风送式喷雾机导流器结构优化及试验研究

    Structural optimization and experiment on fluid director of air-assisted sprayer

    • 摘要: 风送式喷雾机风筒内部结构影响风场的分布及喷雾机的效率。该文利用仿真方法,研究了风筒内导流片数目对内部流场的影响;仿真研究柱形导流器、锥形导流器及半椭球形导流器结构对风筒流场的出风速度、压力损失的影响;以效率高为优化目标,优化导流器的形式及结构;利用试验样机,对安装优化后导流器的风筒进行了实际测量,并与导流器优化前的测量结果进行了对比分析。仿真及试验结果表明:导流片数目一般以4~5为宜;导流器优化后,当风扇工作转速为2 926.5 r/min时,可节约电能4.88%。导流片的安装既有利于将风筒内的旋转气流转化为轴向的气流,同时又产生压力损失;导流器的结构对风筒的压力损失率、出风口风速产生较大的影响,其中半椭球导流器产生的压力损失率最小。

       

      Abstract: The air field distribution and spray efficiency are influenced by the internal structure of an air-assisted sprayer. In this paper, computational simulation was applied to analyze effects of the distributor number on the internal wind flow field in an air duct. Effects of cylindrical, conical and semi-elliptical fluid director structures on the duct wind flow field outlet speed and pressure loss were simulated. The form and structure of fluid director were optimized to obtain high efficiency. A prototype machine was made and comparative analysis was conducted with the measured duct performance before and after oriented object installation. Results indicated that the proper amount of deflector was from four to five pieces. After fluid director was installed, power saving reached to 4.88% when the fan speed was at 2926.5r/min. The installed deflectors were benefit for turning the rotating air flow to the axial air flow within the duct and generated pressure loss. The oriented object’s structure had great effects on the duct pressure loss rate and outlet wind speed. A minimum pressure loss rate was obtained by using the semi-elliptical oriented object.

       

    /

    返回文章
    返回