• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

基于特征点提取匹配的蝗虫切片图像的拼接和修复方法

李 丽, 郭双双, 梅树立, 张楠楠

李 丽, 郭双双, 梅树立, 张楠楠. 基于特征点提取匹配的蝗虫切片图像的拼接和修复方法[J]. 农业工程学报, 2015, 31(7): 157-165. DOI: 10.3969/j.issn.1002-6819.2015.07.023
引用本文: 李 丽, 郭双双, 梅树立, 张楠楠. 基于特征点提取匹配的蝗虫切片图像的拼接和修复方法[J]. 农业工程学报, 2015, 31(7): 157-165. DOI: 10.3969/j.issn.1002-6819.2015.07.023
Li Li, Guo Shuangshuang, Mei Shuli, Zhang Nannan. Mosaic and repair method of locust slices based on feature extraction and matching[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 157-165. DOI: 10.3969/j.issn.1002-6819.2015.07.023
Citation: Li Li, Guo Shuangshuang, Mei Shuli, Zhang Nannan. Mosaic and repair method of locust slices based on feature extraction and matching[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(7): 157-165. DOI: 10.3969/j.issn.1002-6819.2015.07.023

基于特征点提取匹配的蝗虫切片图像的拼接和修复方法

基金项目: 国家自然科学基金项目(41171337)

Mosaic and repair method of locust slices based on feature extraction and matching

