• EI
    • CSA
    • CABI
    • 卓越期刊
    • CA
    • Scopus
    • CSCD
    • 核心期刊

基于MFICSC算法的生菜图像目标聚类分割

孙 俊, 武小红, 张晓东, 王 艳, 高洪燕

孙 俊, 武小红, 张晓东, 王 艳, 高洪燕. 基于MFICSC算法的生菜图像目标聚类分割[J]. 农业工程学报, 2012, 28(13): 149-153.
引用本文: 孙 俊, 武小红, 张晓东, 王 艳, 高洪燕. 基于MFICSC算法的生菜图像目标聚类分割[J]. 农业工程学报, 2012, 28(13): 149-153.
Sun Jun, Wu Xiaohong, Zhang Xiaodong, Wang Yan, Gao Hongyan. Lettuce image target clustering segmentation based on MFICSC algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 149-153.
Citation: Sun Jun, Wu Xiaohong, Zhang Xiaodong, Wang Yan, Gao Hongyan. Lettuce image target clustering segmentation based on MFICSC algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 149-153.

基于MFICSC算法的生菜图像目标聚类分割

基金项目: 国家自然科学基金资助项目(No.31101082、No.61075036);江苏高校优势学科建设工程资助项目PAPD(项目编号:苏政办发2011 6号)

