基于局部离群指数的土壤重金属污染评价方法

    Local outlier index-based method to evaluate soil metal contamination

    • 摘要: 为评价土壤重金属污染,该文提出了一种局部离群指数方法。局部离群指数方法计算监测样点的局部离群指数,监测样点的局部离群指数越大,则该样点是污染样点的趋势越大。为确保算法的准确性,定义了深度离群点以及广度离群点;为减少算法处理海量数据的计算复杂性,开发了基于密度取样的数据过滤方法,以过滤数据分布致密的数据点而保留稀疏区域的数据点。以京郊农田重金属监测数据为实例,比较局部离群指数方法与内梅罗污染指数方法的评价结果的准确性,结果显示局部离群指数方法的评价结果与内梅罗污染指数方法的结果吻合,表明局部离群指数方法可作为一种有效的重金属污染评价方法。

       

      Abstract: This paper proposed a local outlier index method to evaluate soil metal contamination. The method calculates local outlier index of samples. The bigger the index is, the more the object has a probability of becoming the contaminated one. Additionally, deep outlier and extensive outlier were introduced to ensure the accuracy of experimental results; a data-filtering method which is based on density-sampling was developed to reduce the algorithm complexity when dealing with massive data, by filtering intensively distributed data and reserving the data of spares regions. On real metal contamination data of farmland soils in suburbs of Beijing, the results of the local outlier index algorithm, which is consistent with that of Nemerow index method, demonstrate its effectiveness of analysis of metal contamination problem.

       

    /

    返回文章
    返回