• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

蒸汽爆破前后生物质秸秆的物理化学特性

苏同福, 赵国忠, 任天宝, 徐翠莲, 宫长荣, 陈 钢

苏同福, 赵国忠, 任天宝, 徐翠莲, 宫长荣, 陈 钢. 蒸汽爆破前后生物质秸秆的物理化学特性[J]. 农业工程学报, 2015, 31(6): 253-256. DOI: 10.3969/j.issn.1002-6819.2015.06.035
引用本文: 苏同福, 赵国忠, 任天宝, 徐翠莲, 宫长荣, 陈 钢. 蒸汽爆破前后生物质秸秆的物理化学特性[J]. 农业工程学报, 2015, 31(6): 253-256. DOI: 10.3969/j.issn.1002-6819.2015.06.035
Su Tongfu, Zhao Guozhong, Ren Tianbao, Xu Cuilian, Gong Changrong, Chen Gang. Characterizations of physico-chemical changes of corn biomass by steam explosion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 253-256. DOI: 10.3969/j.issn.1002-6819.2015.06.035
Citation: Su Tongfu, Zhao Guozhong, Ren Tianbao, Xu Cuilian, Gong Changrong, Chen Gang. Characterizations of physico-chemical changes of corn biomass by steam explosion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 253-256. DOI: 10.3969/j.issn.1002-6819.2015.06.035

蒸汽爆破前后生物质秸秆的物理化学特性

基金项目: Supported by 863 Program (2012AA022301B), Doctor Foundation HAU(3070 0368), State Tobacco Monopoly Administration P. R. China (Contract No. TS-01-2011006), Recommend International Advanced Agricultural Science and Technology Plan (No. 2010-S25), Program for Innovative Research Team (in Science and Technology) in University of Henan province (15 IRTSTHNO014)

Characterizations of physico-chemical changes of corn biomass by steam explosion

  • 摘要: 为深入了解汽爆过程对生物质秸秆的影响,采用扫描电镜和太赫兹时域光谱系统,对汽爆前后的秸秆分别做了检测,分别得到了它们的形貌特征、微区成分分布和太赫兹图谱。其形貌特征显示,秸秆薄壁细胞和表皮被汽爆过程所粉碎,秸秆物质的比表面积大大增加,致使增加了物料的接触面积,在制备沼气或生物质燃料过程中,使得其发酵速度增加。太赫兹时域图谱表明,薄壁细胞和表皮物质的吸收系数,随着频率的增加而增加。同时,由于汽爆因素的影响,它们的吸收系数在汽爆前后明显不同,表明其结构发生了一些变化,微区成分分析也证明了这一点。更为重要的是,薄壁细胞在汽爆前后,其吸收光谱分别检测出2个明显的吸收峰,且前后频率位移较大,但其结构变化的机制、变化与振动峰的关系和对振动峰的归属和指认需要做进一步的研究。
    Abstract: Abstract: Scanning electron microscopy (SEM) and terahertz time domain spectroscopy (THz-TDS) were employed to investigate the effects of steam-explosion on biomass, and the surface images, micro-analysis and terahertz spectra were obtained. SEM analysis of the surface showed that the parenchyma cell and epidermis of corn stem were smashed and separated by steam-explosion, which suggests a great increase in specific surface area and potentially enhanced speed of fermentation in the production of biogases and biofuels. Terahertz spectra of stover showed that their absorption coefficients increase with increasing frequency. Steam explosion may cause a subtle chemical change in biomass according to obviously different absorption coefficients between the steamed and original samples, which could also be proved by micro-analysis. Moreover, two resonance peaks were detected in the absorption curves of parenchyma cell, with notable frequency shift between curves of the steamed and original parenchyma cells. Assignments of the two vibrational peaks must be explored by further studies.
  • [1] Kaparaju P, Felby C. Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover[J]. Bioresour. Technol, 2010, 101(9): 3175-3181.
    [2] Lloyd T A, Wyman C E. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids[J]. Bioresour Technol, 2005, 96(18): 1967-1977.
    [3] Wyman C E, Dale B E, Elander R T, et al. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover[J]. Bioresour Technol, 2005, 96(18): 2026-2032.
    [4] Rohit D, Jie H G, Manessa P C, et al. Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process[J]. Int J Hydrogen Energy, 2007, 32(8): 932-939.
    [5] Cara C, Ruiz E, Ballesteros M, et al. Production of fuel ethanol from steam-explosion pretreated olive tree pruning[J]. Fuel, 2008, 87(6): 692-700.
    [6] Hgren Kö, Bura R, Lesnicki G, et al. comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover[J]. Process Biochem, 2007, 42(5): 834-839.
    [7] Chen Hongzhang, Peng Xiaowei. Steam explosion technology applied to high-value utilization of gerb medicine resources[J]. Progress Chem, 2014, 24(9): 1857-1864. (in Chinese with English abstract)
    [8] Xu Guizhuan, Fan Shuaiyao, Wang Xinfeng, et al. Anaerobic fermentation characteristic of green corn straw pretreated by steam explosion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 205-210. (in Chinese with English abstract)
    [9] Jia Jingxia, Liang Baozhong, Wang Yanhong, et al. Effect of steam explosion pretreatment on ensiling performance of dry corn stover[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013 29(20): 192-198. (in Chinese with English abstract)
    [10] Yu Z D, Zhang B L, Yu F Q, et al. A real explosion: The requirement of steam explosion pretreatment[J]. Bioresour Technol, 2012, 121: 335-341.
    [11] Liu C G, Liu L Y, Zi L H, et al. Assessment and regression analysis on instant catapult steam explosion pretreatment of corn stover[J]. Bioresour Technol, 2014, 166: 368-372.
    [12] Huang Y, Wei X Y, Zhou S G, et al. Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum[J]. Bioresour Technol, 2015, 181: 224-230.
    [13] Chang J, Cheng W, Yin Q Q, et al. Effect of steam explosion and microbial fermentation on cellulose and lignin degradation of corn stover[J]. Bioresour Technol, 2012, 104: 587-592.
    [14] Bryon S D, Todd B V, Richard T E, et al. Surface and ultra structural characterization of raw and pretreated switch grass[J]. Bioresour Technol, 2011, 102: 11097-11104.
    [15] Wang K, Jiang J X, Xu F, et al. Influence of steaming explosion time on the physic-chemical properties of cellulose from Lespedeza stalks (Lespedeza crytobotrya)[J]. Bioresour Technol, 2009, 100: 5288-5294.
    [16] Li R Q, Wang Z H. Theoretical study of air-core dielectric tube at terahertz frequencies[J]. Optik–Int J Light Electron Opt, 2013, 124(23): 6432-6436.
    [17] Miriam H, Keith C Gordon, et al. Terahertz pulsed imaging as an advanced characterization tool for film coatings: A review[J]. Int J Pharm, 2013, 457(2): 510-520.
    [18] Jha K R, Singh G. Terahertz planar antennas for future wireless communication: A technical review[J]. Infrared Phys Technol, 2013, 60: 71-80.
    [19] Su T F, Jia X F, Zhao G Z, et al. Characterization of original and expanded leaf-roots of tobacco by terahertz spectroscopy and X-ray microanalysis[J]. Mater Lett, 2008, 62(17/18): 2779-2782
计量
  • 文章访问数:  1979
  • HTML全文浏览量:  1
  • PDF下载量:  1008
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-03
  • 修回日期:  2015-03-02
  • 发布日期:  2015-03-14

目录

    /

    返回文章
    返回