Lettuce image target clustering segmentation based on MFICSC algorithm

  • 摘要: 生菜图像目标分割是基于图像处理的生菜生理信息无损检测的前提。为了解决因生菜富含水分使得图像采集镜头反光而导致生菜叶片图像灰度分布不均的问题,该文采用一种修正的图像灰度均衡算法对生菜图像进行灰度均衡处理,应用混合模糊类间分离聚类算法(MFICSC)进行生菜图像目标分割,使总体类间距离最大化,能够同时生成模糊隶属度和典型值,对处理噪声数据和克服一致性聚类问题均表现良好。分别采用MFICSC算法和Otsu算法进行了生菜图像目标分割对比试验,结果表明MFICSC算法具有较好的聚类准确度,效果优于传统Otsu分割算法。
    Abstract: Lettuce image target segmentation is the premise of the nondestructive detection of lettuce physiological information based on image processing. Because lettuce contains more water, the camera len is likely to occur reflex, leading to uneven gray distribution of lettuce leaf image. A modified image equalization algorithm is used to equalize the image gray. In this paper, the mixed fuzzy inter-cluster separation clustering(MFICSC) is applied in lettuce image target segmentation, which can make the distance between classes be maximum on the whole and can produce the fuzzy memberships and possibilities simultaneously. MFICSC can overcome the noise sensitivity and the coincident clusters problem. In the test, the MFICSC algorithm and Otsu algorithm were applied to lettuce image target segmentation respectively. The test results show that the MFICSC algorithm has better clustering accuracy, and its segmentation effect is superior to the one of traditional Otsu algorithm.
  • [1] 赵杰文,周晓兵. 基于近红外图像纹理分析检测作物叶片含水率的研究[J]. 农业工程学报,1999,15(3):39-43.Zhao Jiewen, Zhou Xiaobing. Foundamental study on determination of leaves' moisture content based on near infrared image texture analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1999, 15(3): 39-43. (in Chinese with English abstract)
    [2] 毛罕平,吴雪梅,李萍萍. 基于计算机视觉的番茄缺素神经网络识别[J]. 农业工程学报,2005,21(8):106-109.Mao Hanping, Wu Xuemei, Li Pingping. Recognition of tomato nutrient deficiency using aritificial neural network based on computer vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(8): 106-109. (in Chinese with English abstract)
    [3] 毛罕平,徐贵力,李萍萍. 番茄缺素叶片的图像特征提取和优化选择研究[J]. 农业工程学报,2003,2(3):133-136.Mao Hanping, Xu Guili, Li Pingping. Extracting and selecting features of leaf images for diagnosing nutrient deficiency diseases in tomatoes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 2(3): 133-136. (in Chinese with English abstract)
    [4] 毛罕平,胡波,张艳诚,等. 杂草识别中颜色特征和阈值分割算法的优化[J]. 农业工程学报,2007,9(9):154-158.Mao Hanping, Hu Bo, Zhang Yancheng. Optimization of color index and threshold segmentation in weed recognition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 9(9): 154-158. (in Chinese with English abstract)
    [5] 王连君,邢宇. 数字图像技术在草莓氮素营养诊断中的应用研究[J]. 华南农业大学学报,2010,31(2):19-21.Wang Lianjun, Xing Yu. Study on strawberry of n nutrition diagnosis using digital image processing technique[J]. Journal of South China Agricultural University, 2010, 31(2): 19-21. (in Chinese with English abstract)
    [6] 杨玮,Nick Sigrimis,李民赞. 基于多光谱图像分析的温室黄瓜叶片营养元素检测与诊断[J]. 光谱学与光谱分析,2010,30(1):210-213.Yang Wei, Nick Sigrimis, Li Minzan. Nitrogen content testing and diagnosing of cucumber leaves based on multispectral imagines[J]. Spectroscopy and Spectral Analysis, 2010, 30(1): 210-213. (in Chinese with English abstract)
    [7] Pagola M, Ortiz R, Irigoyen I. et al. New method to assess barley nitrogen nutrition status based on image colour analysis[J]. Comparison with SPAD-502. Computers and electronics in agriculture, 2009, 65(3): 213-218.
    [8] 张晓东,毛罕平,左志宇,等. 基于多光谱视觉技术的油菜水分胁迫诊断[J]. 农业工程学报,2011,27(3):152-157.Zhang Xiaodong, Mao Hanping, Zuo Zhiyu, et al. Nondestructive testing method for rape water stress based on multi-spectral vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(3): 152-157. (in Chinese with English abstract)
    [9] 洪添胜,李震,吴春胤,等. 高光谱图像技术在水果品质无损检测中的应用[J]. 农业工程学报,2007,23(11):280-285.Hong Tiansheng, Li Zhen, Wu Chunyin et al. Review of hyperspectral image technology for non-destructive inspection of fruit quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(11): 280-285. (in Chinese with English abstract)
    [10] 蔡健荣,王建黑,陈全胜,等. 波段比算法结合高光谱图像技术检测柑橘果锈[J]. 农业工程学报,2009,25(1):127-131.Cai Jianrong, Wang Jianhei, Chen Quansheng, et al. Detection of rust in citrus by hyperspectral imaging technology and band ratio algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(1): 127-131. (in Chinese with English abstract)
    [11] 尹建军,毛罕平,王新忠,等. 不同生长状态下多目标番茄图像的自动分割方法[J]. 农业工程学报,2006,22(10):149-153.Yin Jianjun, Mao Hanping, Wang Xinzhong, et a1. Automatic segmentation method for multi-tomato images under various growth conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(10): 149-153. (in Chinese with English abstract)
    [12] 毛罕平,李明喜,张艳诚. 基于多光谱图像融合和形态重构的图像分割方法[J]. 农业工程学报,2008,24(6):174-178.Mao Hanping, Li Mingxi, Zhang Yancheng. Image segmentation method based on multi-spectral image fusion an d morphology reconstruction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(6): 174-178. (in Chinese with English abstract)
    [13] 袁道军,刘安国,原保忠,等. 基于计算机视觉技术的油菜冠层营养信息监测[J]. 农业工程学报,2009,25(12):174-179.Yuan Daojun, Liu Anguo, Yuan Baozhong, et a1. Nutrition information extraction of rape canopy based on computer- vision technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(12): 174-179. (in Chinese with English abstract)
    [14] 孙俊. 改进二维最大类间方差法及其在黄瓜目标分割中的应用[J]. 农业工程学报,2009,25(10):176-181.Sun Jun. Improved 2D maximum between-cluster variance algorithm and its application to cucumber target segmentation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(10): l76-181. (in Chinese with English abstract)
    [15] Otsu N. A threshold selection method from gray level histograms[J]. IEEE Trans on SMC, 1979, 9(1): 62-69.
    [16] 吴昊,汪荣贵,方帅,等. 基于最小类内差和最大类间差的图像分割算法研究[J]. 工程图学学报,2011,32(1):67-75.Wu Hao, Wang Ronggui, Fang Shuai, et al. Image segmentation algorithm research based on minimum within- cluster difference and maximum between-cluster difference[J]. Journal of Engineering Graphics, 2011, 32(1): 67-75. (in Chinese with English abstract)
    [17] 张新明,孙印杰,郑延斌. 二维直方图准分的Otsu图像分割及其快速实现[J]. 电子学报,2011,39(8):1778-1784.Zhang Xinming, Sun Yinjie, Zhang Yanbin. Precise Two- Dimensional Otsu's Image Segmentation and Its Fast Recursive Realization[J]. Acta Electronica Sinica, 2011, 39(8): 1778-1784. (in Chinese with English abstract)
    [18] 杨怀义. 图像分割中算法的应用研究[J]. 计算机仿真,2012,29(2):229-232.Yang Huaiyi. Application research on Image Segmentation Method[J]. Computer simulation, 2012, 29(2): 229-232. (in Chinese with English abstract)
    [19] 章毓晋. 图像工程(中册:图像分析)[M]. 北京:清华大学出版社,2005.
    [20] 毛罕平,张艳诚,胡波. 基于模糊C均值聚类的作物病害叶片图像分割方法研究[J]. 农业工程学报,2008,9(9):136-140.Mao Hanping, Zhang Yancheng, Hu Bo. Segmentation of crop disease leaf images using fuzzy C-means clustering algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 9(9): 136-140. (in Chinese with English abstract)
    [21] 刘木华,赵杰文,张海东. 基于模糊C均值聚类的牛肉图像中脂肪和肌肉区域分割技术[J]. 农业工程学报,2004,20(2):161-163.Liu Muhua, Zhao Jiewen, Zhang Haidong. Segmentation of fat and lean meat in beef images based on fuzzy C-m eans clustering[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(2): 161-163. (in Chinese with English abstract)
    [22] 彭立军,何灵敏,杨小兵. 一种基于FCM的图像分割方法[J]. 中国计量学院学报,2011,22(4):369-372.Peng Lijun, He Lingmin, Yang Xiaobin. A picture segmentation method based on FCM[J]. Journal of China University of Metrology, 2011, 22(4): 369-372.
    [23] Xiaohong Wu, Bin Wu, Jun Sun. Mixed fuzzy inter-cluster separation clustering algorithm[J]. Applied Mathematical Modelling, 2011, 35(10): 4790-4795..
    [24] Kenneth R.Castleman. 数字图像处理[M]. 北京:电子工业出版社,2002,2.
    [25] He M G, Harvey A L, Danuletti P. Car number plate detection with edge image improvement[C]//4th Int. Symp. on Signal Proc. And Its App, Gold Coast, Australia, 1996: 895-899.
    [26] Barni M, Cappellini V, Mecocci A. Comments on a possibilistic approach to clustering[J]. IEEE Trans.Fuzzy Syst. 1996, 4(3): 393-396.Lettuce image target clustering segmentation based on MFICSC algorithm
计量
  • 文章访问数:  1250
  • HTML全文浏览量:  0
  • PDF下载量:  569
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-13
  • 修回日期:  2012-01-05
  • 发布日期:  2012-06-30

目录

    /

    返回文章
    返回