hobbs Phil J, Holliman Peter J, et al. Optimisation of the anaerobic digestion of agricultural resources[J]. Bioresource Technology, 2008, 99(17): 7928-7940.
    [9] Nasir I M, Mohd Ghazi T I, Omar R. Anaerobic digestion technology in livestock manure treatment for biogas production: A review[J]. Engineering in Life Sciences, 2012, 12(3): 258-269.
    [10] 徐军祥,杨翔华,姚秀清,等. 生物强化技术处理难降解有机污染物的研究进展[J]. 化工环保,2007,27(2): 129-134.Xu Junxiang, Yang Xianghua, Yao Xiuqing, et al. Advances in bioaugmentation technology for treatment of refractory organic pollutants[J]. Environmental Protection of Chemical Industry, 2007, 27(2): 129-134. (in Chinese with English abstract)
    [11] El Fantroussi Sa?d, Agathos Spiros N. Is bioaugmentation a feasible strategy for pollutant removal and site remediation?[J]. Current Opinion in Microbiology, 2005, 8(3): 268-275.
    [12] Gentry T, Rensing C, Pepper I. New approaches for bioaugmentation as a remediation technology[J]. Critical Reviews in Environmental Science and Technology, 2004, 34(5): 447-494.
    [13] Geeta G S, Jagadeesh K S, Reddy T K R. Nickel as an accelerator of biogas production in water hyacinth (Eichornia crassipes solms.)[J]. Biomass, 1990, 21: 157-161.
    [14] Angelidaki I, Ahring B K. Thermophilic anaerobic digestion of livestock waste: the effect of ammonia[J]. Applied Microbiology and Biotechnology, 1993, 38(4): 560-564.
    [15] Malik R K, SinSh R, Tauro P. Effect of inorganic nitrogen supplementation on biogas production[J]. Biological Wastes, Wastes, 1987, 21(2): 139-142.
    [16] 何荣玉,袁月祥,闫志英,等. 提高沼气产量的外源添加物筛选研究[J]. 农业工程学报,2008,24(10): 181-185.He Rongyu, Yuan Yuexiang, Yan Zhiying, et al. Selection of combined additives for enhancing biogas production in anaerobic digestion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(10): 181-185. (in Chinese with English abstract)
    [17] 袁月祥,颜开,闫志英,等. 一种产甲烷复合菌剂及其制备方法:中国专利,200910187435.0[P]. 2009-09-18.
    [18] 刘秀丽. 一种产甲烷菌剂及其制备技术:中国专利,201010244353.8 [P]. 2010-07-28.
    [19] 胡亚东,袁月祥,闫志英,等. 一株生长pH较宽的产甲烷菌分离与系统发育分析[J]. 应用与环境生物学报,2009,15(4):554-558.Hu Yadong, Yuan Yuexiang, Yan Zhiying, et al. Isolation and phylogenetic analysis of a methanogen with wide growth pH range[J]. Chinese Journal of Applied and Environmental Biology, 2009, 15(4): 554-558. (in Chinese with English abstract)
    [20] Heui-Dong Park, Chang-Ho Rhee. Antimutagenic activity of Lactobacillus plantarum KLAB21 isolated from kimchi Korean fermented vegetables[J]. Biotechnology Letters, 2001, 23(19): 1583-1589.
    [21] 胡亚东.耐酸产甲烷菌的分离及其复合菌剂的研 究[D].成都:中国科学院成都生物研究所,2009.
    [22] Nopharatana Annop, Pullammanappallil Pratap C, Clarke William P. Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor[J]. Waste Management, 2007, 27(5): 595-603.
    [23] 赵光,马放,魏利,等. 北方低温沼气发酵技术研究及展望[J]. 哈尔滨工业大学学报,2011,43(6):29-33.Zhao Guang, Ma Fang, Wei Li, et al. Research and prospects of low temperature biogas digestion technology in North[J]. Journal of Harbin Institute of Technology, 2011, 43(6): 29-33. (in Chinese with English abstract)
    [24] 丁建南,于一尊,黄江丽,等. 低温沼气功能菌群的选育与试验[J]. 农业现代化研究,2012,33(3):380-384.Ding Jiannan, Yu Yizun, Huang Jiangli, et al. Breeding and testing of hypothermic biogas functional microflora[J]. Research of Agricultural Modernization, 2012, 33(3): 380-384. (in Chinese with English abstract)
    [25] 孔维涛,胡栋,马福民,等. 低温沼气发酵优良菌系筛选及优势菌群分析[J]. 微生物学通报,2013,40(9):1590-1598.Kong Weitao, Hu Dong, Ma Fumin, et al. Screening and dominant population analysis of microbial strains in biogas fermentation under the low temperature[J]. Microbiology China, 2013, 40(9): 1590-1598. (in Chinese with English abstract)
    [26] Li L H, Kong X Y, Yang F Y, et al. Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass[J]. Applied Biochemistry and Biotechnology, 2012, 166: 1183-1191.
    [27] 李东,孙永明,袁振宏,等. 有机垃圾组分中温厌氧消化产甲烷动力学研究[J]. 太阳能学报,2010,31(3):385-390.Li Dong, Sun Yongming, Yuan Zhenhong, et al. Kinetic study of the mesophilic anaerobic digestion of organic waste components[J]. Acta Energiae Solaris Sinica, 2010, 31(3): 385-390. (in Chinese with English abstract)
计量
  • 文章访问数:  2481
  • HTML全文浏览量:  0
  • PDF下载量:  852
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-06
  • 修回日期:  2014-08-28
  • 发布日期:  2014-08-14

目录

    /

    返回文章
    返回