  • 摘要: 由于环境和切片本身特性的影响,试验中获取的蝗虫切片总是不完整或者带有褶皱的。针对这一问题,提出了一种基于图像匹配的蝗虫切片拼接和修复方法,以序列切片中缺损切片的邻近切片图作为参考对象,对缺损切片图像进行拼接和修复。首先对切片进行小波降噪,降低噪声对匹配的影响;然后用尺度不变特征变换(scale-invariant feature transform, SIFT)算法和快速鲁棒特征(speed-up robust features, SURF)算法获取切片特征点并生成特征向量,完成切片的初始特征点匹配;随后利用随机采样一致(random sample consensus, RANSAC)算法进行匹配矫正,剔除匹配点对中的误匹配,并利用最小二乘法求解出单应性矩阵;最后用正确的匹配点对和单应性矩阵完成蝗虫切片的拼接,利用求得的空间映射模型找到褶皱部分相应的匹配域,完成对缺损部分的修复。试验表明:提出的切片拼接和修复方法的所提取的特征点的正确匹配率能够达到72.2%,并且运行速度以及匹配效果都能在一定程度上满足切片修复的要求,为后面进行蝗虫切片褶皱打开以及蝗虫体的三维重建提供了技术参考。
    Abstract: Abstract: Because of the influence of the environment and the characteristics of the locust slices, locust slices obtained from experiments are always incomplete or folded. To match and reconstruct this folded area, the slice in the sequences adjacent to the slice which needs to be repaired is used as the reference image, and in this way, the slice is repaired successfully. The image mosaic and repair algorithm used in the article has the following steps: image preprocessing, feature extraction, feature matching, coordinate transformation and image mosaic and repair. Firstly, as there is some noise in the slice image that can influence the repairing effect, we use wavelet denoising on images to reduce the effect of noise on feature extraction before searching the feature points; secondly, as there are no related materials about how to match or repair locust slices, in order to find more suitable feature extraction methods for locust slices, we compare the scale-invariant feature transform (SIFT) with speed-up robust features (SURF) algorithm which are already widely used in computer vision and image registration, and then generate the image feature vectors to complete the feature extraction from the initial slice image, record the scale, position and direction of the feature points at the same time, and finish the preliminary matching between the two slices; thirdly, as the preliminary matching can not completely remove the error matching points, random sample consensus (RANSAC) algorithm is used to correct the matching errors and eliminate the error matching points by repeatedly choosing a group of random subsets of the data, finally leaving the correct matching points; fourthly, the homography matrix is calculated by using the least square method based on all the correct matching points, which makes full use of existing points to calculate and therefore makes the results have more universal adaptability; finally, the locust slices mosaic is finished using the correct matching points and the homography matrix, the corresponding matching block for the folded part is found out using space mapping model and the slice repair is completed. The experiment adopts two groups of positive images of locust slice obtained from the experimental environment under the microscope. What's more, statistical results of contrast experiment with SIFT and SURF algorithm are obtained, each of which shows the running time, the number of matching points and matching rate. The experimental results show that: the matching rates reach 72.2% and 34.0% using SIFT algorithm and SURF algorithm, respectively, which means that SIFT algorithm can meet the requirements of image mosaic more precisely compared with SURF algorithm. As the matching rate doesn't perform as well as expected, the error sources such as the change of content or the effect from the fold are briefly analyzed. The registration algorithm provides the reference for the later work of the folded area's opening on the slice image and the three-dimensional reconstruction of locust.
  • [1] Liu Song. The research on Image Mosaicing and Parallelization Based on Improved SIFT[D]. anhui:Anhui University, 2014. (in Chinese with English abstract)
    [2] 刘波,朱伟兴,霍冠英. 生猪轮廓红外与光学图像的融合算法[J]. 农业工程学报,2013,29(17):113-120.Liu Bo, Zhu Weixing, Huo Guanying. An image fusion algorithm of infrared thermal and optical images for pig contour[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(17): 113-120. (in Chinese with English abstract)
    [3] 王娟,师军,吴宪祥. 图像拼接技术综述[J]. 计算机应用研究,2008,25(7):1940-1947.Wang Juan, Shi Jun, Wu Xianxiang. Survey of image mosaics techniques[J]. Application Research of Computers, 2008, 25(7): 1940-1947. (in Chinese with English abstract)
    [4] 周文兵,李峰,熊兵. 基于多特征融合的图像拼接检测[J]. 计算机工程与应用,2012,48(21):167-177.Zhou Wenbing, Li Feng, Xiong Bing. Image splicing detection using multi-features amalgamation[J]. Computer Engineering and Applications, 2012, 48(21): 167-177. (in Chinese with English abstract)
    [5] 张永,武玉建. 一种改进的SIFT图像特征匹配算法[J]. 计算机工程与应用,2014,50(9):167-169.Zhang Yong, Wu Yujian. Improved SIFT image feature matching algorithm[J]. Computer Engineering and Applications, 2014, 50(9): 167-169. (in Chinese with English abstract)
    [6] 陈艺虾,孙权森,徐焕宇,等. SURF算法和RANSAC算法相结合的遥感图像匹配方法[J]. 计算机科学与探索,2012,6(9):822-828.Chen Yixia, Sun Quansen, Xu Huanyu et al. Matching method of remote sensing images based on SURF algorithm and RANSAC algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2012, 6(9): 822-828. (in Chinese with English abstract)
    [7] 张锐娟,张建奇,杨翠. 基于SURF的图像配准方法研究[J]. 红外与激光工程,2009,38(1):160-165.Zhang Ruijuan, Zhang Jianqi, Yang Cui. Image registration approach based on SURF[J]. Infrared and Laser Engineering,2009, 38(1) :160-165. (in Chinese with English abstract)
    [8] 曲天伟,安波,陈桂兰. 改进的RANSAC算法在图像配准中的应用[J]. 计算机应用,2010,30(7):1849-1872.Qu Tianwei, An Bo, Chen Guilan. Application of improved RANSAC algorithm to image registration[J]. Journal of Computer Applications, 2010, 30(7): 1849-1872. (in Chinese with English abstract)
    [9] 杜杰,刘亚秋,孙垚. 基于仿射不变闭合区域和SURF的图像匹配算法[J]. 计算机应用研究,2014,31(1):295-298 .Du Jie, Liu Yaqiu, Sun Yao. Image matching algorithm based on affine-invariant closed region and SURF[J]. Application Research of computer, 2014, 31(1): 295-298. (in Chinese with English abstract)
    [10] 郭黎,高泽林,廖宇. 一种改进的RANSAC图像匹配算法[J]. 通信与信息技术,2014(3):82-85.Guo Li, Gao Zelin, Liao Yu. Improved RANSAC image matching algorithm[J]. Communication & Information Technology, 2014(3): 82-85. (in Chinese with English abstract)
    [11] 胡钢,刘哲,徐小平. 像素级图像融合技术的研究与进展[J]. 计算机应用研究,2008,25(3):650-655.Hu Gang, Liu Zhe, Xu Xiaoping. Research and recent development of image fusion at pixel level[J]. Application Research of computer, 2008, 25(3): 650-655. (in Chinese with English abstract)
    [12] 徐萌萌. 基于小波变换的图像融合算法研究[D]. 哈尔滨:哈尔滨理工大学,2014.Xu Mengmeng.The Research of Image Fusion Algorithm Based on Wavelet Transform[D]. Harbin: Harbin University of Science and Technology, 2014. (in Chinese with English abstract)
    [13] 杨扬. 基于多尺度分析的图像融合算法研究[D]. 长春:中国科学院大学,2013.Yang Yang. Research on Image Fusion Algorithms Using Multiscale Analysis[D]. Changchun: University of Chinese Academy of Sciences, 2013. (in Chinese with English abstract)
    [14] 杨艳伟. 基于SIFT特征点的图像拼接技术研究[D]. 西安:西安电子科技大学,2009.Yang Yanwei. Research on Image Mosaic Based on SIFT Feature Points[D]. xi'an: Xidian University, 2009. (in Chinese with English abstract)
    [15] Schmid C, Mohr R , Bauckhage C. Comparing and evaluating interest points[C]// ICCV, 1998: 230-235.
    [16] Chiang M C, Boult T E. Efficient image warping and super-resolution[C]//IEEE Workshop on Applications of Computer Vision (WACV'96), Sarasota, Florida, IEEE Computer Society.1996: 56-61.
    [17] 徐鑫. 红外图像拼接技术研究[D]. 上海:东华大学,2014.Xu Xin. The Study of Infrared Image Mosaic[D].Shanghai: Donghua university, 2014. (in Chinese with English abstract)
    [18] Rosenfeld A. Computer vision: A source of models for biological visual process[J]. IEEE Trans on Biomed Eng, 2009, 36(1):83-94.
    [19] Jungpil Shin, Yu Tang. Deghosting for image stitching with automatic content-awareness [J] . Pattern Recognition, 2010, 23(26):26-27.
    [20] 吴伟,高光来,聂建云. 一种融合语义距离的最近邻图像标注方法[J]. 计算机科学,2015(1):297-302.Wu Wei, Gao Guanglai, Nie Jianyun. Combination of nearest neighbor with semantic distance for image annotation[J]. Computer Science, 2015(1): 297-302. (in Chinese with English abstract)
计量
  • 文章访问数:  2957
  • HTML全文浏览量:  1
  • PDF下载量:  765
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-11
  • 修回日期:  2015-02-08
  • 发布日期:  2015-03-31

目录

    /

    返回文章
    返回