李培岭, 张富仓. 不同沟灌方式下根区水氮调控对棉花群体生理指标的影响[J]. 农业工程学报, 2011, 27(2): 38-45.
    引用本文: 李培岭, 张富仓. 不同沟灌方式下根区水氮调控对棉花群体生理指标的影响[J]. 农业工程学报, 2011, 27(2): 38-45.
    Li Peiling, Zhang Fucang. Effect of root zone water and nitrogen regulation on cotton population physiological indices under different furrow irrigation patterns[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(2): 38-45.
    Citation: Li Peiling, Zhang Fucang. Effect of root zone water and nitrogen regulation on cotton population physiological indices under different furrow irrigation patterns[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(2): 38-45.

    不同沟灌方式下根区水氮调控对棉花群体生理指标的影响

    Effect of root zone water and nitrogen regulation on cotton population physiological indices under different furrow irrigation patterns

    • 摘要: 为探明水氮调控对沟灌棉花群体生长发育的影响机制,通过设置3种沟灌方式、3个灌水量和施氮量水平进行大田沟灌棉花试验研究,并利用高斯单峰分布模型模拟棉花群体生理指标变化趋势。试验结果表明:模型模拟精度相对较高。施氮处理下:与常规沟灌相比,交替隔沟灌低氮处理叶片光和势峰值下降39.3%,中氮处理各指标无显著差异,高氮处理下叶片光和势峰值提高17.26%,群体净同化率峰值下降21.69%;固定隔沟灌方式不同施氮处理各指标峰值下降35.1%~44.0%。灌水处理下:与常规沟灌相比交替隔沟灌低水分处理叶片光和势峰值下降23.94%,中等水分处理下叶片光和势提高13.63%,叶面积指数下降14.2%,高水分处理下各指标参数无显著差异;固定隔沟灌方式不同灌水处理各群体指标下降20.7%~47.22%。与常规沟灌棉花生物量和产量相比,交替隔沟灌各水氮处理地上干物质重和产量无显著差异,固定隔沟灌地上干物质重下降9.8%~19.3%,产量下降7.6%~8.9%。因此,交替隔沟灌的根区水、氮调控对棉花群体性能影响较显著,能够有效调控棉花群体生长发育,对于棉花水肥管理具有重要的应用价值。

       

      Abstract: To explore the regulation effects of water and nitrogen on cotton population growth and development under the furrow irrigation, a cotton field furrow irrigation experiment was conducted. In the experiments, three kinds of furrow irrigation patterns and three irrigation and nitrogen fertilization levels were designed. The change trends of the cotton population physiological indices were simulated using single peak Gaussian distribution model. The results showed that the model simulation accuracy was relatively high. Compared with the peak values of leaf area duration (LAD) under conventional furrow irrigations (CFI), it decreased by 39.3% under alternative furrow irrigations (AFI) and low nitrogen treatments. Under medium nitrogen treatments, there was no significant difference in all indices. Under high nitrogen treatments, the LAD peak value increased by 17.26%, while the net assimilation rate (NAR) decreased by 21.69%. Meanwhile, under fixed furrow irrigations (FFI) and different nitrogen treatments, the peak value of each indices decreased by 35.1%–44.0%. Compared with the CFI, the LAD peak value decreased by 23.94% under AFI low water treatments. LAD peak value increased by 13.63% and leaf area index (LAI) decreased by 14.2% under AFI medium water treatments. Under AFI high water treatments, there was no significant difference in all indices. Under the FFI and different irrigation treatments, each index decreased by 20.7%–47.22%. Compared with the changes of cotton biomass and yield, the changes of ground dry weight and yield were insignificant under AFI and all water and nitrogen treatments. The FFI ground dry weight decreased by 9.8%–19.3% and the cotton yield decreased by 7.6%–8.9%. The experimental results show that AFI has obvious advantage of regulation effects of water and nitrogen on the performance of cotton population and it can be used to control the population growth and development of cotton effectively. Thus, AFI is recommended in practical applications of cotton water and fertilizer managements.

       

    /

    返回文章
    返回