Abstract:
In order to investigate the variable-thickness performance of blade in a axial flow pump, a QY90-4.4-1.5 submersible axial flow pump with specific speed 550 and rotate velocity 2900 r/min, especially its particular impeller and guide vane has been designed on the basis of arc method and streamline method. Based on experiments with increasing in leaf thickness, the reason about the difference among curves of qv-H, qv-P, qv-η were studied. The three-dimensional internal flow with effect of impeller blade thickness within axial flow has been numerically simulated by CFD, both the relative velocity distribution on the optimal condition and static pressure distribution on the different condition of blade surface were obtained. It can be revealed that pump performance with thin blade was improved, but the anti-cavitation was reduced. It also can be showed that the situations of flow separation, backflow and secondary flow were more serious for the thick blades, which were the main reasons for the low efficiency of pump.