采用二分法计算链传动中心距(英)

    Calculating center distance of a roller chain drive with dichotomy method

    • 摘要: 滚子链传动中心距对链传动的动力学特性和运动学特性有着很大的影响,该文提出了比现有计算链传动中心距方法更精确的二分法。当链传动的链条总长是链节的偶数倍时,由二分法计算出的链传动中心距最大值和最小值和Winklhofer方法的计算值相同,与渐开线法的计算值相匹配。Winklhofer方法是准确的计算方法,但只能用于链条总长是链节的偶数倍时的链传动,而渐开线法是近似法,不能精确地计算链传动中心距;而二分法是一种数值法,它可精确地计算链传动中心距,并且适用于链条总长是任意值的链传动,可计算出链传动中心距最大值和最小值。对案例计算结果的分析比较表明,二分法是一种精确的计算链传动中心距的方法之一。二分法对中心距不可调整的重要链传动,或在同一中心距上有多挂链条的平行传动,具有重要意义。

       

      Abstract: The center distance of a roller chain drive greatly affects kinematics and dynamics in chain drives. Dichotomy method is given to calculate the center distance of a roller chain drives more accurately than the existing methods. When the length of chain is an even number of chain pitches, the maximum and minimum values of center distances of a roller chain drives calculated with dichotomy method are almost the same as those by the Winklhofer method and compatible of with involute function method. The Winklhofer method is an exact method. But Winklhofer method cannot calculate center distance of a roller chain drive whose length of chain is an odd number of chain pitches. Involute function method is an approximative method. The Involute function method cannot calculate center distances of a roller drive exactly. Dichotomy method is a numerical method. Dichotomy method can calculate center distances of a roller drives. Dichotomy method can be used in a chain drive whose length of chain is any value. The accurate dichotomy method is significant for a roller chain drive whose distance cannot be adjusted and for shafts on which there is more than one roller chain drive.

       

    /

    返回文章
    返回